

October 15, 2010

Mr. Victor Gregoire Kean Miller Hawthorne D'Armond McCowan & Jarman LLP 301 Main Street, Suite 1800 Baton Rouge, Louisiana 70801

Subject: Incorporation of Additional Laboratory Analytical Data Screening-Level Ecological Risk Assessment - June 29, 2010 Vermilion Parish School Board Property Section 16 T15S R01E East White Lake Oil and Gas Field Vermillion Parish, Louisiana

Dear Mr. Gregoire:

I have attached updated tables supporting calculations and additional reliance materials to the East White Lake Oil and Gas Field Screening-Level Ecological Risk Assessment (SLERA) to incorporate data collected and/or final laboratory reports received following my report of June 29, 2010. The additional laboratory data consist of surface water and sediment split samples collected by ICON in February, March, and May 2010.

The additional data support my conclusions from the June 29, 2010 SLERA that there are no unacceptable risks to the Site ecosystem.

Sincerely,

David Lingle

David Lingle Senior Project Manager

													F	East Whit	te Lake (Dil and G	as Field												
Sample ID	SED-1	SED-1	SED-2	SED-2	SED-3	SED-3	SED-4	SED-4	SED-5	SED-5	SED-6	SED-6	SED-7	SED-7	SED-8	SED-8	SED-8	SED-8	SED-9	SED-9	SED-9	SED-9	SED-10	SED-10	SED-11	SED-11	SED-11	SED-11	SED-12
Sample Depth (ft bgs)	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-0.5	0-0.5	0-2	0-2	0-0.5	0-0.5	0-2	0-2	0-2	0-2	0-0.5	0-0.5	0-2
Sample Date	2/25/10	2/25/10	2/25/10	2/25/10	2/25/10	2/25/10	2/25/10	2/25/10	2/25/10	2/25/10	2/25/10	2/25/10	2/25/10	2/25/10	2/25/10	2/25/10	5/6/10	5/6/10	2/25/10	2/25/10	5/5/10	5/5/10	2/25/10	2/25/10	2/25/10	2/25/10	5/6/10	5/6/10	2/25/10
Sampler	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA												
Total Metals																											·	·	
Arsenic	3.93 B	7.36	5.17 B	8.29	8.82 B	8.72	1.58 B	5.42	6.18	4.75	3.31	8.06	3.47 B	3.93	4.42 B	4.0	4.062 B	5.65	3.92 B	5.11	6.612	3.36	4.37	5.2	7.68	6.5	4.386 B	4.8	3.43 B
Barium	379	428	334	308	335	315	342	662	123	216	227	522	726	686	741	587	496	720	457	493	671	455	691	769	2,021	1,260	550	713	1,016
Cadmium	0.04 B	< 0.496	1.26	< 0.496	< 0.06	< 0.496	< 0.01	0.594	< 0.02	< 0.496	2.1	1.21	0.10 B	< 0.496	< 0.03	< 0.497	< 0.021	< 0.498			< 0.027	< 0.498					< 0.024	< 0.498	
Chromium	3.5	19.4	8.74	19.2	< 0.16	15.2	5.27	16.4	< 0.05	15.3	3.57	24.1	6.91	19.0	4.67	18.0	14.8	12.4			13.9	13.8					14.5	13.6	
Lead	22.48	22.3	26.22	21	26.74	19.9	11.9	22.4	14.86	15.4	18.73	55.2	20.99	19.9	22.77	20.1	21.2	18.9			20.4	19.6					18.8	19.3	
Mercury	0.09	0.139	0.06	< 0.1	0.14	< 0.1	0.04	0.22	0.04	0.623	0.88	14.3	0.08	0.119	0.07	< 0.1	0.098 U	0.121	0.06	0.168	0.115 U	< 0.1	0.09	0.197	0.09	0.192	0.096 U	< 0.1	0.07
Selenium	<1.17	< 0.198	<1.09	<1.98	<1.74	<1.99	< 0.42	<1.98	< 0.50	<1.99	< 0.51	<1.98	< 0.80	<1.98	< 0.78	<1.99	< 0.643	<1.99	< 0.71	<1.99	< 0.822	<1.99	< 0.65	<1.99	1.11 B	<1.99	< 0.731	<1.99	1.53 B
Strontium	59.81	56.3	54.78	59.2	79.17	60.2	59.09	91.7	36.2	58.9	80.2	140	47.13	48.3	48.91	51.3	41.1	43.7			46.1	43.5					44.2	45.1	
Zinc																	53.0	48.3			53.6	54.3					51.8	51.4	
Polycyclic Aromatic Hydrocarbons	-																												
2-Methylnaphthalene																	< 0.044				< 0.056						< 0.053		
Acenaphthene																	< 0.046				< 0.059						< 0.056		
Acenaphthylene																	< 0.028				< 0.036						< 0.032		
Anthracene																	< 0.028				< 0.036						< 0.032		
Benzo(a)anthracene																	< 0.036				< 0.046						< 0.041		
Benzo(a)pyrene																	< 0.049				< 0.063						< 0.056		
Benzo(b)fluoranthene																	< 0.026				0.063 J						< 0.029		
Benzo(k)fluoranthene																	< 0.039				< 0.049						< 0.044		
Chrysene																	< 0.028				0.069 J						< 0.032		
Dibenz(a,h)anthracene																	< 0.023				< 0.029						< 0.026		
Fluoranthene																	< 0.018				< 0.024						< 0.021		
Fluorene																	< 0.026				< 0.033						< 0.029		
Indeno(1,2,3-cd)pyrene																	< 0.033				0.313 J						< 0.038		
Naphthalene																	< 0.028				< 0.036						< 0.032		
Phenanthrene																	< 0.033				< 0.043						< 0.038		
Pyrene																	< 0.118				< 0.151						< 0.135		
Other Parameters			-	-	-		-					-	-		-					-									
Chlorides	7,617	3,060	5,522	5,620	5,160	4,700	1,869	2,300	1,558	1,540	1,573	2,310	5,287	2,680	4,361	2,040	2,121		4,006	2,250	2,138		2,432	2,800	3,812	1,490	3,099		3,053
Total Moisture (%)	78.6	77.3	77.0	80.8	85.6	83.2	40.6	61.4	50.0	57.6	51.0	64.8	68.6	69.6	67.9	69.4	61.1	61.1	64.8	66.0	69.6	71.0	61.8	65.4	65.9	64.9	65.8	67.9	67.9
Total Organic Carbon (%)																	5.3				3.61						5.5		
$AVS \div \sum SEM (\mu mol/g)$																					18.36						27.94		

Notes:

AVS - acid volatile sulfides

B - For inorganics, result is between

Reporting Limit and Method

Detection Limit

bgs - below ground surface

DW - dry weight

J - estimated value

JH - bias is likely high

SEM - simultaneously extracted metals U - not detected based on quality

]	East Whi	te Lake C)il and G	as Field												
Sample ID	SED-12	SED-13	SED-13	SED-13	SED-13	SED-14	SED-14	SED-15	SED-15	SED-15	SED-115	SED-15	SED-16	SED-16	SED-17	SED-17	SED-18	SED-18	SED-19	SED-19	SED-19	SED-19	SED-20	SED-20	SED-21	SED-21	SED-22	SED-22
Sample Depth (ft bgs)	0-2	0-2	0-2	0-0.5	0-0.5	0-2	0-2	0-2	0-2	0-0.5	0-0.5	0-0.5	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-0.5	0-0.5	0-2	0-2	0-2	0-2	0-2	0-2
Sample Date	2/25/10	2/26/10	2/26/10	5/6/10	5/6/10	2/26/10	2/26/10	2/26/10	2/26/10	5/6/10	5/6/10	5/6/10	2/26/10	2/26/10	2/26/10	2/26/10	2/26/10	2/26/10	2/26/10	2/26/10	5/6/10	5/6/10	2/26/10	2/26/10	2/26/10	2/26/10	2/26/10	2/26/10
Sampler	ICON	MPA	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON								
Total Metals				-																-	-				-			
Arsenic	3.8	4.47 B	4.32	5.018 B	3.11	3.56 B	3.33	6.01	3.09	6.748	4.815 B	2.76	5.24 B	5.09	4.42 B	3.31	6.91	5.48	4.89	4.74	3.704 B	2.3	4.77 B	5.11	3.47 B	3.61	4.58 B	3.14
Barium	933	632	773	909	586	1,021	1,180	1,777	2,670	943	781	470	324	270	1,729	1,720	2,139	1,430	4,887	2,610	509	516	804	686	486	578	824	639
Cadmium				< 0.030	< 0.499			0.43 B	1.07	< 0.034	< 0.030	< 0.497							< 0.02		< 0.038	< 0.497						
Chromium				18.5	15.7			297.18	501	18	17.1	12.3							17.57		20.5	13.8						
Lead				22	18.1			130.8	179	23.7	22.4	16.7							37.57		23.4	17.0						
Mercury	0.128	0.07	0.231	0.105 U	< 0.1	0.07	0.103	0.61	1.04	0.167	0.148	0.235	0.09	0.604	0.07	0.145	0.12	0.15	0.21	0.22	0.176 U	0.16	0.08	0.189	0.04	< 0.1	0.07	< 0.1
Selenium	<1.99	1.65 B	<1.99	< 0.909	<2.0	1.42 B	<1.99	1.02 B	<2	<1.016	< 0.926	<1.99	2.11 B	<1.99	1.52 B	<2	1.58 B	<1.98	0.90 B	<1.99	<1.157	<1.99	1.24 B	<2	1.17 B	<1.98	1.54 B	<1.99
Strontium				55.3	49.4			136.01	160	65.4	53.0	40.3							116.95		58.3	47.4						
Zinc				65.1	61.4					73.2	65.9	51.3									70.4	57.1						
Polycyclic Aromatic Hydrocarbons																												
2-Methylnaphthalene				< 0.065						< 0.069	< 0.067										< 0.083							
Acenaphthene				< 0.069						< 0.073	< 0.070										< 0.088							
Acenaphthylene				< 0.040						< 0.045	< 0.041										< 0.051							
Anthracene				< 0.044						< 0.045	< 0.044										< 0.056							
Benzo(a)anthracene				< 0.051						< 0.057	< 0.052										< 0.065							
Benzo(a)pyrene				< 0.069						< 0.077	< 0.070										< 0.088							
Benzo(b)fluoranthene				< 0.036						< 0.041	< 0.037										< 0.046							
Benzo(k)fluoranthene				< 0.055						< 0.061	< 0.056										< 0.069							
Chrysene				< 0.040						< 0.045	< 0.041										< 0.051							
Dibenz(a,h)anthracene				< 0.033						< 0.036	< 0.033										< 0.042							
Fluoranthene				< 0.026						< 0.029	< 0.027										< 0.034							
Fluorene				< 0.036						< 0.040	< 0.037										< 0.046							
Indeno(1,2,3-cd)pyrene				< 0.047						< 0.053	< 0.048										< 0.060							
Naphthalene				< 0.040						< 0.045	< 0.041										< 0.051							
Phenanthrene				< 0.047						< 0.053	< 0.048										< 0.060							
Pyrene				< 0.167						< 0.187	< 0.170										< 0.213							
Other Parameters							-	-		-					-		-						-					
Chlorides	1,850	6,429	4,340	3,542		3,950	3,830	2,161	1,380	3,837	3,507		6,703	4,440	3,795	1,880	5,290	3,270	2,384	1,870	5,139		3,144	2,540	3,098	2,150	5,481	3,240
Total Moisture (%)	69.9	73.4	74.9	72.5	75.6	71.9	70.7	53.9	54.6	75.4	73	73.5	81.5	78.6	69.7	68.0	74.1	74.5	64.6	68.8	78.4	78.7	69.4	67.2	68.3	69.8	68.8	68.3
Total Organic Carbon (%)				4.59						6.77	4.08										4.88							
AVS÷ \sum SEM (µmol/g)				81.28						93.52	55.09										95.94							

Notes:

AVS - acid volatile sulfides

B - For inorganics, result is between

Reporting Limit and Method

Detection Limit

bgs - below ground surface

DW - dry weight

J - estimated value

JH - bias is likely high SEM - simultaneously extracted metals U - not detected based on quality

control criteria

Sed 115 is a field duplicate of Sed 15.

													East '	White La	ke Oil an	d Gas Fie	ld											
Sample ID	SED-23	SED-23	SED-24	SED-24	SED-24	SED-24	SED-25	SED-25	SED-26	SED-26	SED-26	SED-26	SED-27	SED-27	SED-28	SED-28	SED-29	SED-29	SED-30	SED-30	SED-120	SED-120	SED-31	SED-31	SED-31	SED-31	SED-32	SED-32
Sample Depth (ft bgs)	0-2	0-2	0-2	0-2	0-0.5	0-0.5	0-2	0-2	0-2	0-2	0-0.5	0-0.5	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-0.5	0-0.5	0-2	0-2	0-0.5	0-0.5	0-2	0-2
Sample Date	3/2/10	3/2/10	3/2/10	3/2/10	5/5/10	5/5/10	3/2/10	3/2/10	3/2/10	3/2/10	5/5/10	5/5/10	3/2/10	3/2/10	3/2/10	3/2/10	3/2/10	3/2/10	3/2/10	3/2/10	5/7/10	5/7/10	3/1/10	3/1/10	5/5/10	5/5/10	3/1/10	3/1/10
Sampler	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON
Total Metals																												-
Arsenic	3.76 B	6.73	4.14 B	4.97	10.479	3.15	4.13 B	5.95	4.27 B	4.77	5.127	3.28	3.30 B	4.95	3.27 B	5.04	<1.06	4.47	3.60 B	4.97	3.657 B	5.69	1.16 B	3.13	8.031	4.8	2.21 B	4.47
Barium	1,234	888	885	706	1,198	434	1,449	1,070	1,086	791	538	406	584	548	486	495	659	539	856	493	754	410	544	585	1,097	554	473	460
Cadmium					0.026 BU	< 0.499					< 0.026	< 0.497			0.22 B	< 0.498	0.11 B	< 0.496	0.27 B	< 0.496	0.217 BU	< 0.498			0.059 BU	< 0.497		
Chromium					14.8	12.7					17.2	11.6			6.54	17.5	13.7	16.9	26.76	17	35.8	9.14			17	12.9		
Lead					25.2	18.0					23.1	16.7			19.44	17.9	20.19	16.3	32.37	16.6	34	8.16			24.8	18.5		
Mercury	0.07	< 0.1	0.11	< 0.1	0.111 U	< 0.1	0.08	< 0.1	0.32	0.454	0.159	0.314	0.08	< 0.1	0.61	1.21	0.11	< 0.1	0.08 B	< 0.1	0.411	< 0.1	0.04	0.116 J	0.159	0.115	0.04	0.132 J
Selenium	1.61 B	<1.98	1.72 B	<1.98	< 0.749	<1.99	1.56 B	<1.99	0.84 B	<1.99	< 0.796	<1.99	0.97 B	<1.98	<1.17	<1.99	<1.20	<1.98	<1.80	<1.98	<1.429	<1.99	0.88 B	<1.99	< 0.781	<1.99	0.93 B	<1.99
Strontium					68.9	41.5					53.8	44.2			292.99	237	213.94	223	380.58	220	442.3	313.0			63.1	43.6		
Zinc					62.0	50.3					64.0	50.7									414.3	62.1			64.7	49.7		
Polycyclic Aromatic Hydrocarbons																												-
2-Methylnaphthalene					< 0.051						< 0.057										< 0.103				< 0.056			
Acenaphthene					< 0.054						< 0.061										< 0.109				< 0.059			
Acenaphthylene					< 0.033						< 0.035										< 0.063				< 0.034			
Anthracene					< 0.033						< 0.038										< 0.069				< 0.034			
Benzo(a)anthracene					< 0.042						< 0.045										< 0.080				< 0.044			
Benzo(a)pyrene					< 0.057						< 0.061										< 0.109				< 0.059			
Benzo(b)fluoranthene					< 0.030						< 0.032										< 0.057				< 0.031			
Benzo(k)fluoranthene					< 0.045						< 0.048										< 0.086				< 0.047			
Chrysene					0.036 J						< 0.035										< 0.063				< 0.034			
Dibenz(a,h)anthracene					< 0.027						< 0.029										< 0.052				< 0.028			
Fluoranthene					< 0.021						< 0.023										< 0.042				< 0.023			
Fluorene					< 0.030						< 0.032										0.920 J				< 0.031			
Indeno(1,2,3-cd)pyrene					< 0.039						< 0.041										< 0.074				< 0.041			
Naphthalene					< 0.033						< 0.035										< 0.063				< 0.034			
Phenanthrene					0.048 J						< 0.041										< 0.074				< 0.041			
Pyrene					< 0.138						< 0.146										< 0.263				< 0.144			
Other Parameters																												
Chlorides	2,763	2,390	2,902	1,970	2,482		4,162	2,830	2,378	1,680	2,869		5,591	2,910	9,299	5,280	10,144	8,310	16,043	7,900	10,400		9,286	6,120	2,469		6,797	3,250
Total Moisture (%)	64.6	67.9	65.2	58.2	66.6	68.9	66.6	66.6	65.3	61.6	68.6	70.5	72.1	72.9	78.6	76.7	79.2	83.4	86.1	81.1	82.5	82.2	70.6	70.1	68	67.9	71.9	72.3
Total Organic Carbon (%)					4.56						9.45										28.4				5.41			
AVS÷ $\sum \overline{\text{SEM} (\mu \text{mol/g})}$					47.77						19.41										1.02				6.83			

Notes: AVS - acid volatile sulfides

B - For inorganics, result is between

Reporting Limit and Method

Detection Limit

bgs - below ground surface

DW - dry weight

J - estimated value

JH - bias is likely high SEM - simultaneously extracted metals

U - not detected based on quality

Sed 120 (May 2010) corresponds to Sed 30 (March 2010).

													East V	Vhite Lal	ke Oil and G	as Field									
Sample ID	SED-33	SED-33	SS1	SS2	SS3	SS4	SS5	SS6	SS7	SS8	SS8	SS9	SS10	SS10	SS11	SS12	SS13	SS14	SS15	B4	B5	B9	B12	B14	B17
Sample Depth (ft bgs)	0-2	0-2	0-2.1	0-1	0-0.6	0-0.6	0-2.15	0-1.65	0-1.4	0-2	0-2	0-1.7	0-2	0-2	0-2.5	0-3.7	0-1	0-0.8	0-3	0-1	0-1.5	0-0.5	0-1.5	0-1	0-3
Sample Date	3/1/10	3/1/10	4/25/06	4/25/06	4/25/06	4/26/06	4/26/06	4/26/06	4/26/06	2/26/10	2/26/10	4/27/06	2/26/10	2/26/10	4/27/06	4/27/06	4/28/06	4/28/06	4/28/06	8/9/06	8/9/06	8/9/06	8/10/06	8/10/06	8/10/06
Sampler	MPA	ICON	ICON	ICON	ICON	ICON	ICON	ICON	ICON	MPA	ICON	ICON	MPA	ICON	ICON	ICON	ICON	ICON	ICON	ICON	ICON	ICON	ICON	ICON	ICON
Total Metals																									
Arsenic	2.60 B	3.21			8.79		11.4		22	7.89	8.12		6.52	8.03	5.28	6.17				40.4	22.6	27.6			40.8
Barium	670	395			1,600		7,450		15,700	1,042	871		997	843	2,750	2,030				631		368			2,390
Cadmium										0.17 B	0.538		0.31 B	0.519						0.77		0.644			1.24
Chromium					17.9		21.8		20.0	4.96	15.8		4.64	14.7	25.1	12.7									62.6
Lead					28.8		117		67.5	35.18	24.5 J		23.31	28.3	63.6	49.9				28.7		23.1			64.6
Mercury	0.08	< 0.1								1.63	0.86		0.15	0.276											
Selenium	<1.25	<1.99								1.14 B	<2.0		1.32 B	<1.99						<4.72		<4.01			<10.5
Strontium					74.3		140		231	74.52	65.3		61.26	65.3	64.8	72.9				59.3		64.1			
Zinc					92.5		174		111						194	73.5									
Polycyclic Aromatic Hydrocarbons																									
2-Methylnaphthalene					< 0.885		< 0.776		<1.17						< 0.466	< 0.609									
Acenaphthene					< 0.885		< 0.776		<1.17						< 0.466	< 0.609									
Acenaphthylene					< 0.885		< 0.776		<1.17						< 0.466	< 0.609									
Anthracene					< 0.885		< 0.776		<1.17						< 0.466	< 0.609									
Benzo(a)anthracene					< 0.885		< 0.776		<1.17						< 0.466	< 0.609									
Benzo(a)pyrene					< 0.885		< 0.776		<1.17						< 0.466	< 0.609									
Benzo(b)fluoranthene					< 0.885		< 0.776		<1.17						< 0.466	< 0.609									
Benzo(k)fluoranthene					< 0.885		< 0.776		<1.17						< 0.466	< 0.609									
Chrysene					< 0.885		< 0.776		<1.17						< 0.466	< 0.609									
Dibenz(a,h)anthracene					< 0.885		< 0.776		<1.17						< 0.466	< 0.609									
Fluoranthene					< 0.885		< 0.776		<1.17						< 0.466	< 0.609									
Fluorene					< 0.885		< 0.776		<1.17						< 0.466	< 0.609									
Indeno(1,2,3-cd)pyrene					< 0.885		< 0.776		<1.17						< 0.466	< 0.609									
Naphthalene					< 0.885		< 0.776		<1.17						< 0.466	< 0.609									
Phenanthrene					< 0.885		< 0.776		<1.17						< 0.466	< 0.609									
Pyrene					< 0.885		< 0.776		<1.17						< 0.466	< 0.609									
Other Parameters																									
Chlorides	14,200	8,170	1,950	1,600	825	3,850	1,430	1,700	2,050			1,500			540	610	1,900	2,250	1,400	10,000	5,800	7,390	7,360	2,750	7,950
Total Moisture (%)	80.0	73.4	62.6	53.5	62.7	75	57.5	70.8	71.7	63.9	64.0	61.7	69.8	67.2	29.2	45.8	65.8	43.9	64.3	78.4	71.0	74.4	76.8	50.2	81
Total Organic Carbon (%)																									
$AVS \div \sum SEM (\mu mol/g)$																									

Notes: AVS - acid volatile sulfides

B - For inorganics, result is between

Reporting Limit and Method

Detection Limit

bgs - below ground surface

DW - dry weight

J - estimated value

JH - bias is likely high SEM - simultaneously extracted metals

U - not detected based on quality

		East Whit	e Lake Oil an	d Gas Field									Background							
Sample ID	B21	AB13	MPA-AB13	MPA-AB13	AB14	AB1	AB2	AB3	AB4	SED-BK-01	SED-BK-01	SED-BK-02	SED-BK-02	SED-BK-03	SED-BK-03	SED-BK-04	SED-BK-04	SED-BK-05	SED-BK-05	SED-BK-06
Sample Depth (ft bgs)	0-2	0-3	0-3	0-3	0-3	0-3	0-3	0-3	0-3	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Sample Date	8/10/06	11/13/06	5/20/10	5/20/10	11/13/06	11/13/06	11/13/06	11/13/06	11/13/06	5/10/2010	5/10/2010	5/10/2010	5/10/2010	5/10/2010	5/10/2010	5/10/2010	5/10/2010	5/11/2010	5/10/2010	5/10/2010
Sampler	ICON	ICON	MPA	ICON	ICON	ICON	ICON	ICON	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA
Total Metals																				
Arsenic		12.9	11.5	5.41	5.51	7.66	7.64	6.5	10	1.041 BJ	4.99	4.167 B	4.26	4.514 B	2.83	3.874 B	4.79	2.369 B	6.32	3.255 B
Barium		551			200	257	247	279	227	155 JH	897	288	317	347	319	582	388	388	388	768
Cadmium		0.447			0.219	0.406	0.316	0.312	0.356	< 0.026	< 0.496	< 0.025	< 0.495	0.049 B	< 0.500	0.099 B	< 0.497	< 0.026	< 0.499	< 0.028
Chromium		7.73			12.8	12.9	12.4	14.5	9.02	13.123	11.7	14.732	12.5	17.986	13.4	13.242	11.5	7.2	8.26	19.866
Lead		8.11			14.4	17.8	15.7	21	12.6	11.546	12.6	18.452	17.9	22.257	17.0	20.275	17.6	7.846	8.21	26.846
Mercury										0.104 JU	< 0.1	0.095 U	0.132	0.08 U	< 0.1	0.096	< 0.1	0.077 U	< 0.1	0.094 U
Selenium										< 0.789	<1.98	< 0.744	<1.98	< 0.868	<2.00	< 0.687	<1.99	< 0.769	<1.99	< 0.839
Strontium		459			121	106	87.2	63.9	100	69.401	80.5	44.643	44.4	45.833	37.4	41.758	38.5	84.308	129	59.396
Zinc		24.8			63.9	46.4	45.9	46.8	40.9	30.978	23.4	46.131	46.6	58.333	48.3	42.857	42.9	21.508	19.3	64.765
Polycyclic Aromatic Hydrocarbons																				
2-Methylnaphthalene										< 0.057		< 0.051		< 0.063		< 0.047		< 0.055		< 0.057
Acenaphthene										< 0.060		< 0.054		< 0.066		< 0.049		< 0.058		< 0.060
Acenaphthylene										< 0.035		< 0.033		< 0.038		< 0.030		< 0.034		< 0.037
Anthracene										< 0.038		< 0.033		< 0.038		< 0.030		< 0.034		< 0.037
Benzo(a)anthracene										< 0.044		< 0.042		< 0.049		< 0.038		< 0.043		< 0.047
Benzo(a)pyrene										< 0.060		< 0.057		< 0.066		< 0.052		< 0.058		< 0.064
Benzo(b)fluoranthene										< 0.032		< 0.030		< 0.035		< 0.027		< 0.031		< 0.034
Benzo(k)fluoranthene										< 0.047		< 0.045		< 0.052		< 0.041		< 0.046		< 0.050
Chrysene										< 0.035		< 0.033		< 0.038		< 0.030		< 0.034		< 0.037
Dibenz(a,h)anthracene										< 0.028		< 0.027		< 0.031		< 0.025		< 0.028		< 0.030
Fluoranthene										< 0.023		< 0.021		< 0.025		< 0.020		< 0.022		< 0.024
Fluorene										< 0.032		< 0.030		< 0.035		< 0.027		< 0.031		< 0.033
Indeno(1,2,3-cd)pyrene										< 0.041		< 0.039		< 0.045		< 0.036		< 0.040		< 0.044
Naphthalene										< 0.035		< 0.033		< 0.038		< 0.030		< 0.034		< 0.037
Phenanthrene										< 0.041		< 0.039		< 0.045		< 0.036		< 0.040		< 0.044
Pyrene										< 0.145		< 0.137		< 0.160		< 0.126		< 0.142		< 0.154
Other Parameters									•	•			•				•			
Chlorides	3,700	73,800			15,500	10,500	10,000	10,800	13,800	1,139		1,750		1,024		687		1,406		3,826
Total Moisture (%)	76.4	86.0			62.8	81.9	85.6	82.8	86.1	68.3	72.3	66.4	71.5	71.2	72.2	63.6	68.4	67.5	77.9	70.2
Total Organic Carbon (%)										18.4		5.15		1.44		4.27		17.2		5.5
AVS÷ \sum SEM (µmol/g)										0.34		64.52		89.39		41.82		4.23		15.79

<u>Notes:</u> AVS - acid volatile sulfides

B - For inorganics, result is between

Reporting Limit and Method

Detection Limit

bgs - below ground surface

DW - dry weight

J - estimated value

JH - bias is likely high

SEM - simultaneously extracted metals U - not detected based on quality

						Background				
Sample ID	SED-BK-06	SED-BK-07	SED-BK-07	SED-BK-08	SED-BK-08	SED-BK-09	SED-BK-09	SED-BK-10	SED-BK-10	SED-BK-1
Sample Depth (ft bgs)	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Sample Date	5/10/2010	5/11/2010	5/10/2010	5/11/2010	5/10/2010	5/11/2010	5/10/2010	5/19/2010	5/10/2010	5/19/2010
Sampler	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA
Total Metals										
Arsenic	4.33	3.930 B	2.16	4.711 B	5.98	8.471	9.45	4.86 B	6.79	9.95
Barium	753	463	397	383	313	264	231	274	205	319
Cadmium	< 0.497	< 0.036	< 0.497	< 0.034	< 0.498	< 0.034	< 0.497	< 0.0331	< 0.499	< 0.042
Chromium	15.1	18.166	14.3	17.727	12.2	11.736	10.2	23.3	12.9	18.59
Lead	18.7	23.057	18.6	24.05	17.3	11.446	11.0	27.2	13.8	21.26
Mercury	< 0.1	0.568	0.185	0.14	< 0.1	0.083 U	< 0.1	< 0.011	< 0.1	< 0.014
Selenium	<1.99	<1.092	<1.99	<1.033	<1.99	<1.033	<1.99	< 0.996	<1.99	<1.26
Strontium	52.0	61.135	50.5	64.463	47.8	84.711	84.6	103	62.8	100
Zinc	48.4	68.996	61.6	58.264	44.1	16.446	29.3	205 J	43.9	90.9
Polycyclic Aromatic Hydrocarbons										
2-Methylnaphthalene		< 0.074		< 0.074		< 0.070		< 0.068		< 0.086
Acenaphthene		< 0.079		< 0.079		< 0.074		< 0.072		< 0.091
Acenaphthylene		< 0.048		< 0.045		< 0.045		< 0.044		< 0.056
Anthracene		< 0.048		< 0.045		< 0.045		< 0.044		< 0.056
Benzo(a)anthracene		< 0.061		< 0.058		< 0.058		< 0.056		< 0.071
Benzo(a)pyrene		< 0.083		< 0.079		< 0.079		< 0.076		< 0.096
Benzo(b)fluoranthene		< 0.044		< 0.041		< 0.041		< 0.040		< 0.051
Benzo(k)fluoranthene		< 0.066		< 0.062		< 0.062		< 0.060		< 0.076
Chrysene		< 0.048		< 0.045		< 0.045		< 0.044		< 0.056
Dibenz(a,h)anthracene		< 0.039		< 0.037		< 0.037		< 0.0356		< 0.0452
Fluoranthene		< 0.031		< 0.030		< 0.030		< 0.029		< 0.036
Fluorene		< 0.043		< 0.041		< 0.041		< 0.0397		< 0.0504
Indeno(1,2,3-cd)pyrene		< 0.057		< 0.054		< 0.054		< 0.052		< 0.066
Naphthalene		< 0.048		< 0.045		< 0.045		< 0.044		< 0.056
Phenanthrene		< 0.057		< 0.054		< 0.054		< 0.052		< 0.066
Pyrene		< 0.201		< 0.190		< 0.190		< 0.183		< 0.232
Other Parameters										
Chlorides		961		1,950		1,054		2,382		1,626
Total Moisture (%)	64.1	77.1	79.6	75.8	71.0	75.8	75.5	74.9	65.1	80.2
Total Organic Carbon (%)		6.6		5.88		10.6		13.4		19.5
AVS÷ \sum SEM (µmol/g)		45.26		67.54		0.30		0.23		1.35

Notes:

AVS - acid volatile sulfides

B - For inorganics, result is between

Reporting Limit and Method

Detection Limit

bgs - below ground surface

DW - dry weight

J - estimated value

JH - bias is likely high SEM - simultaneously extracted metals

U - not detected based on quality

11	SED-BK-11
	0-0.5
0	5/10/2010
-	ICON

	East	White Lake	Oil and Gas	Field			Backgrou	ınd		Sedimer Guie	nt Quali deline
									Arithmetic Mean		
			Arithmetic				Arithmetic		+ Standard		
	Detection	Maximum	Mean	95% UCL	Detection	Maximum	Mean	std dev	Deviation	ERL	ER
Total Metals											
Arsenic	46/46	40.8	8.03	13.6	15/15	10	5.95	2.45	8.40	8.2	70
Arsenic (1)	44/44	22.0	5.82	6.68	15/15	10	5.95	2.45	8.40	8.2	70
Barium	45/45	15,700	1,364	2,967	15/15	761	359	144	503		
Cadmium	15/25	1.655	0.413	0.51	6/15	0.406	0.274	0.077	0.351	1.2	9.0
Chromium	29/29	399.1	22.53	52.35	15/15	18.6	13.80	3.17	16.97	81	37
Lead	31/31	154.9	32.23	51.01	15/15	22.77	17.41	4.45	21.86	46.7	21
Mercury (3)	35/35	7.59	0.413	1.35	4/11	0.377	0.113	0.092	0.205	0.15	0.7
Mercury (2)(3)	35/35	1.245	0.221	0.418	4/11	0.377	0.113	0.092	0.205	0.15	0.7
Selenium	21/35	2.11	1.15	1.221	0/11						
Strontium	30/30	377.6	108	186.3	15/15	107	73.4	23.8	97.2		
Zinc	17/17	238.2	87.42	149.6	15/15	124.5	52.1	26.4	78.5	150	41
Polycyclic Aromatic Hydrocarbons											
2-Methylnaphthalene	0/15	< 0.103			0/11	< 0.086					
Acenaphthene	0/15	< 0.109			0/11	< 0.091					
Acenaphthylene	0/15	< 0.063			0/11	< 0.056					
Anthracene	0/15	< 0.069			0/11	< 0.056					
Benzo(a)anthracene	0/15	< 0.080			0/11	< 0.071					
Benzo(a)pyrene	0/15	< 0.109			0/11	< 0.096					
Benzo(b)fluoranthene	1/15	< 0.057	0.039		0/11	< 0.051					
Benzo(k)fluoranthene	0/15	< 0.086			0/11	< 0.076					
Chrysene	2/15	< 0.063	0.043	0.047	0/11	< 0.056					
Dibenz(a,h)anthracene	0/15	< 0.052			0/11	< 0.0452					
Fluoranthene	0/15	< 0.042			0/11	< 0.036					
Fluorene	1/15	0.92	0.122		0/11	< 0.0504					
Indeno(1,2,3-cd)pyrene	1/15	< 0.074	0.074		0/11	< 0.066					
Naphthalene	0/15	< 0.063			0/11	< 0.056					
Phenanthrene	1/15	< 0.074	0.048		0/11	< 0.066					
Pyrene	0/15	< 0.263			0/11	< 0.232					
Total LPAHs		1.401	0.421	0.902		0.461	0.338	0.064	0.401		
Total HPAHs		0.826	0.552	0.646		0.729	0.531	0.102	0.633		
Total PAHs		2.227	0.973	1.252		1.191	0.868	0.166	1.034	4.022	44.7
Other Parameters											
Chlorides	55/55	15,500	5,381	6,065	15/15	13,800	4,194	4,552	8,746		
Total Moisture (%)	57/57	84.4	67.8	70.18	15/15	86.1	75.4	6.7	82.1		
Total Organic Carbon (%)	10/10	28.4	8.0	18.0	11/11	19.5	9.8	6.4	16.2		
AVS÷ \sum SEM (µmol/g)	9/9	95.94	41.43	63.02	11/11	89.4	30.1	32.9	63.0		

Notes:

AVS - acid volatile sulfides

DW - dry weight

ERL - Effects Range-Low for marine/estuarine sediments (Long et al. 1995)

ERM - Effects Range-Median for marine/estuarine sediments (Long et al. 1995)

HPAH - high molecular weight PAH

LPAH - low molecular weight PAH

- PAH polycyclic aromatic hydrocarbon
- SEM simultaneously extracted metals
- UCL upper confidence limit
- WW wet weight

Results from 2010 split samples were averaged for the above statistics.

- (1) Excludes arsenic re-run laboratory data and ICON archived sediment samples (see ICON Table 4-1R).
- (2) Excludes sample collected by ICON @ SD-06 on 02/25/10 (14.3 mg/kg DW mercury). The corresponding split sample had a mercury concentration of 0.88 mg/kg DW. Michael Pisani & Associates resampled SD-06 and the surrounding area in October 2010. The preliminary laboratory results indicate that all mercury concentrations are below 1.0 mg/kg WW.
- (3) Sferra et al (1999) performed a site-specific evaluation of mercury toxicity in sediment for the Calcasieu River estuary. Sferra et al determined that a site-specific threshold for mercury toxicity to amphipods exceeded 4.1 mg/kg DW (the highest concentration tested) due to relatively high levels of sulfides (i.e., AVS/SEM ratios well above 1) and total organic carbon (5-6%) in site sediment. The authors also cited several other studies that found a site-specific absence of toxicity to benthic invertebrates at mercury levels exceeding sediment quality guidelines. Those authors hypothesized that relatively high total organic carbon and sulfide levels could account for the lack of bioavailability. As shown above, similarly high TOC and AVS/SEM levels are present at the Site, thereby indicating that mercury in Site sediment is not toxic to benthic invertebrates.

										East White	e Lake Oil and	Gas Field									
Sample ID	SW-01	SW-01	SW-02	SW-02	SW-03	SW-03	SW-04	SW-04	SW-05	SW-05	SW-06	SW-06	SW-07	SW-07	SW-09	SW-109	SW-09	SW-10	SW-10	SW-20	SW-20
Sample Date	5/6/2010	5/6/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/6/2010	5/6/2010	5/6/2010	5/6/2010	5/6/2010	5/6/2010	5/6/2010	5/6/2010	5/6/2010	5/7/2010	5/7/2010
Sampler	MPA	ICON	MPA	ICON	MPA	ICON	MPA	MPA	ICON	MPA	ICON	MPA	ICON								
Total Metals (Total Recoverable)																					
Arsenic	< 0.00079	< 0.0100	< 0.00079	< 0.0100	< 0.00079	< 0.0100	< 0.00079	< 0.0100	0.0019 B	< 0.0100	< 0.00079	< 0.0100	< 0.00079	< 0.0100	< 0.00079	< 0.00079	< 0.0100	< 0.00079	< 0.0100	0.013	
Barium	0.28	0.284	0.29	0.285	0.3	0.262	0.27	0.245	0.29	0.265	0.39	0.346	0.45	0.413	0.42	0.41	0.378	0.38	0.345	1.23	
Cadmium	< 0.00016	< 0.00500	< 0.00016	< 0.00500	< 0.00016	< 0.00500	< 0.00016	< 0.00500	< 0.00016	< 0.00500	< 0.00016	< 0.00500	< 0.00016	< 0.00500	< 0.00016	< 0.00016	< 0.00500	< 0.00016	< 0.00500	< 0.00016	
Chromium	0.0026 B	< 0.0100	0.0023 B	< 0.0100	0.0026 B	< 0.0100	0.0022 B	< 0.0100	0.0025 B	< 0.0100	0.0025 B	< 0.0100	0.0025 B	< 0.0100	0.0027 B	0.0027 B	< 0.0100	0.0022 B	< 0.0100	0.0075 B	
Iron	1.26		0.8		1.08		0.49		0.85		0.94		0.94		1.12	1.11		1.09		11.3	
Lead	< 0.0015	< 0.0100	< 0.0015	< 0.0100	< 0.0015	< 0.0100	< 0.0015	< 0.0100	< 0.0015	< 0.0100	< 0.0015	< 0.0100	< 0.0015	< 0.0100	< 0.0015	< 0.0015	< 0.0100	< 0.0015	< 0.0100	0.021	
Magnesium	88.2		100		98.3		103		99.1		127		130		140	141		120		149	
Manganese	0.23		0.27		0.3		0.16		0.31		0.46		0.61		0.51	0.5		0.48		0.83	
Mercury	0.00007 U	< 0.000200	0.00009 U	< 0.000200	0.00007 U	< 0.000200	0.00009 U	< 0.000200	0.00009 U	< 0.000200	0.00008 U	< 0.000200	0.00008 U	< 0.000200	0.00011 U	0.00006 U	< 0.000200	0.00007 U	< 0.000200	0.0001 U	
Selenium	< 0.0037	0.035	< 0.0037	0.034	< 0.0037	0.039	< 0.0037	0.033	< 0.0037	0.037	< 0.0037	0.048	< 0.0037	0.032	< 0.0037	< 0.0037	0.036	< 0.0037	0.039	< 0.0037	
Strontium	0.64	0.554	0.71	0.637	0.7	0.558	0.72	0.614	0.72	0.602	0.9	0.729	0.95	0.778	0.99	1.01	0.829	0.86	0.721	1.74	
Zinc	0.0062 B	0.017	0.0045 B	0.013	< 0.004	0.015	< 0.004	0.012	< 0.004	0.012	< 0.004	0.016	< 0.004	< 0.0100	< 0.004	< 0.004	< 0.0100	< 0.004	0.020	0.067	
Total Metals (Dissolved)																					
Arsenic	< 0.00079		< 0.00079		< 0.00079		< 0.00079		< 0.00079		< 0.00079		< 0.00079		< 0.00079	< 0.00079		< 0.00079		0.0075 B	
Barium	0.28		0.28		0.29		0.26		0.26		0.37		0.42		0.37	0.38		0.35		1.1	
Cadmium	0.00026 U		0.00027 U		< 0.00016		0.00035 U		< 0.00016		0.0002 U		0.00024 U		< 0.00016	0.00027 U		< 0.00016		< 0.00016	
Chromium	0.0017 B		0.0016 B		0.0018 B		0.0017 B		0.0018 B		0.0021 B		0.002 B		0.0024 B	0.0022 B		0.0022 B		0.0051 B	
Lead	< 0.0015		< 0.0015		< 0.0015		< 0.0015		< 0.0015		< 0.0015		< 0.0015		< 0.0015	< 0.0015		< 0.0015		0.0088	
Mercury	< 0.000055		0.00009 B		0.00009 B		0.00006 B		0.00007 B		0.0001 B		0.00009 B		0.0001 B	0.00006 B		0.00012 B		< 0.000055	
Selenium	<0.0037		<0.0037		<0.0037		< 0.0037		< 0.0037		< 0.0037		< 0.0037		< 0.0037	< 0.0037		<0.0037		< 0.0037	
Strontium	0.69		0.74		0.71		0.73		0.69		0.91		0.93		1	1.03		0.88		1.66	
Zinc	< 0.004		< 0.004		< 0.004		< 0.004		< 0.004		< 0.004		< 0.004		0.0095 B	< 0.004		< 0.004		0.023	
Polycyclic Aromatic Hydrocarbons	0.0000510		0.0000507		0.0000527		.0.0000525		0.0000514		0.0000500		0.0000510		0.0000510	0.0000510		.0.0000510		0.0000714	
2-Methylnaphthalene	<0.0000519		<0.0000527		<0.0000527		<0.0000525		<0.0000514		<0.0000522		<0.0000519		<0.0000519	<0.0000519		<0.0000519		<0.0000514	
Acenaphthelana	<0.0000137		<0.0000139		<0.0000139		<0.0000138		<0.0000135		<0.0000137		<0.0000137		<0.0000137	<0.0000137		<0.0000137		<0.0000135	
Acenaphunyiene	<0.0000149		<0.0000131		<0.0000131		<0.0000131		<0.0000147		<0.000013		<0.0000149		<0.0000149	<0.0000149		<0.0000149		<0.0000147	
Benzo(a)anthracene	<0.00000918		<0.00000933		<0.00000933		<0.00000928		<0.00000909		<0.00000923		<0.00000918		<0.00000918	<0.00000918		<0.00000918		<0.00000909	
Benzo(a)pyrene	<0.0000303		<0.0000139		<0.0000111		<0.0000308		<0.0000498		<0.0000137		<0.0000303		<0.0000303	<0.0000303		<0.0000303		<0.0000498	
Benzo(h)fluoranthene	<0.0000137		<0.0000133		<0.0000333		<0.0000138		<0.0000133		<0.0000137		<0.0000137		<0.0000137	<0.0000137		<0.0000137		<0.0000133	
Benzo(k)fluoranthene	<0.0000223		<0.0000227		<0.0000227		<0.0000331		<0.0000324		<0.0000325		<0.0000223		<0.0000328	<0.0000323		<0.0000223		<0.0000321	
Chrysene	< 0.000043		< 0.0000436		< 0.0000436		< 0.0000434		< 0.0000425		< 0.0000432		< 0.000043		< 0.000043	< 0.000043		< 0.000043		< 0.0000425	
Dibenz(a,h)anthracene	< 0.0000195		< 0.0000198		< 0.0000198		< 0.0000197		< 0.0000193		< 0.0000196		< 0.0000195		< 0.0000195	< 0.0000195		< 0.0000195		< 0.0000193	
Fluoranthene	< 0.0000134		< 0.0000136		< 0.0000136		< 0.0000135		< 0.0000132		< 0.0000134		< 0.0000134		< 0.0000134	< 0.0000134		< 0.0000134		< 0.0000132	
Fluorene	< 0.0000184		< 0.0000187		< 0.0000187		< 0.0000186		< 0.0000182		< 0.0000185		< 0.0000184		< 0.0000184	< 0.0000184		< 0.0000184		< 0.0000182	
Indeno(1,2,3-cd)pyrene	< 0.0000171		< 0.0000174		< 0.0000174		< 0.0000173		< 0.000017		< 0.0000172		< 0.0000171		< 0.0000171	< 0.0000171		< 0.0000171		< 0.000017	
Naphthalene	< 0.0000283		< 0.0000287		< 0.0000287		< 0.0000286		< 0.000028		< 0.0000284		< 0.0000283		< 0.0000283	< 0.0000283		< 0.0000283		< 0.000028	
Phenanthrene	< 0.0000166		< 0.0000169		< 0.0000169		< 0.0000168		< 0.0000165		< 0.0000167		< 0.0000166		< 0.0000166	< 0.0000166		< 0.0000166		< 0.0000165	
Pyrene	< 0.0000181		< 0.0000183		< 0.0000183		< 0.0000182		< 0.0000179		< 0.0000182		< 0.0000181		< 0.0000181	< 0.0000181		< 0.0000181		< 0.0000179	
Other Parameters																					
Bicarbonate Alkalinity (mg/L CaCO3)											60 R					67.4					
Carbonate Alkalinity (mg/L CaCO3)											< 0.17					< 0.17					
Calcium	38.4		44.1		43.3		44.6		43.1		54.3		56.1		58.6	59.4		50.6		73.9	
Chloride	1,210	1,530	1,330	1,560	1,250	1,490	1,420	1,530	1,290	1,630	1,610	1,920	1,640	2,130	1,870	1,840	2,410	1,610	2,200	2,220	2,700
Hardness	378	495	432	578	424	502	441	558	425	545	541	653	554	692	591	597	746	619	646	677	
Potassium	29.2		33.3		32.7		34.4		33.1		38.6 JH		40.7		42.6	42.9		37.2		59.6	
Salinity (ppt)	2.4														3.7			3.2			
Sodium	631		727		771		808		769		935		981		915	1100		917 10 (1230	
Sulfate	105														83.9			106			
Total Dissolved Solids (TDS)	2,710	2,580	2,900	2,740	2,780	2,670	3,050	2,960	2,880	2,060	3,800	3,030	3,590	3,260	4,220	4,150	3,450	3,520	5,220	4,920	4,820

Notes: B - For inorganics, result is between Reporting Limit and Method

Detection Limit

JH - bias is likely high U - not detected based on quality

control criteria

SW 109 is a field duplicate of SW 09.

											Backg	round										
Sample ID	SW BK-01	SW BK-01	SW BK-02	SW BK-02	SW BK-03	SW BK-03	SW BK-04	SW BK-04	SW BK-05	SW BK-05	SW BK-06	SW BK-06	SW BK-07	SW BK-07	SW BK-08	SW BK-08	SW BK-09	SW BK-09	SW-BK-10	SW-BK-10	SW-BK-11	SW-BK-11
Sample Date	5/10/2010	5/10/2010	5/10/2010	5/10/2010	5/10/2010	5/10/2010	5/10/2010	5/10/2010	5/11/2010	5/11/2010	5/11/2010	5/11/2010	5/11/2010	5/11/2010	5/11/2010	5/11/2010	5/11/2010	5/11/2010	5/19/2010	5/19/2010	5/19/2010	5/19/2010
Sampler	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON														
Total Metals (Total Recoverable)																						
Arsenic	< 0.00079	< 0.0100	< 0.00079	< 0.0100	< 0.00079	< 0.0100	< 0.00079	< 0.0100	< 0.00079	< 0.0100	0.0024 B	< 0.0100	< 0.00079	< 0.0100	< 0.00079	< 0.0100	0.004 B		0.0035 B		0.0054 B	
Barium	0.3	0.282	0.31	0.276	0.3	0.279	0.32	0.297	0.31	0.301	0.43	0.375	0.44	0.415	0.34	0.315	0.31		0.22		0.25	
Cadmium	< 0.00016	< 0.00500	< 0.00016	< 0.00500	< 0.00016	< 0.00500	< 0.00016	< 0.00500	< 0.00016	< 0.00500	< 0.00016	< 0.00500	< 0.00016	< 0.00500	0.00021 B	< 0.00500	< 0.00016		0.00051 BU		0.00056 BU	
Chromium	0.0035 B	< 0.0100	0.0035 B	< 0.0100	0.0027 B	< 0.0100	0.0038 B	< 0.0100	0.0034 B	< 0.0100	0.0041 B	< 0.0100	0.0026 B	< 0.0100	0.0046 B	< 0.0100	0.0039 B		0.0041 B		0.004 B	
Iron	0.58		0.7		0.71		0.94		0.71		1.55		1.07		1.76		1.14					
Lead	0.0017 B	< 0.0100	< 0.0015	< 0.0100	< 0.0015	< 0.0100	0.0015 B	< 0.0100	< 0.0015	0.017	0.0019 B	< 0.0100	< 0.0015	< 0.0100	0.003 B	< 0.0100	0.0034 B		0.0058 B		0.0042 B	
Magnesium	157		166		126		161		156		244		138		162		152		52.3		76.2	
Manganese	0.15		0.23		0.34		0.29		0.16		0.88		0.59		0.25		0.24					
Mercury	< 0.000055	< 0.000200	< 0.000055	< 0.000200	< 0.000055	< 0.000200	< 0.000055	< 0.000200	< 0.000055	< 0.000200	< 0.000055	< 0.000200	< 0.000055	< 0.000200	0.00007 B	< 0.000200	< 0.000055		< 0.000055		< 0.000055	
Selenium	< 0.0037	0.054	< 0.0037	0.047	< 0.0037	0.039	< 0.0037	0.051	< 0.0037	0.037	< 0.0037	0.051	< 0.0037	0.036	< 0.0037	0.042	< 0.0037		< 0.0037		< 0.0037	
Strontium	1.04	0.980	1.13	1.09	0.85	0.788	1.09	1.00	1.04	0.989	1.65	1.52	0.96	0.898	1.03	0.903	1.05		0.38		0.52	
Zinc	0.0045 B	0.055	0.13	0.013	0.013 B	0.013	0.01 B	0.020	0.0074 B	0.033	0.0092 B	0.018	< 0.004	0.022	0.0085 B	0.014	0.0076 B		0.013 B		0.0097 B	
Total Metals (Dissolved)			•																			
Arsenic	< 0.00079		< 0.00079		< 0.00079		< 0.00079		< 0.00079		0.0047 B		0.0033 B		< 0.00079		< 0.00079		0.003 B	0.011	0.0029 B	0.014
Barium	0.28		0.3		0.28		0.29		0.3		0.39		0.4		0.31		0.33		0.14	0.144	0.18	0.216
Cadmium	< 0.00016		< 0.00016		< 0.00016		< 0.00016		< 0.00016		< 0.00016		< 0.00016		< 0.00016		< 0.00016		0.00086 B	< 0.00500	0.00078 B	< 0.00500
Chromium	0.0032 B		0.0033 B		0.0025 B		0.003 B		0.003 B		0.0036 B		0.0024 B		0.0028 B		0.003 B		0.00071 B	< 0.0100	0.0011 B	< 0.0100
Lead	0.0023 B		< 0.0015		< 0.0015		< 0.0015		< 0.0015		0.0021 B		< 0.0015		< 0.0015		< 0.0015		< 0.0015	< 0.0100	< 0.0015	< 0.0100
Mercury	0.00006 B		< 0.000055		< 0.000055		0.00006 B		< 0.000055		< 0.000055		< 0.000055		< 0.000055		< 0.000055		< 0.000055	< 0.000200	< 0.000055	< 0.000200
Selenium	<0.0037		< 0.0037		<0.0037		<0.0037		<0.0037		< 0.0037		<0.0037		< 0.0037		<0.0037		<0.0037	0.024	< 0.0037	0.032
Strontium	1.05		1.12		0.84		1.06		1.04		1.56		0.95		1.04		1.06		0.34	0.339	0.52	0.497
Zinc	< 0.004		< 0.004		< 0.004		< 0.004		< 0.004		< 0.004		< 0.004		< 0.004		< 0.004		< 0.004	<0.0100	< 0.004	0.011
Polycyclic Aromatic Hydrocarbons	0.000.533		0.0000500	1	0.0000505		0.0000510	1	0.0000510		0.0000510		0.000050		0.0000510	1	0.0000510		0.0000510		0.0000505	
2-Methylnaphthalene	<0.0000522		<0.0000522		<0.0000525		<0.0000519		<0.0000519		<0.0000519		<0.000053		<0.0000519		<0.0000519		<0.0000519		<0.0000536	
Acenaphthelana	<0.0000137		<0.0000137		<0.0000138		<0.0000137		<0.0000137		0.000131		<0.000014		<0.0000137		<0.0000137		<0.0000137		<0.0000141	
	<0.000015		<0.000015		<0.0000151		<0.0000149		<0.0000149		<0.0000149		<0.0000152		<0.0000149		<0.0000149		<0.0000149		< 0.0000154	
Antiniacene Panzo(a)anthracana	<0.0000923		<0.00000925		<0.0000928		<0.0000918		<0.0000918		<0.0000918		<0.0000938		<0.00000918		<0.0000918		<0.00000918		<0.0000947	
Benzo(a)anunacene	<0.0000308		<0.0000308		<0.0000308		<0.0000303		<0.0000303		<0.0000303		<0.0000314		<0.0000303		<0.0000303		<0.0000303		<0.0000319	
Benzo(h)fluoranthana	<0.0000137		<0.0000137		<0.0000138		<0.0000137		<0.0000137		<0.0000137		<0.000014		<0.0000137		<0.0000137		<0.0000137		<0.0000141	
Benzo(k)fluoranthene	<0.0000329		<0.0000329		<0.0000331		<0.0000328		<0.0000328		<0.0000328		<0.0000334		<0.0000328		<0.0000328		<0.0000328		<0.0000338	
Chrysene	<0.0000223		<0.0000223		<0.0000220		<0.0000223		<0.0000223		<0.0000223		<0.0000228		<0.0000223		<0.0000223		<0.0000223		<0.0000231	
Dibenz(a h)anthracene	<0.0000196		<0.0000432		<0.0000434		<0.000045		<0.000045		<0.0000195		<0.0000439		<0.000045		<0.000045		<0.000043		<0.0000201	
Fluoranthene	<0.0000134		<0.0000130		<0.0000137		<0.0000133		<0.0000133		<0.0000134		<0.0000135		<0.0000134		<0.0000134		<0.0000134		<0.0000201	
Fluorene	<0.0000185		<0.0000134		<0.0000135		<0.0000184		<0.0000184		<0.0000134		<0.0000138		<0.0000134		<0.0000184		<0.0000184		<0.0000189	
Indeno(1.2.3-cd)pyrene	< 0.0000172		< 0.0000172		< 0.0000173		< 0.0000171		< 0.0000171		< 0.0000171		< 0.0000175		< 0.0000171		< 0.0000171		< 0.0000171		< 0.0000177	
Naphthalene	< 0.0000284		<0.0000284		< 0.0000286		< 0.0000283		< 0.000283		< 0.0000283		<0.0000289		< 0.0000283		< 0.0000283		< 0.0000283		<0.000292	
Phenanthrene	< 0.0000167		< 0.0000167		< 0.0000168		< 0.0000166		< 0.0000166		< 0.0000166		< 0.000017		< 0.0000166		< 0.0000166		< 0.0000166		< 0.0000172	
Pyrene	< 0.0000182		< 0.0000182		< 0.0000182		< 0.0000181		< 0.0000181		< 0.0000181		< 0.0000184		< 0.0000181		< 0.0000181		< 0.0000181		< 0.0000186	
Other Parameters																						
Bicarbonate Alkalinity (mg/L CaCO3)			64.6						63.5				75.1									
Carbonate Alkalinity (mg/L CaCO3)			< 0.17						< 0.17				< 0.17									
Calcium	65.8		71.5		52.8		66.4		65.9		97.7		57		70		63.2		24.5		35.7	
Chloride	2,510	2,910	2,680	2,770	2,060	2,060	2,660	2,560	2,550	2,340	3,690	4,400	2,210	2,410	2,490	2,700	2,530	2,910	834	852	1,240	1,140
Hardness	811		863		652		828		808		1,250		709		840		785		277		403	
Potassium	52		54.7		42.2		53.4		53		70.4		42.9		50.3		50.5					
Salinity (ppt)	4.5						4.5				6.3											
Sodium	1230		1320		1050		1340		1270		2010		1080		1180		1230					
Sulfate	149						215				187											
Total Dissolved Solids (TDS)	4,800	4,650	5,080	4,680	3,820	3,590	4,840	4,080	4,660	4,440	6,580	6,220	4,010	3,990	4,720	4,080	4,870	3,820	1,530		2,330	

Notes: B - For inorganics, result is between Reporting Limit and Method Detection Limit JH - bias is likely high U - not detected based on quality

Table 6R Surface Water Screening (mg/L) Screening-Level Ecological Risk Assessment East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Increase Total Martine Market Market Market Mar		East	White Lake	Oil and Gas	Field			Backgro	ound		Aquat	ic Life Criteria	- Chronic	
DecisionMaximuMemSPN UGDecisionMaximuMemMarine MarMemer Mar <th< th=""><th></th><th></th><th></th><th>Arithmetic</th><th></th><th></th><th></th><th>Arithmetic</th><th></th><th>Arithmetic Mean +</th><th>-</th><th></th><th></th></th<>				Arithmetic				Arithmetic		Arithmetic Mean +	-			
Vertical Recoverable Accisic 0.0013 0.0014 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0017 0.0016 0.0017 0.0016 0.0018 0.00018 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 <th colspan<="" th=""><th></th><th>Detection</th><th>Maximum</th><th>Mean</th><th>95% UCL</th><th>Detection</th><th>Maximum</th><th>Mean</th><th>std dev</th><th>Standard Deviation</th><th>Freshwater</th><th>Marine Water</th><th>Brackish Water</th></th>	<th></th> <th>Detection</th> <th>Maximum</th> <th>Mean</th> <th>95% UCL</th> <th>Detection</th> <th>Maximum</th> <th>Mean</th> <th>std dev</th> <th>Standard Deviation</th> <th>Freshwater</th> <th>Marine Water</th> <th>Brackish Water</th>		Detection	Maximum	Mean	95% UCL	Detection	Maximum	Mean	std dev	Standard Deviation	Freshwater	Marine Water	Brackish Water
Ascenic 210 0.013 0.0021 40.00 0.0007 0.0036 Cadmium 0100 1/11 0.0001 0.0007 0.0006 0.00018	Total Metals (Total Recoverable)				•								•	
Barian 1010 1.23 0.418 0.807 1.111 0.028 0.301 0.0001 0.0001 m m m m Caroanian 1010 0.0075 B 0.0037 B 0.0036 0.0007 I 0.0006 0.0006 0.0007 C 0.0007 C m<	Arsenic	2/10	0.013	0.0021		4/11	0.0054 B	0.0019	0.0017	0.0036				
Calminm 0101 0 1 1.0.0011 0.00012 0.00002 0.00013 Commin 1010 0.0375 0.000 0.0001 0.0001 0.0001 0.0001 0.0001	Barium	10/10	1.23	0.418	0.587	11/11	0.428	0.311	0.060	0.371				
Chronium 1010 0.0075 0.0037 11.11 0.0046 0.0075 0.0004 Land 1010 0.021 0.0034 71.11 0.0022 0.0058 0.0014 1.0.12 1.0.1 1.0.1 1.0.0025 0.0018 0.0.014 1.0.1	Cadmium	0/10				1/11	0.00021B	0.00016	0.00002	0.00018				
Ibon 11.3 1.9.9 4.7.6 1.7.6 1.0.4 1.4.3 Magness 1.0.1 1.0.2 1.0.6 1.7.1 1.0.0.2 0.0.85 0.0.01 0.0.000 Magness 0.01 1.4.8 0.4.8 0.3.5 0.2.4 0.4.9 0.0006 0.00060 0.000010 0.00060 0.000010 0.00078 0.0006 0.00078 0.0006 0.00078 0.0006 0.00078 0.00078 0.0008 0.00078 0.0008 0.0008 0.00078 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.00008 0.0008 0.0008 </td <td>Chromium</td> <td>10/10</td> <td>0.0075 B</td> <td>0.0030</td> <td>0.00397</td> <td>11/11</td> <td>0.0046 B</td> <td>0.0037</td> <td>0.0006</td> <td>0.0043</td> <td></td> <td></td> <td></td>	Chromium	10/10	0.0075 B	0.0030	0.00397	11/11	0.0046 B	0.0037	0.0006	0.0043				
Iaal 1010 0.021 0.003 7.11 0.0025 0.008 0.0017 Magasian 1010 0.83 0.42 0.53 9.9 0.88 0.024 0.59 Magasian 0101 0.026 0.019 0.028 0.026 0.0000000000	Iron	10/10	11.3	1.99	6.507	9/9	1.76	1.02	0.41	1.43				
Magnesime 1010 149 146 127.4 1111 2.42 4.45.8 19.44	Lead	1/10	0.021	0.0034		7/11	0.00925	0.0058	0.0014	0.0072				
Manganese 1010 0.83 0.42 0.533 9.9 0.88 0.024 0.59 0.000 1.000005 0.00005 0.00000 0.000010 0.000001 0.000010 0.000001 0.000010 0.000001 0.000010 0.000010 0.000010 0.000010 0.000011 0.00001 0.00001	Magnesium	10/10	149	116	127.4	11/11	244	144.6	49.8	194.4				
Mareny 010 0.00075 0.00005 0.00005 0.000012 0.0012 0.011 0.0012 0.011 0.011 0.011 0.0012 0.011 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0013 0.0013 0.0013 0.0013 0.0013 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.00017 0.0005 0.00017 0.0005 0.00016 0.00017 0.0005 0.00016 0.00017 0.0005 0.00017 0.00017 0.000013 0.000017 0.00013<	Manganese	10/10	0.83	0.42	0.533	9/9	0.88	0.35	0.24	0.59				
Soleshum 1010 0.026 0.019 0.0213 8/11 0.0386 0.0186 0.0186 0.0186 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.0314 1.262 .	Mercury	0/10				1/11	0.00007 B	0.00006	0.000005	0.00006	0.000012	0.000025	0.000012 1	
Strontum 1010 1.74 0.855 1.029 1/11 1.59 0.048 0.314 1.262 <td>Selenium</td> <td>10/10</td> <td>0.026</td> <td>0.019</td> <td>0.0213</td> <td>8/11</td> <td>0.0289</td> <td>0.0186</td> <td>0.0100</td> <td>0.0286</td> <td>0.005</td> <td></td> <td>0.005 2</td>	Selenium	10/10	0.026	0.019	0.0213	8/11	0.0289	0.0186	0.0100	0.0286	0.005		0.005 2	
Zinc 8/10 0.057 0.017 11/11 0.018 0.028 0.038 Assentic 11/10 0.0075 B 0.0015 4/11 0.0084 0.0026 0.0029 0.0055 0.150 0.036 0.0356 0.0356 0.0356 0.0356 0.0356 0.0356 0.0027 0.00085 0.0027 0.00085 0.0027 0.00185 0.00287 0.010 0.0018 0.00283 11/11 0.00358 0.0026 0.00227 0.00233 0.0011 0.00088 0.0026 0.00022 0.00283 11/11 0.0035 0.0016 0.00033 0.0019 0.0018 0.00064 0.0016 0.00034 0.0019 0.0017 2.00088 0.0016 0.00034 0.0019 0.0017 2.00084 0.0017 2.00084 0.0017 0.0017 0.0017 0.0017 0.0017 2.00084 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0	Strontium	10/10	1.74	0.835	1.029	11/11	1.59	0.948	0.314	1.262				
Total Metals (Dissolved) I/10 0.0075 0.0015 4/11 0.0084 0.0026 0.0026 0.0026 0.0036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.0027 0.0010 0.00287 0.0010 0.00287 0.0010 0.00287 0.0010 0.00287 0.0010 0.00287 0.0010 0.00283 0.0016 0.00028 0.00109 0.00109 0.00109 0.00109 0.00109 0.00109 0.00109 0.00109 0.00109 0.00109 0.00109 0.00109 0.00109 0.00109 0.00109 0.0011 0.00011	Zinc	8/10	0.067	0.015	0.027	11/11	0.0715	0.020	0.018	0.038				
Assenic 1/10 0.0075 R 0.0017 S II 0.001 4/11 0.0028 0.0027 0.100 0.103 0.036 0.037 II Cadnium 0/10 2/11 0.00028 0.00027 0.00055 0.0027 0.0103 0.0028 0.0103 0.00021 0.00058 0.00028 0.011 0.00058 0.0007 0.00058 0.0001 0.00078 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00019 0.00018 0.00018 0.00019 0.00019 0.00019 0.00019 0.00019 0.00019 0.00019 0.00019 0.00011 0.00019 0.000119	Total Metals (Dissolved)													
Bariam 1010 1.1 0.40 0.545 11/1 0.4 0.074 0.037 2/11 0.0008 0.0002 0.0003 0.0037 0.010 0.0013 1.0 Caronium 1010 0.0051 B 0.0022 0.0023 B 0.0006 0.0007 0.00053 0.554 0.103 0.103 1 Lad 0.000 0.0021 B 0.0002 B 0.0006 0.0006 0.0007 0.00084 0.00084 0.00077 2 0.00074 0.00074 0.00074 0.00077 0.0074 0.00077 0.0071	Arsenic	1/10	0.0075 B	0.0015		4/11	0.00845	0.0026	0.0029	0.0055	0.150	0.036	0.036 1	
	Barium	10/10	1.1	0.40	0.545	11/11	0.4	0.293	0.074	0.367				
	Cadmium	0/10				2/11	0.00086 B	0.00028	0.00027	0.00055	0.00287	0.010	0.00287 1	
	Chromium	10/10	0.0051 B	0.0022	0.00283	11/11	0.0036 B	0.0026	0.0009	0.0035	0.554	0.103	0.103 1	
Mercury 8/10 0.00012 0.00008 0.00006 0.00006 0.00006 0.00007 0.00071 2 Steinium 10/10 1.66 0.90 1.068 11/11 1.56 0.056 0.0169 0.071 0.071 2 Zinc 2/10 0.023 0.0022 0.0124 11/11 1.56 0.966 0.322 1.28 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0017 2 L	Lead	1/10	0.0088	0.0022		2/11	0.0023 B	0.0016	0.0003	0.0019		0.00808	0.00808 1	
Scheniam 0/10 2/11 0.0179 0.0059 0.0019 0.071 0.071 2 Signatium 10/10 1.66 0.90 1.068 11/11 1.56 0.96 0.32 1.28 0.011 0.00051 0.0059 0.338 0.081 0.081 1 Zherhylnphtalene 0.10 <0.000027	Mercury	8/10	0.00012 B	0.00008	0.000094	2/11	0.00006 B	0.00006	0.000002	0.00006	0.00077	0.00094	0.00077 2	
	Selenium	0/10				2/11	0.0179	0.0059	0.0050	0.0109		0.071	0.071 2	
Zinc 2/10 0.023 0.0062 0.0124 1/11 0.0075 0.0046 0.0013 0.0059 0.338 0.081 0.081 1 Polycyclic Aromatic Hydrocarbons Zacenaphthylane 0/10 <0.0000527 1/11 0.000024 0.000025 0.000026 0.000060 1/11 0.000024 0.000025 0.00060	Strontium	10/10	1.66	0.90	1.068	11/11	1.56	0.96	0.32	1.28				
Polycyclic Aromatic Hydrocarbons	Zinc	2/10	0.023	0.0062	0.0124	1/11	0.0075	0.0046	0.0013	0.0059	0.338	0.081	0.081 1	
2.Methynaphthalene 010 c0.0000327 011 c0.0000359 <th-< td=""><td>Polycyclic Aromatic Hydrocarbons</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td></th-<>	Polycyclic Aromatic Hydrocarbons												•	
$ \begin{array}{cccc} Accamphinene & 010 & <0.000139 & & 1/11 & 0.000131 & 0.000024 & 0.000035 & 0.000060 &$	2-Methylnaphthalene	0/10	< 0.0000527			0/11	< 0.0000519							
$ \begin{array}{c cccc} Accanghthylene & 0/10 & 0.0000151 & & & 0/11 & 0.0000149 &$	Acenaphthene	0/10	< 0.0000139			1/11	0.000131	0.000024	0.000035	0.000060				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Acenaphthylene	0/10	< 0.0000151			0/11	< 0.0000149							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Anthracene	0/10	< 0.0000933			0/11	< 0.00000918							
Benzo(a)pyrene 0/10 <0.0000139 0/11 <0.0000137 -	Benzo(a)anthracene	0/10	< 0.0000511			0/11	< 0.0000503							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Benzo(a)pyrene	0/10	< 0.0000139			0/11	< 0.0000137							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Benzo(b)fluoranthene	0/10	< 0.0000333			0/11	< 0.0000328							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Benzo(k)fluoranthene	0/10	< 0.0000227			0/11	< 0.0000223							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chrysene	0/10	< 0.0000436			0/11	< 0.000043							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dibenz(a,h)anthracene	0/10	< 0.0000198			0/11	< 0.0000195							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fluoranthene	0/10	< 0.0000136			0/11	< 0.0000134							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fluorene	0/10	< 0.0000187			0/11	< 0.0000184							
Naphthalene $0/10$ < 0.0000287 \cdots \cdots $0/11$ < 0.0000283 \cdots	Indeno(1,2,3-cd)pyrene	0/10	< 0.0000174			0/11	< 0.0000171							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Naphthalene	0/10	< 0.0000287			0/11	< 0.0000283							
Pyrene 0/10 <0.0000183 0/11 <0.0000181	Phenanthrene	0/10	< 0.0000169			0/11	< 0.0000166							
Other Parameters Bicarbonate Alkalinity (mg/L CaCO3) 1/1 67.4 67.4 3/3 75.1 67.7	Pyrene	0/10	< 0.0000183			0/11	< 0.0000181							
Bicarbonate Alkalinity (mg/L CaCO3) $1/1$ 67.4 67.4 $$ $3/3$ 75.1 67.7 $$ <	Other Parameters				•								•	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Bicarbonate Alkalinity (mg/L CaCO3)	1/1	67.4	67.4		3/3	75.1	67.7						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Carbonate Alkalinity (mg/L CaCO3)	0/2				0/3								
Chloride 10/10 2,460 1,727 1,941 11/11 4,045 2,387 843 3,230 <th< td=""><td>Calcium</td><td>10/10</td><td>73.9</td><td>50.7</td><td>56.83</td><td>11/11</td><td>97.7</td><td>61.0</td><td>19.2</td><td>80.1</td><td></td><td></td><td></td></th<>	Calcium	10/10	73.9	50.7	56.83	11/11	97.7	61.0	19.2	80.1				
Hardness 10/10 677 559 611 11/11 1,250 748 253 1,001 Potassium 10/10 59.6 38.2 43.28 9/9 70.4 52.1 8.2 60.3 53 Salinity (ppt) 3/3 3.7 3.1 3/3 6.3 5.1	Chloride	10/10	2,460	1,727	1,941	11/11	4,045	2,387	843	3,230				
Potassium 10/10 59.6 38.2 43.28 9/9 70.4 52.1 8.2 60.3 Salinity (pt) 3/3 3.7 3.1 3/3 6.3 5.1	Hardness	10/10	677	559	611	11/11	1,250	748	253	1,001				
Salinity (ppt) 3/3 3.7 3.1 3/3 6.3 5.1	Potassium	10/10	59.6	38.2	43.28	9/9	70.4	52.1	8.2	60.3				
Sodium 10/10 1,230 878 977.7 9/9 2,010 1,301 283 1,584	Salinity (ppt)	3/3	3.7	3.1		3/3	6.3	5.1						
Sulfate 3/3 106 98.3 3/3 215 184	Sodium	10/10	1,230	878	977.7	9/9	2,010	1,301	283	1,584				
Total Dissolved Solids (TDS) 10/10 4.870 3.316 3.716 11/11 6.400 4.121 1.291 5.412	Sulfate	3/3	106	98.3		3/3	215	184						
	Total Dissolved Solids (TDS)	10/10	4,870	3,316	3,716	11/11	6,400	4,121	1,291	5,412				

Notes:

UCL - upper confidence limit

Brackish criteria are the lower of freshwater and marine water, where criteria for both are available.

(1) Louisiana aquatic life criteria from Title 33, Part IX, Subpart 1, Section 1113. A hardness of 400 mg/L CaCO3 (the maximum allowed) was used to derive freshwater criteria for applicable metals. Depending on the inorganic/metal, the criteria are expressed in terms of the dissolved metal or total recoverable metal in the water column. The Louisiana criteria for mercury is based on methlymercury. Laboratory analyses for East White Lake (as presented above) are based on total (inorganic and organic) mercury. The concentration of methylmercury in surface water can be estimated by multiplying the above results by 0.0073 (0.73%) based upon a state-wide study of methylmercury fractions in Louisiana sediments (DeLaune et al. 2009).

⁽²⁾ National Recommended Water Quality Criteria (USEPA 2009). Depending on the inorganic/metal, the criteria are expressed in terms of the dissolved metal or total recoverable metal in the water column. The national criteria for mercury was derived from data for inorganic mercury (II) but is applied as total mercury.

Results from 2010 split samples were averaged for the above statistics.

Table 12R

Wildlife HQs - Wood Duck Screening-Level Ecological Risk Assessment East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Wood Duck

	Physical	Media -	Physical	Media -	Physical	Media -			
	Maxi	mum	95%	UCL	Arithme	tc Mean	Mo	deled Tissue (Pr	ey)
	Concent	tration *	Concent	ration *	Concent	ration *		Concentration	
Chemical of Ecological	CSED	Csw	CSED	C _{sw}	CSED	C _{SW}	CAP	CBI	C _{FF}
Concern	(mg/kg DW)	(mg/L)	(mg/kg DW)	(mg/L)	(mg/kg DW)	(mg/L)	(mg/kg DW)	(mg/kg DW)	(mg/kg DW)
Inorganics	_								
Cadmium	1.655		0.51		0.413		0.30	0.3	0.14
Lead	154.9	0.021	51.01		32.23	0.0034	1.98	3.6	3.52
Mercury	0.0554		0.0099		0.003		0.0085	0.0139	0.0245
Selenium	2.11	0.026	1.221	0.0213	1.15	0.0190	0.82	1.2	2.80
Zinc	238.2	0.067	149.6	0.027	87.4	0.015	54.8	290	209
SVOCs		_	_		_				
Total LPAHs	1.401				0.421		0.115	0.15	0.42
Total HPAHs	0.826				0.552		0.630	0.83	0.07

	Toxicity Refere		erence Value	Hazard Quotient	
Chemical of Ecological Concern	Total Daily Dose (mg/kg BW- day)	NOAEL (mg/kg BW- day)	LOAEL (mg/kg BW- day)	HQ _{NOAEL} (unitless)	HQ _{LOAEL} (unitless)
Inorganics	-	_		_	
Cadmium	0.024	1.45	20	0.017	0.001
Lead	0.189	3.85	19.25	0.049	0.010
Mercury	0.00083	0.013	0.064	0.064	0.013
Selenium	0.079	0.4	0.8	0.198	0.099
Zinc	12.7	55	105	0.231	0.121
SVOCs					
Total LPAHs	0.012	212	1,060	0.000	0.000
Total HPAHs	0.053	7.02	35.1	0.008	0.002

Total Daily Dose = [(IR_{food} x C_{food}) + (IR_{water} x C_{water}) + (IR_{sed} x C_{sed})] x AUF

BW

where, $C_{food} = C_{AP} x \text{ Diet}_{AP} + C_{BI} x \text{ Diet}_{BI} + C_{FF} x \text{ Diet}_{FF}$

HQ_{NOAEL} = <u>Total Daily Dose</u> NOAEL

HQ_{LOAEL} = <u>Total Daily Dose</u> LOAEL

Shaded values exceed an HQ of 1.0

	Diet _{AP}	50	%
Diet	Diet _{BI}	50	%
	Diet _{FF}	0	%
	IR _{food}	0.0443	kg/day DW
	IR _{water}	0.0445	L/day
	IR _{sed}	0.0049	kg/day DW
Ingestion-Pathway	AUF	100	%
Exposures	BW	0.658	kg
L	Pb Bioavail.		
	- Sed	25	%
	Pb Bioavail.		
	- SW/Food	50	%

Notes:
AUF - Area Use Factor
BW - body weight (kg)
C _{SW} - COC concentration in surface water (mg/L)
C _{Sed} - COC concentration in sediment (mg/kg DW)
CAP - COC concentration in aquatic plants (mg/kg DW)
CBI - COC concentration in benthic invertebrates (mg/kg DW)
CFF - COC concentration in forage fish (mg/kg DW)
COEC - constituent of ecological concern
Diet _{AP} - fraction of aquatic plants in wildlife diet (%)
$Diet_{BI}$ - fraction of benthic invertebrates in wildlife diet (%)
$Diet_{FF}$ - fraction of forage fish in wildlife diet (%)
DW - dry weight

HPAH - high molecular weight PAH HQ_{NOAEL} - hazard quotient, NOAEL-based HQLOAEL - hazard quotient, LOAEL-based IR_{food} - food ingestion rate (kg/day DW) IR_{sed} - sediment ingestion rate (kg/day DW) **IR**_{water} - water ingestion rate (L/day) LOAEL - lowest observed adverse effect level LPAH - low molecular weight PAH NOAEL - no observed adverse effect level **PAH** - polycyclic aromatic hydrocarbon Pb Bioavail. - Sed. - bioavailability of lead in sediment (%) **Pb Bioavail. - SW/Food** - bioavailability of lead in surface water and food (%)

Table 13R Wildlife HQs - Snowy Egret Screening-Level Ecological Risk Assessment

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Snowy Egret

	Physical	Media -	Physical	Media -	Physical	Physical Media -				
	Maxi	mum	95%	UCL	Arithme	tc Mean	Mo	Modeled Tissue (Prey)		
	Concent	ration *	Concent	ration *	Concent	ration *		Concentration		
Chemical of Ecological	C _{SED}	Csw	C _{SED}	Csw	C _{SED}	Csw	C _{AP}	C _{BI}	C _{FF}	
Concern	(mg/kg DW)	(mg/L)	(mg/kg DW)	(mg/L)	(mg/kg DW)	(mg/L)	(mg/kg DW)	(mg/kg DW)	(mg/kg DW)	
Inorganics										
Cadmium	1.655		0.51		0.413		0.30	0.3	0.14	
Lead	154.9	0.021	51.01		32.23	0.0034	1.98	3.6	3.52	
Mercury	0.0554		0.0099		0.003		0.0085	0.0139	0.0245	
Selenium	2.11	0.026	1.221	0.0213	1.15	0.0190	0.82	1.2	2.80	
Zinc	238.2	0.067	149.6	0.027	87.4	0.015	54.8	290	209	
SVOCs							-			
Total LPAHs	1.401				0.421		0.115	0.15	0.42	
Total HPAHs	0.826				0.552		0.630	0.83	0.07	

		Toxicity Ref	Foxicity Reference Value		Quotient
Chemical of Ecological Concern	Total Daily Dose (mg/kg BW- day)	NOAEL (mg/kg BW- day)	LOAEL (mg/kg BW- day)	HQ _{NOAEL} (unitless)	HQ _{LOAEL} (unitless)
Inorganics	-	-		-	
Cadmium	0.008	1.45	20	0.005	0.000
Lead	0.077	3.85	19.25	0.020	0.004
Mercury	0.00079	0.013	0.064	0.061	0.012
Selenium	0.087	0.4	0.8	0.217	0.109
Zinc	9.0	55	105	0.164	0.086
SVOCs					
Total LPAHs	0.013	212	1,060	0.000	0.000
Total HPAHs	0.013	7.02	35.1	0.002	0.000

Total Daily Dose = [(IR_{food} x C_{food}) + (IR_{water} x C_{water}) + (IR_{sed} x C_{sed})] x AUF

BW

where, $C_{food} = C_{AP} x \text{ Diet}_{AP} + C_{BI} x \text{ Diet}_{BI} + C_{FF} x \text{ Diet}_{FF}$

HQ_{NOAEL} = <u>Total Daily Dose</u> NOAEL

HQ_{LOAEL} = <u>Total Daily Dose</u> LOAEL

Shaded values exceed an HQ of 1.0

	Diet _{AP}	0	%
Diet	Diet _{BI}	35	%
	Diet _{FF}	65	%
	IR _{food}	0.0139	kg/day DW
	IR _{water}	0.0304	L/day
	IR _{sed}	0.0003	kg/day DW
Ingestion-Pathway	AUF	100	%
Exposures	BW	0.371	kg
Lipotarto	Pb Bioavail.		
	- Sed	25	%
	Pb Bioavail.		
	- SW/Food	50	%

Notes:
AUF - Area Use Factor
BW - body weight (kg)
C _{sw} - COC concentration in surface water (mg/L)
C_{Sed} - COC concentration in sediment (mg/kg DW)
CAP - COC concentration in aquatic plants (mg/kg DW)
C _{BI} - COC concentration in benthic invertebrates (mg/kg DW)
CFF - COC concentration in forage fish (mg/kg DW)
COEC - constituent of ecological concern
$Diet_{AP}$ - fraction of aquatic plants in wildlife diet (%)

 $Diet_{BI}$ - fraction of benthic invertebrates in wildlife diet (%) Diet_{FF} - fraction of forage fish in wildlife diet (%) DW - dry weight

HPAH - high molecular weight PAH HQ_{NOAEL} - hazard quotient, NOAEL-based HQLOAEL - hazard quotient, LOAEL-based IR_{food} - food ingestion rate (kg/day DW) IR_{sed} - sediment ingestion rate (kg/day DW) **IR**_{water} - water ingestion rate (L/day) LOAEL - lowest observed adverse effect level LPAH - low molecular weight PAH NOAEL - no observed adverse effect level **PAH** - polycyclic aromatic hydrocarbon Pb Bioavail. - Sed. - bioavailability of lead in sediment (%) **Pb Bioavail. - SW/Food** - bioavailability of lead in surface water and food (%)

Table 14R Wildlife HQs - Belted Kingfisher **Screening-Level Ecological Risk Assessment** East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Belted Kingfisher

	Physical Maxi Concent	Media - mum ration *	Physical 95% Concent	Media - UCL ration *	Physical Media - Arithmetc Mean Concentration *		Modeled Tissue (Prey)		
Chemical of Ecological Concern	C _{SED} (mg/kg DW)	C _{SW} (mg/L)	C _{SED} (mg/kg DW)	C _{SW} (mg/L)	C _{SED} (mg/kg DW)	C _{SW} (mg/L)	C _{AP} (mg/kg DW)	C _{BI} (mg/kg DW)	C _{FF} (mg/kg DW)
Inorganics									
Cadmium	1.655		0.51		0.413		0.30	0.3	0.14
Lead	154.9	0.021	51.01		32.23	0.0034	1.98	3.6	3.52
Mercury	0.0554		0.0099		0.003		0.0085	0.0139	0.0245
Selenium	2.11	0.026	1.221	0.0213	1.15	0.0190	0.82	1.2	2.80
Zinc	238.2	0.067	149.6	0.027	87.4	0.015	54.8	290	209
SVOCs			-						•
Total LPAHs	1.401				0.421		0.115	0.15	0.42
Total HPAHs	0.826				0.552		0.630	0.83	0.07

		Toxicity Ref	Hazard Quotient		
Chemical of Ecological Concern	Total Daily Dose (mg/kg BW- day)	NOAEL (mg/kg BW- day)	LOAEL (mg/kg BW- day)	HQ _{NOAEL} (unitless)	HQ _{LOAEL} (unitless)
Inorganics				_	
Cadmium	0.019	1.45	20	0.013	0.001
Lead	0.217	3.85	19.25	0.056	0.011
Mercury	0.00260	0.013	0.064	0.200	0.041
Selenium	0.293	0.4	0.8	0.733	0.367
Zinc	25.1	55	105	0.457	0.239
SVOCs					
Total LPAHs	0.043	212	1,060	0.000	0.000
Total HPAHs	0.021	7.02	35.1	0.003	0.001

Total Daily Dose = [(IR_{food} x C_{food}) + (IR_{water} x C_{water}) + (IR_{sed} x C_{sed})] x AUF

BW

where, $C_{food} = C_{AP} x \text{ Diet}_{AP} + C_{BI} x \text{ Diet}_{BI} + C_{FF} x \text{ Diet}_{FF}$

HQ_{NOAEL} = <u>Total Daily Dose</u> NOAEL

 $HQ_{LOAEL} = \frac{Total Daily Dose}{LOAEL}$

Shaded values exceed an HQ of 1.0

	Diet _{AP}	0	%
Diet	Diet _{BI}	15	%
	Diet _{FF}	85	%
	IR _{food}	0.0167	kg/day DW
	IR _{water}	0.0164	L/day
	IR _{sed}	0.0002	kg/day DW
Ingestion-Pathway	AUF	100	%
Exposures	BW	0.148	kg
P ******	Pb Bioavail.		
	- Sed	25	%
	Pb Bioavail.		
	- SW/Food	50	%

Notes: AUF - Area Use Factor **BW** - body weight (kg) C_{sw} - COC concentration in surface water (mg/L) C_{Sed} - COC concentration in sediment (mg/kg DW) C_{AP} - COC concentration in aquatic plants (mg/kg DW) **C**_{BI} - COC concentration in benthic invertebrates (mg/kg DW) C_{FF} - COC concentration in forage fish (mg/kg DW)

COEC - constituent of ecological concern $Diet_{AP}$ - fraction of aquatic plants in wildlife diet (%) $Diet_{BI}$ - fraction of benthic invertebrates in wildlife diet (%) Diet_{FF} - fraction of forage fish in wildlife diet (%) DW - dry weight

HPAH - high molecular weight PAH HQ_{NOAEL} - hazard quotient, NOAEL-based HQLOAEL - hazard quotient, LOAEL-based **IR**_{food} - food ingestion rate (kg/day DW) IR_{sed} - sediment ingestion rate (kg/day DW) **IR**_{water} - water ingestion rate (L/day) LOAEL - lowest observed adverse effect level LPAH - low molecular weight PAH NOAEL - no observed adverse effect level PAH - polycyclic aromatic hydrocarbon Pb Bioavail. - Sed. - bioavailability of lead in sediment (%) **Pb Bioavail. - SW/Food** - bioavailability of lead in surface water and food (%)

Table 15R Wildlife HQs - Marsh Rice Rat Screening-Level Ecological Risk Assessment East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Marsh Rice Rat

	Physical Maxi	Media - mum	Physical 95%	Media - UCL	Physical Media - Arithmetc Mean		Modeled Tissue (Prev)			
	Concent	ration *	Concent	ration *	Concent	ration *		Concentration		
Chemical of Ecological Concern	C _{SED} (mg/kg DW)	C _{SW} (mg/L)	C _{SED} (mg/kg DW)	C _{SW} (mg/L)	C _{SED} (mg/kg DW)	C _{SW} (mg/L)	C _{AP} (mg/kg DW)	С _{ві} (mg/kg DW)	C _{FF} (mg/kg DW)	
Inorganics										
Cadmium	1.655		0.51		0.413		0.30	0.3	0.14	
Lead	154.9	0.021	51.01		32.23	0.0034	1.98	3.6	3.52	
Mercury	0.0554		0.0099		0.003		0.0085	0.0139	0.0245	
Selenium	2.11	0.026	1.221	0.0213	1.15	0.0190	0.82	1.2	2.80	
Zinc	238.2	0.067	149.6	0.027	87.4	0.015	54.8	290	209	
SVOCs							_			
Total LPAHs	1.401				0.421		0.115	0.15	0.42	
Total HPAHs	0.826				0.552		0.630	0.83	0.07	

		Toxicity Reference Value		Hazard Quotient		
Chemical of Ecological Concern	Total Daily Dose (mg/kg BW- day)	NOAEL (mg/kg BW- day)	LOAEL (mg/kg BW- day)	HQ _{NOAEL} (unitless)	HQ _{LOAEL} (unitless)	
Inorganics		_				
Cadmium	0.036	1.2	12.3	0.030	0.003	
Lead	0.207	20	202	0.010	0.001	
Mercury	0.00129	0.036	0.059	0.036	0.022	
Selenium	0.122	0.22	0.37	0.553	0.329	
Zinc	19.8	213	426	0.093	0.047	
SVOCs						
Total LPAHs	0.016	46	80	0.000	0.000	
Total HPAHs	0.084	1.3	9.7	0.064	0.009	

Total Daily Dose = [(IR_{food} x C_{food}) + (IR_{water} x C_{water}) + (IR_{sed} x C_{sed})] x AUF

BW

where, $C_{food} = C_{AP} x \text{ Diet}_{AP} + C_{BI} x \text{ Diet}_{BI} + C_{FF} x \text{ Diet}_{FF}$

HQ_{NOAEL} = <u>Total Daily Dose</u> NOAEL

HQ_{LOAEL} = <u>Total Daily Dose</u> LOAEL

Shaded values exceed an HQ of 1.0

	Diet _{AP}	50	%
Diet	Diet _{BI}	50	%
	Diet _{FF}	0	%
	IR _{food}	0.0057	kg/day DW
	IR _{water}	0.0068	L/day
	IR _{sed}	0.0002	kg/day DW
Ingestion-Pathway	AUF	100	%
Exposures	BW	0.051	kg
	Pb Bioavail.		
	- Sed	25	%
	Pb Bioavail.		
	- SW/Food	50	%

Notes: AUF - Area Use Factor BW - bod

AUF - Area Use Factor	HPAH - high molecular weight PAH
BW - body weight (kg)	HQ _{NOAEL} - hazard quotient, NOAEL-based
C _{SW} - COC concentration in surface water (mg/L)	HQLOAEL - hazard quotient, LOAEL-based
C_{Sed} - COC concentration in sediment (mg/kg DW)	IR _{food} - food ingestion rate (kg/day DW)
CAP - COC concentration in aquatic plants (mg/kg DW)	IR _{sed} - sediment ingestion rate (kg/day DW)
C _{BI} - COC concentration in benthic invertebrates (mg/kg DW)	IR _{water} - water ingestion rate (L/day)
C _{FF} - COC concentration in forage fish (mg/kg DW)	LOAEL - lowest observed adverse effect level
COEC - constituent of ecological concern	LPAH - low molecular weight PAH
Diet _{AP} - fraction of aquatic plants in wildlife diet (%)	NOAEL - no observed adverse effect level
Diet _{BI} - fraction of benthic invertebrates in wildlife diet (%)	PAH - polycyclic aromatic hydrocarbon
Diet _{FF} - fraction of forage fish in wildlife diet (%)	Pb Bioavail Sed bioavailability of lead in sediment (%)
DW - dry weight	Pb Bioavail SW/Food - bioavailability of lead in surface w

* Mercury concentrations in physical media shown here represent the estimated methylmercury fraction (0.73% per DeLaune et al. 2009). The associated uptake factors and wildlife TRVs are similarly based on methylmercury. For lead, a 25% bioavailability factor for lead in sediment is applied based on Suedel et al. (2006). A 50% bioavailability for lead in food and water is per USEPA default.

face water and food (%)

Table 16R Wildlife HQs - Nutria Screening-Level Ecological Risk Assessment East White Lake Oil and Gas Field Vermilion Parish, Louisiana

	Physical Maxi Concent	rsical Media - Physical Media - Maximum 95% UCL ncentration * Concentration *		Physical Media - Arithmetc Mean Concentration *		Mo	deled Tissue (Pr Concentration	rey)	
Chemical of Ecological Concern	C _{SED} (mg/kg DW)	C _{SW} (mg/L)	C _{SED} (mg/kg DW)	C _{SW} (mg/L)	C _{SED} (mg/kg DW)	C _{SW} (mg/L)	C _{AP} (mg/kg DW)	C _{BI} (mg/kg DW)	C _{FF} (mg/kg DW)
Inorganics	_								
Cadmium	1.655		0.51		0.413		0.30	0.3	0.14
Lead	154.9	0.021	51.01		32.23	0.0034	1.98	3.6	3.52
Mercury	0.0554		0.0099		0.003		0.0085	0.0139	0.0245
Selenium	2.11	0.026	1.221	0.0213	1.15	0.0190	0.82	1.2	2.80
Zinc	238.2	0.067	149.6	0.027	87.4	0.015	54.8	290	209
SVOCs									•
Total LPAHs	1.401				0.421		0.115	0.15	0.42
Total HPAHs	0.826				0.552		0.630	0.83	0.07

		Toxicity Reference Value		Hazard Quotient	
Chemical of Ecological Concern	Total Daily Dose (mg/kg BW- day)	NOAEL (mg/kg BW- day)	LOAEL (mg/kg BW- day)	HQ _{NOAEL} (unitless)	HQ _{LOAEL} (unitless)
Inorganics				_	
Cadmium	0.017	0.7	7.1	0.024	0.002
Lead	0.109	15	148	0.007	0.001
Mercury	0.00046	0.026	0.043	0.018	0.011
Selenium	0.047	0.16	0.27	0.294	0.174
Zinc	3.4	99	197	0.034	0.017
SVOCs					
Total LPAHs	0.008	34	58	0.000	0.000
Total HPAHs	0.033	0.9	7.1	0.037	0.005

Total Daily Dose = $[(IR_{food} \times C_{food}) + (IR_{water} \times C_{water}) + (IR_{sed} \times C_{sed})] \times AUF$

BW

where, $C_{food} = C_{AP} x \text{ Diet}_{AP} + C_{BI} x \text{ Diet}_{BI} + C_{FF} x \text{ Diet}_{FF}$

HQ_{NOAEL} = <u>Total Daily Dose</u> NOAEL

 $HQ_{LOAEL} = \frac{Total Daily Dose}{LOAEL}$

Shaded values exceed an HQ of 1.0

	Diet _{AP}	100	%
Diet	Diet _{BI}	0	%
	Diet _{FF}	0	%
	IR _{food}	0.4324	kg/day DW
	IR _{water}	0.7152	L/day
	IR _{sed}	0.0432	kg/day DW
Ingestion-Pathway	AUF	100	%
Exposures	BW	9	kg
	Pb Bioavail.		
	- Sed	25	%
	Pb Bioavail.		
	- SW/Food	50	%

Notes: AUF - Area Use Factor BW - body weight (kg) C_{sw} - COC concentration in surface water (mg/L) C_{Sed} - COC concentration in sediment (mg/kg DW) C_{AP} - COC concentration in aquatic plants (mg/kg DW)

C_{BI} - COC concentration in benthic invertebrates (mg/kg DW) **C**_{**FF**} - COC concentration in forage fish (mg/kg DW) COEC - constituent of ecological concern $Diet_{AP}$ - fraction of aquatic plants in wildlife diet (%) $Diet_{BI}$ - fraction of benthic invertebrates in wildlife diet (%) Diet_{FF} - fraction of forage fish in wildlife diet (%) DW - dry weight

HPAH - high molecular weight PAH HQ_{NOAEL} - hazard quotient, NOAEL-based HQ_{LOAEL} - hazard quotient, LOAEL-based IR_{food} - food ingestion rate (kg/day DW) IR_{sed} - sediment ingestion rate (kg/day DW) **IR**_{water} - water ingestion rate (L/day) LOAEL - lowest observed adverse effect level LPAH - low molecular weight PAH NOAEL - no observed adverse effect level PAH - polycyclic aromatic hydrocarbon Pb Bioavail. - Sed. - bioavailability of lead in sediment (%) **Pb Bioavail. - SW/Food** - bioavailability of lead in surface water and food (%)

* Mercury concentrations in physical media shown here represent the estimated methylmercury fraction (0.73% per DeLaune et al. 2009). The associated uptake factors and wildlife TRVs are similarly based on methylmercury. For lead, a 25% bioavailability factor for lead in sediment is applied based on Suedel et al. (2006). A 50% bioavailability for lead in food and water is per USEPA default.

Nutria

Table 17R Wildlife HQs - Raccoon Screening-Level Ecological Risk Assessment East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Raccoon

	Physical	Media -	Physical	Media -	Physical	Media -			
	Maxi	mum	95%	UCL	Arithme	tc Mean	Mo	deled Tissue (Pr	ey)
	Concent	ration *	Concent	ration *	Concent	tration *		Concentration	
Chemical of Ecological	CSED	Csw	C _{SED}	C _{SW}	C _{SED}	Csw	C _{AP}	CBI	C _{FF}
Concern	(mg/kg DW)	(mg/L)	(mg/kg DW)	(mg/L)	(mg/kg DW)	(mg/L)	(mg/kg DW)	(mg/kg DW)	(mg/kg DW)
Inorganics	_								
Cadmium	1.655		0.51		0.413		0.30	0.3	0.14
Lead	154.9	0.021	51.01		32.23	0.0034	1.98	3.6	3.52
Mercury	0.0554		0.0099		0.003		0.0085	0.0139	0.0245
Selenium	2.11	0.026	1.221	0.0213	1.15	0.0190	0.82	1.2	2.80
Zinc	238.2	0.067	149.6	0.027	87.4	0.015	54.8	290	209
SVOCs		_	_		_	_	_		
Total LPAHs	1.401				0.421		0.115	0.15	0.42
Total HPAHs	0.826				0.552		0.630	0.83	0.07

		Toxicity Reference Value		Hazard Quotient		
Chemical of Ecological Concern	Total Daily Dose (mg/kg BW- day)	NOAEL (mg/kg BW- day)	LOAEL (mg/kg BW- day)	HQ _{NOAEL} (unitless)	HQ _{LOAEL} (unitless)	
Inorganics	_	-		_		
Cadmium	0.017	0.8	7.7	0.022	0.002	
Lead	0.162	16	156	0.010	0.001	
Mercury	0.00091	0.028	0.046	0.033	0.020	
Selenium	0.091	0.17	0.29	0.534	0.313	
Zinc	15.5	112	223	0.138	0.069	
SVOCs						
Total LPAHs	0.013	35	61	0.000	0.000	
Total HPAHs	0.039	1.0	7.5	0.039	0.005	

Total Daily Dose = [(IR_{food} x C_{food}) + (IR_{water} x C_{water}) + (IR_{sed} x C_{sed})] x AUF

BW

where, $C_{food} = C_{AP} x \text{ Diet}_{AP} + C_{BI} x \text{ Diet}_{BI} + C_{FF} x \text{ Diet}_{FF}$

HQ_{NOAEL} = <u>Total Daily Dose</u> NOAEL

HQ_{LOAEL} = <u>Total Daily Dose</u> LOAEL

Shaded values exceed an HQ of 1.0

	Diet _{AP}	0	%
Diet	Diet _{BI}	80	%
	Diet _{FF}	20	%
	IR _{food}	0.2107	kg/day DW
	IR _{water}	0.3378	L/day
	IR _{sed}	0.0198	kg/day DW
Ingestion-Pathway	AUF	100	%
Exposures	BW	3.91	kg
	Pb Bioavail.		
	- Sed	25	%
	Pb Bioavail.		
	- SW/Food	50	%

Notes: AUF - Area Use Factor BW - bo C_{sw} - 0

Totes.	
AUF - Area Use Factor	HPAH - high molecular weight PAH
BW - body weight (kg)	HQ _{NOAEL} - hazard quotient, NOAEL-based
C _{SW} - COC concentration in surface water (mg/L)	HQLOAEL - hazard quotient, LOAEL-based
C_{Sed} - COC concentration in sediment (mg/kg DW)	IR _{food} - food ingestion rate (kg/day DW)
C_{AP} - COC concentration in aquatic plants (mg/kg DW)	IR _{sed} - sediment ingestion rate (kg/day DW)
C _{BI} - COC concentration in benthic invertebrates (mg/kg DW)	IR _{water} - water ingestion rate (L/day)
CFF - COC concentration in forage fish (mg/kg DW)	LOAEL - lowest observed adverse effect level
COEC - constituent of ecological concern	LPAH - low molecular weight PAH
Diet _{AP} - fraction of aquatic plants in wildlife diet (%)	NOAEL - no observed adverse effect level
Diet _{BI} - fraction of benthic invertebrates in wildlife diet (%)	PAH - polycyclic aromatic hydrocarbon
Diet _{FF} - fraction of forage fish in wildlife diet (%)	Pb Bioavail Sed bioavailability of lead in sediment (%)
DW - dry weight	Pb Bioavail SW/Food - bioavailability of lead in surface w

* Mercury concentrations in physical media shown here represent the estimated methylmercury fraction (0.73% per DeLaune et al. 2009). The associated uptake factors and wildlife TRVs are similarly based on methylmercury. For lead, a 25% bioavailability factor for lead in sediment is applied based on Suedel et al. (2006). A 50% bioavailability for lead in food and water is per USEPA default.

urface water and food (%)

Table 18R Wildlife HQs - Mink Screening-Level Ecological Risk Assessment East White Lake Oil and Gas Field Vermilion Parish, Louisiana

	Physical Maxi Concent	Physical Media - Physical Media - Maximum 95% UCL Concentration * Concentration *		Physical Media - Arithmetc Mean Concentration *		Mo	deled Tissue (Pr Concentration	rey)	
Chemical of Ecological Concern	C _{SED} (mg/kg DW)	C _{SW} (mg/L)	C _{SED} (mg/kg DW)	C _{SW} (mg/L)	C _{SED} (mg/kg DW)	C _{SW} (mg/L)	C _{AP} (mg/kg DW)	C _{BI} (mg/kg DW)	C _{FF} (mg/kg DW)
Inorganics									
Cadmium	1.655		0.51		0.413		0.30	0.3	0.14
Lead	154.9	0.021	51.01		32.23	0.0034	1.98	3.6	3.52
Mercury	0.0554		0.0099		0.003		0.0085	0.0139	0.0245
Selenium	2.11	0.026	1.221	0.0213	1.15	0.0190	0.82	1.2	2.80
Zinc	238.2	0.067	149.6	0.027	87.4	0.015	54.8	290	209
SVOCs					_		_		-
Total LPAHs	1.401				0.421		0.115	0.15	0.42
Total HPAHs	0.826				0.552		0.630	0.83	0.07

		Toxicity Reference Value		Toxicity Reference Value Hazard Qu			Quotient
Chemical of Ecological Concern	Total Daily Dose (mg/kg BW- day)	NOAEL (mg/kg BW- day)	LOAEL (mg/kg BW- day)	HQ _{NOAEL} (unitless)	HQ _{LOAEL} (unitless)		
Inorganics	_			_			
Cadmium	0.015	0.9	8.9	0.017	0.002		
Lead	0.165	17	169	0.010	0.001		
Mercury	0.00146	0.03	0.049	0.049	0.030		
Selenium	0.161	0.19	0.31	0.845	0.518		
Zinc	16.8	137	274	0.123	0.061		
SVOCs							
Total LPAHs	0.024	38	67	0.001	0.000		
Total HPAHs	0.025	1.1	8.1	0.023	0.003		

Total Daily Dose = [(IR_{food} x C_{food}) + (IR_{water} x C_{water}) + (IR_{sed} x C_{sed})] x AUF

BW

where, $C_{food} = C_{AP} x \text{ Diet}_{AP} + C_{BI} x \text{ Diet}_{BI} + C_{FF} x \text{ Diet}_{FF}$

HQ_{NOAEL} = <u>Total Daily Dose</u> NOAEL

HQ_{LOAEL} = <u>Total Daily Dose</u> LOAEL

Shaded values exceed an HQ of 1.0

	Diet _{AP}	0	%
Diet	Diet _{BI}	35	%
	Diet _{FF}	65	%
	IR _{food}	0.0687	kg/day DW
	IR _{water}	0.099	L/day
	IR _{sed}	0.0034	kg/day DW
Ingestion-Pathway	AUF	100	%
Exposures	BW	1	kg
Lipoures	Pb Bioavail.		
	- Sed	25	%
	Pb Bioavail.		
	- SW/Food	50	%

Notes:
AUF - Area Use Factor
BW - body weight (kg)
C_{SW} - COC concentration in surface water (mg/L)
C_{Sed} - COC concentration in sediment (mg/kg DW)
CAP - COC concentration in aquatic plants (mg/kg DW)
C _{BI} - COC concentration in benthic invertebrates (mg/kg DW)
CFF - COC concentration in forage fish (mg/kg DW)
COEC - constituent of ecological concern
$Diet_{AP}$ - fraction of aquatic plants in wildlife diet (%)

 $Diet_{BI}$ - fraction of benthic invertebrates in wildlife diet (%) Diet_{FF} - fraction of forage fish in wildlife diet (%) DW - dry weight

HPAH - high molecular weight PAH HQ_{NOAEL} - hazard quotient, NOAEL-based HQLOAEL - hazard quotient, LOAEL-based IR_{food} - food ingestion rate (kg/day DW) IR_{sed} - sediment ingestion rate (kg/day DW) **IR**_{water} - water ingestion rate (L/day) LOAEL - lowest observed adverse effect level LPAH - low molecular weight PAH NOAEL - no observed adverse effect level **PAH** - polycyclic aromatic hydrocarbon Pb Bioavail. - Sed. - bioavailability of lead in sediment (%) **Pb Bioavail. - SW/Food** - bioavailability of lead in surface water and food (%)

Table 19R Summary of Wildlife HQs Screening-Level Ecological Risk Assessment East White Lake Oil and Gas Field Vermilion Parish, Louisiana

	Wood	duck	Snowy	v egret	Belted ki	ingfisher
Chemical of Ecological Concern	HQ _{NOAEL}	HQ _{LOAEL}	HQ _{NOAEL}	HQ _{LOAEL}	HQ _{NOAEL}	HQ _{LOAEL}
Metals			_		_	
Cadmium	0.017	0.001	0.005	0.000	0.013	0.001
Lead	0.049	0.010	0.020	0.004	0.056	0.011
Mercury	0.064	0.013	0.061	0.012	0.200	0.041
Selenium	0.198	0.099	0.217	0.109	0.733	0.367
Zinc	0.231	0.121	0.164	0.086	0.457	0.239
SVOCs						
Total LPAHs	0.000	0.000	0.000	0.000	0.000	0.000
Total HPAHs	0.008	0.002	0.002	0.000	0.003	0.001

	Marsh	rice rat	Nut	tria	Race	coon	Mi	nk
Chemical of Ecological Concern	HQ _{NOAEL}	HQLOAEL	HQ _{NOAEL}	HQLOAEL	HQ _{NOAEL}	HQ _{LOAEL}	HQ _{NOAEL}	HQ _{LOAEL}
Metals								
Cadmium	0.030	0.003	0.024	0.002	0.022	0.002	0.017	0.002
Lead	0.010	0.001	0.007	0.001	0.010	0.001	0.010	0.001
Mercury	0.036	0.022	0.018	0.011	0.033	0.020	0.049	0.030
Selenium	0.553	0.329	0.294	0.174	0.534	0.313	0.845	0.518
Zinc	0.093	0.047	0.034	0.017	0.138	0.069	0.123	0.061
SVOCs								
Total LPAHs	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000
Total HPAHs	0.064	0.009	0.037	0.005	0.039	0.005	0.023	0.003

Notes:

HPAH - high molecular weight PAH HQ_{NOAEL} - hazard quotient, NOAEL-based HQ_{LOAEL} - hazard quotient, LOAEL-based LOAEL - lowest observed adverse effect level LPAH - low molecular weight PAH NOAEL - no observed adverse effect level PAH - polycyclic aromatic hydrocarbon SVOC - semivolatile organic compound

Shaded values exceed an HQ of 1.0

C 1 ID		
Sample ID	Arsenic	D_Arsenic
SED-1	5.65	1
SED-2	6.73	1
SED-3	8.77	1
SED-4	3.50	1
SED-5	5.47	1
SED-6	5.69	1
SED-7	3.70	1
SED-8	4.53	1
SED-9	4.75	1
SED-10	4.79	1
SED-11	5.84	1
SED-12	3.62	1
SED-13	4.23	1
SED-14	3.45	1
SED-15	4.41	1
SED-16	5.17	1
SED-17	3.87	1
SED-18	6.20	1
SED-19	3.91	1
SED-20	4 94	1
SED-20	3 54	1
SED-21 SED-22	3.86	1
SED-22	5.00	1
SED-23	5.69	1
SED-24	5.04	1
SED-25	1.04	1
SED-20	4.30	1
SED-27	4.15	1
SED-28	4.10	1
SED-29	2.11	1
SED-30	4.48	1
SED-31	4.28	1
SED-32	3.34	1
SED-33	2.91	1
SS3	8.79	1
SS5	11.40	1
SS7	22.00	1
SS8	8.01	1
SS10	7.28	1
SS11	5.28	1
SS12	6.17	1
B4	40.40	1
B5	22.60	1
B9	27.60	1
B17	40.80	1
AB13	10.68	1
AB14	5 51	1

Sample ID	Arsenic2	D_Arsenic2
SED-1	5.65	1
SED-2	6.73	1
SED-3	8.77	1
SED-4	3.50	1
SED-5	5.47	1
SED-6	5.69	1
SED-7	3.70	1
SED-8	4.53	1
SED-9	4.75	1
SED-10	4 79	1
SED-11	5.84	1
SED-12	3.62	1
SED 13	4.23	1
SED-13	2.45	1
SED-14 SED-15	3.43	1
SED-15	4.41	1
SED-16	5.17	1
SED-17	3.87	1
SED-18	6.20	1
SED-19	3.91	1
SED-20	4.94	1
SED-21	3.54	1
SED-22	3.86	1
SED-23	5.25	1
SED-24	5.68	1
SED-25	5.04	1
SED-26	4.36	1
SED-27	4.13	1
SED-28	4.16	1
SED-29	2.77	1
SED-30	4.48	1
SED-31	4.28	1
SED-32	3.34	1
SED-33	2.91	1
SS3	8.79	1
SS5	11.40	1
SS7	22.00	1
SS8	8.01	1
SS10	7.28	1
SS10	5.28	1
\$\$12	6.17	1
B/	10.00	1
D4 D0	0.00	1
D9 AD12	0.17	1
AD13	10.08	1
AB14	5.51	1

Sample ID	Barium	D_Barium
SED-1	404	1
SED-2	321	1
SED-3	325	1
SED-4	502	1
SED-5	169	1
SED-6	374	1
SED-7	706	1
SED-7	636	1
SLD-0	050	1
SED 0	510	1
SED-9	720	1
SED-10	/30	1
SED-11	1,136	1
SED-12	974	1
SED-13	725	1
SED-14	1,101	1
SED-15	1,445	1
SED-16	297	1
SED-17	1,725	1
SED-18	1,785	1
SED-19	2,131	1
SED-20	745	1
SED-21	532	1
SED-22	731	1
SED-23	1.061	1
SED-24	806	1
SED-25	1 260	1
SED-26	705	1
SED-27	566	1
SED 28	400	1
SED-20	500	1
SED-29	599	1
SED-30	020	1
SED-31	695	1
SED-32	467	1
SED-33	533	1
SS3	1,600	1
SS5	7,450	1
SS7	15,700	1
SS8	956	1
SS10	920	1
SS11	2,750	1
SS12	2,030	1
B4	631	1
B9	368	1
B17	2,390	1
AB13	551	1

AB14

200

1

Sample ID	Cadmium	D_Cadmium
SED-1	0.268	1
SED-2	0.878	1
SED-3	0.278	0
SED-4	0.302	1
SED-5	0.258	0
SED-6	1.655	1
SED-7	0.298	1
SED-8	0.2615	0
SED-9	0.2625	0
SED-11	0.261	0
SED-13	0.2645	0
SED-15	0.50725	1
SED-19	0.14375	0
SED-24	0.2625	0
SED-26	0.2615	0
SED-28	0.359	1
SED-29	0.303	1
SED-30	0.37025	1
SED-31	0.278	0
SS8	0.354	1
SS10	0.4145	1
B4	0.77	1
B9	0.644	1
AB13	0.447	1
AB14	0.219	1

Results from 2010 split samples are incorporated in the shaded cells.

Sample ID	Chromium	D_Chromium
SED-1	11.45	1
SED-2	13.97	1
SED-3	7.68	1
SED-4	10.835	1
SED-5	7.675	1
SED-6	13.835	1
SED-7	12.955	1
SED-8	12.4565	1
SED-9	13.8735	1
SED-11	14.037	1
SED-13	17.1045	1
SED-15	207.00475	1
SED-19	17.36225	1
SED-24	13.73	1
SED-26	14.383	1
SED-28	12.02	1
SED-29	15.3	1
SED-30	22.18225	1
SED-31	14.95	1
SS3	17.9	1
SS5	21.8	1
SS7	20	1
SS8	10.38	1
SS10	9.67	1
SS11	25.1	1
SS12	12.7	1
B17	62.6	1
AB13	7.73	1
AB14	12.8	1

Sample ID	Lead	D Lead
SED-1	22.39	1
SED-2	23.61	1
SED-3	23.32	1
SED-4	17.15	1
SED-5	15.13	1
SED-6	36.97	1
SED-7	20.45	1
SED-8	20.74	1
CED 0	10.00	1
SED-9	19.98	1
SED-II	19.04	1
SED-15	20.07	1
SED-15	87.39	1
SED-19	28.89	1
SED-24	21.58	1
SED-26	19.88	1
SED-28	18.67	1
SED-29	18.25	1
SED-30	22.78	1
SED-31	21.63	1
SS3	28.8	1
SS5	117	1
SS7	67.5	1
SS8	29.84	1
SS10	25.81	1
SS11	63.6	1
SS12	49.9	1
B4	28.7	1
B9	23.1	1
B17	64.6	1
AB13	8.11	1
AB14	14.4	1

Sample ID	Mercury	D_Mercury
SED-1	0.1145	1
SED-2	0.08	1
SED-3	0.12	1
SED-4	0.13	1
SED-5	0.3315	1
SED-6	7.59	1
SED-7	0.0995	1
SED-8	0.09725	1
SED-9	0.11075	1
SED-10	0.1435	1
SED-11	0.1205	1
SED-12	0.099	1
SED-13	0.1265	1
SED-14	0.0865	1
SED-15	0.510625	1
SED-16	0.347	1
SED-17	0.1075	1
SED-18	0.135	1
SED-19	0.1915	1
SED-20	0.1345	1
SED-21	0.07	1
SED-22	0.085	1
SED-23	0.085	1
SED-24	0.1025	1
SED-25	0.09	1
SED-26	0.31175	1
SED-27	0.09	1
SED-28	0.91	1
SED-29	0.105	1
SED-30	0.17275	1
SED-31	0.1075	1
SED-32	0.086	1
SED-33		
	0.09	1
SS8	0.09 1.245	1

	Wiereury2	D_Mercury2
SED-1	0.1145	1
SED-2	0.08	1
SED-3	0.12	1
SED-4	0.13	1
SED-5	0.3315	1
SED-6	0.88	1
SED-7	0.0995	1
SED-8	0.09725	1
SED-9	0.11075	1
SED-10	0.1435	1
SED-11	0.1205	1
SED-12	0.099	1
SED-13	0.1265	1
SED-14	0.0865	1
SED-15	0.510625	1
SED-16	0.347	1
SED-17	0.1075	1
SED-18	0.135	1
SED-19	0.1915	1
SED-20	0.1345	1
SED-21	0.07	1
SED-22	0.085	1
SED-23	0.085	1
SED-24	0.1025	1
SED-25	0.09	1
SED-26	0.31175	1
SED-27	0.09	1
SED-28	0.91	1
SED-29	0.105	1
SED-30	0.17275	1
SED-31	0.1075	1
SED-32	0.086	1
SED-33	0.09	1
SS8	1.245	1
SS10	0.213	1

SED-1 1.17 0 SED-2 1.090 0 SED-3 1.740 0 SED-4 0.420 0 SED-5 0.500 0 SED-6 0.510 0 SED-7 0.800 0 SED-8 0.712 0 SED-9 0.766 0 SED-10 0.650 0 SED-11 0.921 1 SED-12 1.530 1 SED-13 1.280 1 SED-14 1.420 1 SED-15 0.996 1 SED-16 2.110 1 SED-17 1.520 1 SED-18 1.580 1 SED-19 1.028 1 SED-20 1.240 1 SED-21 1.170 1 SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1	Sample ID	Selenium	D_Selenium
SED-2 1.090 0 SED-3 1.740 0 SED-4 0.420 0 SED-5 0.500 0 SED-6 0.510 0 SED-7 0.800 0 SED-8 0.712 0 SED-9 0.766 0 SED-10 0.650 0 SED-11 0.921 1 SED-12 1.530 1 SED-13 1.280 1 SED-14 1.420 1 SED-15 0.996 1 SED-16 2.110 1 SED-17 1.520 1 SED-18 1.580 1 SED-19 1.028 1 SED-20 1.240 1 SED-21 1.170 1 SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1	SED-1	1.17	0
SED-3 1.740 0 SED-4 0.420 0 SED-5 0.500 0 SED-6 0.510 0 SED-7 0.800 0 SED-8 0.712 0 SED-9 0.766 0 SED-10 0.650 0 SED-11 0.921 1 SED-12 1.530 1 SED-13 1.280 1 SED-14 1.420 1 SED-15 0.996 1 SED-16 2.110 1 SED-17 1.520 1 SED-18 1.580 1 SED-19 1.028 1 SED-20 1.240 1 SED-21 1.170 1 SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1	SED-2	1.090	0
SED-4 0.420 0 SED-5 0.500 0 SED-6 0.510 0 SED-7 0.800 0 SED-8 0.712 0 SED-9 0.766 0 SED-10 0.650 0 SED-11 0.921 1 SED-12 1.530 1 SED-13 1.280 1 SED-14 1.420 1 SED-15 0.996 1 SED-16 2.110 1 SED-17 1.520 1 SED-18 1.580 1 SED-19 1.028 1 SED-20 1.240 1 SED-21 1.170 1 SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1	SED-3	1.740	0
SED-5 0.500 0 SED-6 0.510 0 SED-7 0.800 0 SED-8 0.712 0 SED-9 0.766 0 SED-10 0.650 0 SED-11 0.921 1 SED-12 1.530 1 SED-13 1.280 1 SED-14 1.420 1 SED-15 0.996 1 SED-16 2.110 1 SED-17 1.520 1 SED-18 1.580 1 SED-19 1.028 1 SED-20 1.240 1 SED-21 1.170 1 SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 S	SED-4	0.420	0
SED-6 0.500 0 SED-7 0.800 0 SED-8 0.712 0 SED-9 0.766 0 SED-10 0.650 0 SED-11 0.921 1 SED-12 1.530 1 SED-13 1.280 1 SED-14 1.420 1 SED-15 0.996 1 SED-16 2.110 1 SED-17 1.520 1 SED-18 1.580 1 SED-19 1.028 1 SED-20 1.240 1 SED-21 1.170 1 SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0	SED-5	0 500	0
SED-7 0.800 0 SED-8 0.712 0 SED-9 0.766 0 SED-10 0.650 0 SED-11 0.921 1 SED-12 1.530 1 SED-13 1.280 1 SED-14 1.420 1 SED-15 0.996 1 SED-16 2.110 1 SED-17 1.520 1 SED-18 1.580 1 SED-19 1.028 1 SED-20 1.240 1 SED-21 1.170 1 SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0 SED-30 1.614 0 <tr< td=""><td>SED-6</td><td>0.510</td><td>0</td></tr<>	SED-6	0.510	0
SED-8 0.712 0 SED-9 0.766 0 SED-10 0.650 0 SED-11 0.921 1 SED-12 1.530 1 SED-13 1.280 1 SED-14 1.420 1 SED-15 0.996 1 SED-16 2.110 1 SED-17 1.520 1 SED-18 1.580 1 SED-19 1.028 1 SED-20 1.240 1 SED-21 1.170 1 SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 <t< td=""><td>SED-7</td><td>0.800</td><td>0</td></t<>	SED-7	0.800	0
SED-9 0.766 0 SED-10 0.650 0 SED-11 0.921 1 SED-12 1.530 1 SED-13 1.280 1 SED-14 1.420 1 SED-15 0.996 1 SED-16 2.110 1 SED-17 1.520 1 SED-18 1.580 1 SED-19 1.028 1 SED-20 1.240 1 SED-21 1.170 1 SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 <	SED-8	0.712	0
SED-9 0.766 0 SED-10 0.650 0 SED-11 0.921 1 SED-12 1.530 1 SED-13 1.280 1 SED-14 1.420 1 SED-15 0.996 1 SED-16 2.110 1 SED-17 1.520 1 SED-18 1.580 1 SED-19 1.028 1 SED-20 1.240 1 SED-21 1.170 1 SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 <			-
SED-10 0.650 0 SED-11 0.921 1 SED-12 1.530 1 SED-13 1.280 1 SED-14 1.420 1 SED-15 0.996 1 SED-16 2.110 1 SED-17 1.520 1 SED-16 2.110 1 SED-17 1.520 1 SED-18 1.580 1 SED-19 1.028 1 SED-20 1.240 1 SED-21 1.170 1 SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1	SED-9	0.766	0
SED-11 0.921 1 SED-12 1.530 1 SED-13 1.280 1 SED-14 1.420 1 SED-15 0.996 1 SED-16 2.110 1 SED-17 1.520 1 SED-18 1.580 1 SED-19 1.028 1 SED-20 1.240 1 SED-21 1.170 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0 SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1 SED-33 1.250 0 SS8 1.140 1	SED-10	0.650	0
SED-12 1.530 1 SED-13 1.280 1 SED-14 1.420 1 SED-15 0.996 1 SED-16 2.110 1 SED-17 1.520 1 SED-18 1.580 1 SED-19 1.028 1 SED-20 1.240 1 SED-21 1.170 1 SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 SED-33 1.250 0 SS88 1.140 1	SED-11	0.921	1
SED-13 1.280 1 SED-14 1.420 1 SED-15 0.996 1 SED-16 2.110 1 SED-17 1.520 1 SED-18 1.580 1 SED-19 1.028 1 SED-20 1.240 1 SED-21 1.170 1 SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 SED-33 1.250 0 SS8 1.140 1	SED-12	1.530	1
SED-14 1.420 1 SED-15 0.996 1 SED-16 2.110 1 SED-17 1.520 1 SED-18 1.580 1 SED-19 1.028 1 SED-20 1.240 1 SED-21 1.170 1 SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0 SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 SED-33 1.250 0 SS8 1.140 1	SED-13	1.280	1
SED-15 0.996 1 SED-16 2.110 1 SED-17 1.520 1 SED-18 1.580 1 SED-19 1.028 1 SED-20 1.240 1 SED-21 1.170 1 SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0 SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 SED-33 1.250 0 SS8 1.140 1	SED-14	1.420	1
SED-16 2.110 1 SED-17 1.520 1 SED-18 1.580 1 SED-19 1.028 1 SED-20 1.240 1 SED-21 1.170 1 SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 SED-33 1.250 0 SS8 1.140 1	SED-15	0.996	1
SED-17 1.520 1 SED-18 1.580 1 SED-19 1.028 1 SED-20 1.240 1 SED-21 1.170 1 SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 SED-33 1.250 0 SS8 1.140 1	SED-16	2.110	1
SED-18 1.580 1 SED-19 1.028 1 SED-20 1.240 1 SED-21 1.170 1 SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 SED-33 1.250 0 SS8 1.140 1	SED-17	1.520	1
SED-19 1.028 1 SED-20 1.240 1 SED-21 1.170 1 SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 SED-33 1.250 0 SS8 1.140 1	SED-18	1.580	1
SED-20 1.240 1 SED-21 1.170 1 SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 SED-33 1.250 0 SS8 1.140 1 SS10 1.320 1	SED-19	1.028	1
SED-21 1.170 1 SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 SED-33 1.250 0 SS8 1.140 1 SS10 1.320 1	SED-20	1.240	1
SED-22 1.540 1 SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 SED-33 1.250 0 SS8 1.140 1	SED-21	1.170	1
SED-23 1.610 1 SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 SED-33 1.250 0 SS8 1.140 1 SS10 1.320 1	SED-22	1.540	1
SED-24 1.234 1 SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 SED-33 1.250 0 SS8 1.140 1	SED-23	1.610	1
SED-25 1.560 1 SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 SED-33 1.250 0 SS8 1.140 1 SS10 1.370 1	SED-24	1.234	1
SED-26 0.818 1 SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 SED-33 1.250 0 SS8 1.140 1 SS10 1.320 1	SED-25	1.560	1
SED-27 0.970 1 SED-28 1.170 0 SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 SED-33 1.250 0 SS8 1.140 1 SS10 1.320 1	SED-26	0.818	1
SED-28 1.170 0 SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 SED-33 1.250 0 SS8 1.140 1 SS10 1.320 1	SED-27	0.970	1
SED-29 1.200 0 SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 SED-33 1.250 0 SS8 1.140 1 SS10 1.320 1	SED-28	1.170	0
SED-30 1.614 0 SED-31 0.830 1 SED-32 0.930 1 SED-33 1.250 0 SS8 1.140 1 SS10 1.320 1	SED-29	1.200	0
SED-31 0.830 1 SED-32 0.930 1 SED-33 1.250 0 SS8 1.140 1 SS10 1.320 1	SED-30	1.614	0
SED-32 0.930 1 SED-33 1.250 0 SS8 1.140 1 SS10 1.320 1	SED-31	0.830	1
SED-33 1.250 0 SS8 1.140 1 SS10 1.320 1	SED-32	0.930	1
SS8 1.140 1 SS10 1.320 1	SED-33	1.250	0
SS10 1 320 1	SS8	1.140	1
1.520	SS10	1.320	1

Sample ID	Strontium	D_Strontium
SED-1	58.1	1
SED-2	57.0	1
SED-3	69.7	1
SED-4	75.4	1
SED-5	47.6	1
SED-6	110	1
SED-7	47.7	1
SED-8	46.3	1
SED-9	44.8	1
SED-11	44.6	1
SED-13	52.3	1
SED-15	98.9	1
SED-19	84.9	1
SED-24	55.2	1
SED-26	49.0	1
SED-28	265	1
SED-29	218	1
SED-30	339	1
SED-31	53.4	1
SS3	74.3	1
SS5	140	1
SS7	231	1
SS8	69.9	1
SS10	63.3	1
SS11	64.8	1
SS12	72.9	1
B4	59.3	1
B9	64.1	1
AB13	459	1
AB14	121	1

Sample ID	Zinc	D_Zinc
SED-8	50.63	1
SED-9	53.96	1
SED-11	51.58	1
SED-13	63.25	1
SED-15	60.42	1
SED-19	63.74	1
SED-24	56.14	1
SED-26	57.36	1
SED-30	238.2	1
SED-31	57.19	1
SS3	92.5	1
SS5	174	1
SS7	111	1
SS11	194	1
SS12	73.5	1
AB13	24.8	1
AB14	63.9	1

Sample ID	Benzo(b)fluoranthene	D_Benzo(b)fluoranthene
SED-8	0.026	0
SED-9	0.063	1
SED-11	0.029	0
SED-13	0.036	0
SED-15		
(avg)	0.039	0
SED-19	0.046	0
SED-24	0.03	0
SED-26	0.032	0
SED-120		
(SED-30)	0.057	0
SED-31	0.031	0

Sample ID	Chrysene	D_Chrysene
SED-8	0.028	0
SED-9	0.069	1
SED-11	0.032	0
SED-13	0.04	0
SED-15		
(avg)	0.043	0
SED-19	0.051	0
SED-24	0.036	1
SED-26	0.035	0
SED-120		
(SED-30)	0.063	0
SED-31	0.034	0

Sample ID	Fluorene	D_Fluorene
SED-8	0.026	0
SED-9	0.033	0
SED-11	0.029	0
SED-13	0.036	0
SED-15		
(avg)	0.039	0
SED-19	0.046	0
SED-24	0.03	0
SED-26	0.032	0
SED-120		
(SED-30)	0.92	1
SED-31	0.031	0

Sample ID	Indeno(1,2,3-cd)pyrene	D_Indeno(1,2,3-cd)pyrene
SED-8	0.033	0
SED-9	0.313	1
SED-11	0.038	0
SED-13	0.047	0
SED-15		
(avg)	0.051	0
SED-19	0.06	0
SED-24	0.039	0
SED-26	0.041	0
SED-120		
(SED-30)	0.074	0
SED-31	0.041	0

Sample ID	Phenanthrene	D_Phenanthrene
SED-8	0.033	0
SED-9	0.043	0
SED-11	0.038	0
SED-13	0.047	0
SED-15		
(avg)	0.051	0
SED-19	0.06	0
SED-24	0.048	1
SED-26	0.041	0
SED-120		
(SED-30)	0.074	0
SED-31	0.041	0

Sample ID	Total LPAHs	Total HPAHs	Total PAHs
SED-8	0.233	0.37	0.603
SED-9	0.299	0.807	1.106
SED-11	0.272	0.422	0.694
SED-13	0.341	0.524	0.865
SED-15 (avg)	0.359	0.56	0.919
SED-19	0.435	0.668	1.103
SED-24	0.282	0.435	0.717
SED-26	0.299	0.46	0.759
SED-120			
(SED-30)	1.401	0.826	2.227
SED-31	0.289	0.451	0.74

Sample ID	Chlorides	D_Chlorides
SED-1	5,338	1
SED-2	5,571	1
SED-3	4,930	1
SED-4	2,084	1
SED-5	1,549	1
SED-6	1,942	1
SED-7	3,983	1
SED-8	2,661	1
SED-9	2,633	1
SED-10	2,616	1
SED-11	2,875	1
SED-12	2,451	1
SED-13	4,463	1
SED-14	3.890	1
SED-15	2.721	1
SED-16	5 571	1
SED 17	2 9 2 9	1
SED-17	4 280	1
SED-18	4,280	1
SED-19	3,033	1
SED-20	2,842	1
SED-21	2,624	1
SED-22	4,360	1
SED-23	2,576	1
SED-24	2,459	1
SED-25	3,496	1
SED-26	2,449	1
SED-27	4,251	1
SED-28	7,290	1
SED-29	9,227	1
SED-30	11,186	1
SED-31	5.086	1
SED-32	5 024	1
SED-33	11 185	1
\$\$1	1 950	1
\$\$2	1,550	1
\$\$2	825	1
555	2 950	1
554	5,650	1
222	1,430	1
550	1,700	1
SS7	2,050	1
SS9	1,500	1
SS11	540	1
SS12	610	1
SS13	1,900	1
SS14	2,250	1
SS15	1,400	1
B4	10,000	1
B5	5,800	1
B9	7,390	1
B12	7,360	1
B14	2,750	1
B17	7.950	1
B21	3 700	1
AB13	73 800	1
AD13	15 500	1
AD14	15,500	1

Sample ID	%Moisture	D_%Moisture (wt%)
SED-1	78.0	1
SED-2	78.9	1
SED-3	84.4	1
SED-4	51.0	1
SED-5	53.8	1
SED-6	57.9	1
SED-7	69.1	1
SED-8	64.9	1
SED 0	0112	
SED-9	67.9	1
SED 10	63.6	1
SED 11	66.1	1
SED-11 SED 12	68.0	1
SED-12	74.1	1
SED-13	74.1	1
SED-14	/1.5	1
SED-15	64.1	1
SED-16	80.1	1
SED-17	68.9	1
SED-18	74.3	1
SED-19	72.6	1
SED-20	68.3	1
SED-21	69.1	1
SED-22	68.6	1
SED-23	66.3	1
SED-24	64.7	1
SED-25	66.6	1
SED-26	66.5	1
SED-27	72.5	1
SED-28	77.7	1
SED-29	81.3	1
SED-30	83.0	1
SED-31	69.2	1
SED-32	72.1	1
SED-32	76.7	1
SED 33	62.6	1
\$\$2	53.5	1
\$\$3	62.7	1
555	75.0	1
554	73.0	1
555	57.5	1
550	70.8	1
55/	/1./	1
<u>SS8</u>	64.0	1
SS9	61.7	1
SS10	68.5	1
SS11	29.2	1
SS12	45.8	1
SS13	65.8	1
SS14	43.9	1
SS15	64.3	1
B4	78.4	1
B5	71.0	1
B9	74.4	1
B12	76.8	1
B14	50.2	1
B17	81.0	1
B21	76.4	1
AB13	86.0	1
AB14	62.8	1
1017	02.0	1

Sample ID	AVS/SEM [(umol/g)/(umol/g)]	D_AVS/SEM
Sed 9	18.36	1
Sed 11	27.94	1
Sed 13	81.28	1
Sed 15	74.30	1
Sed 19	95.94	1
Sed 24	47.77	1
Sed 26	19.41	1
Sed 120	1.02	1
Sed 31	6.83	1

Sample ID	TOC (%)	D_TOC (%)
SED-8	5.3	1
SED-9	3.61	1
SED-11	5.5	1
SED-13	4.59	1
SED-15	5.425	1
SED-19	4.88	1
SED-24	4.56	1
SED-26	9.45	1
SED-30	28.4	1
SED-31	5.41	1

General UCL Statistics for Full Data Sets

User Selected Options

From File C:\Documents and Settings\My Documents\Clients\East White Lake\Sediment - Arsenic Rev2.wst

Full Precision OFF Confidence Coefficient 95%

Number of Bootstrap Operations 2000

General Statistics

Number of Valid Observations 44

Number of Distinct Observations 44

Raw Statistics

Minimum 2.77

Maximum 22

- Mean 5.825
- Median 4.99

SD 3.231

Coefficient of Variation 0.555

95% Modified-t UCL 6.684

Skewness 3.244

Log-transformed Statistics

Minimum of Log Data 1.019 Maximum of Log Data 3.091 Mean of log Data 1.667 SD of log Data 0.405

Relevant UCL Statistics

Normal Distribution Test Shapiro Wilk Test Statistic 0.698 Shapiro Wilk Critical Value 0.944 Data not Normal at 5% Significance Level

Assuming Normal Distribution 95% Student's-t UCL 6.644 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 6.881

Gamma Distribution Test

k star (bias corrected)	5.07
Theta Star	1.149
nu star	446.2
pproximate Chi Square Value (.05)	398.2
Adjusted Level of Significance	0.0445
Adjusted Chi Square Value	396.7

Anderson-Darling Test Statistic 1.525 Anderson-Darling 5% Critical Value 0.752

- Kolmogorov-Smirnov Test Statistic 0.169
- Kolmogorov-Smirnov 5% Critical Value 0.134
- Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL 6.527 95% Adjusted Gamma UCL 6.552

Potential UCL to Use

Lognormal Distribution Test Shapiro Wilk Test Statistic 0.927

Shapiro Wilk Critical Value 0.944 Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 6.438

- 95% Chebyshev (MVUE) UCL 7.317 97.5% Chebyshev (MVUE) UCL 7.999
- 99% Chebyshev (MVUE) UCL 9.34

Data Distribution

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

- 95% CLT UCL 6.626 95% Jackknife UCL 6.644 95% Standard Bootstrap UCL 6.61
 - 95% Bootstrap-t UCL 7.136
- 95% Hall's Bootstrap UCL 9.999
- 95% Percentile Bootstrap UCL 6.671
- 95% BCA Bootstrap UCL 6.86
- 95% Chebyshev(Mean, Sd) UCL 7.948
- 97.5% Chebyshev(Mean, Sd) UCL 8.867
- 99% Chebyshev(Mean, Sd) UCL 10.67

Use 95% Student's-t UCL 6.644 or 95% Modified-t UCL 6.684

General UCL Statistics for Full Data Sets

User Selected Options

From File C:\Documents and Settings\My Documents\Clients\East White Lake\Sediment - Barium.wst

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

General Statistics

Number of Distinct Observations 45

Raw Statistics

Minimum 169 Maximum 15700 Mean 1364 Median 706

SD 2467

Coefficient of Variation 1.809

Number of Valid Observations 45

Skewness 5.003

Log-transformed Statistics

Minimum of Log Data 5.13 Maximum of Log Data 9.661 Mean of log Data 6.708 SD of log Data 0.846

Relevant UCL Statistics

Normal Distribution Test Shapiro Wilk Test Statistic 0.411 Shapiro Wilk Critical Value 0.945 Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 1982 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 2262 95% Modified-t UCL 2027

Gamma Distribution Test

k star (bias corrected)	1.058
Theta Star	1289
nu star	95.26
Approximate Chi Square Value (.05)	73.75
Adjusted Level of Significance	0.0447
Adjusted Chi Square Value	73.12

Anderson-Darling Test Statistic 3.222 Anderson-Darling 5% Critical Value 0.775

Kolmogorov-Smirnov Test Statistic 0.202

Kolmogorov-Smirnov 5% Critical Value 0.135

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL 1762 95% Adjusted Gamma UCL 1777

Potential UCL to Use

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.927 Shapiro Wilk Critical Value 0.945 Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 1547

- 95% Chebyshev (MVUE) UCL 1879
- 97.5% Chebyshev (MVUE) UCL 2191
- 99% Chebyshev (MVUE) UCL 2802

Data Distribution

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

- 95% CLT UCL
 1969

 95% Jackknife UCL
 1982

 95% Standard Bootstrap UCL
 1957

 95% Bootstrap-t UCL
 4609

 95% Percentile Bootstrap UCL
 2024

 95% BCA Bootstrap UCL
 2452

 95% Chebyshev(Mean, Sd) UCL
 2057
- 97.5% Chebyshev(Mean, Sd) UCL 3660
- 99% Chebyshev(Mean, Sd) UCL 5023

Use 95% Chebyshev (Mean, Sd) UCL 2967

General UCL Statistics for Data Sets with Non-Detects

User Selected Options

From File C:\Documents and Settings\My Documents\Clients\East White Lake\Sediment - Cadmium.wst

Full Precision OFF Confidence Coefficient 95%

Number of Bootstrap Operations 2000

	General S	tatistics	
Number of Valid Data	25	Number of Detected Data	15
Number of Distinct Detected Data	15	Number of Non-Detect Data	10
		Percent Non-Detects	40.00%
Baw Statistics		Lon-transformed Statistics	
Minimum Detected	0.219	Minimum Detected	-1.519
Maximum Detected	1.655	Maximum Detected	0.504
Mean of Detected	0.519	Mean of Detected	-0.812
SD of Detected	0.367	SD of Detected	0.534
Minimum Non-Detect	0.144	Minimum Non-Detect	-1.94
Maximum Non-Detect	0.278	Maximum Non-Detect	-1.28
Note: Data have multiple DLs - Use of KM Method is recommende	ed	Number treated as Non-Detect	12
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	13
Dbservations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	48.00%
	UCL Stat	tistics	
Normal Distribution Test with Detected Values Only	<i>i</i> .	Lognormal Distribution Test with Detected Values On	ily
Shapiro Wilk Test Statistic	0.716	Shapiro Wilk Test Statistic	0.912
5% Shapiro Wilk Critical Value	0.881	5% Shapiro Wilk Critical Value	0.881
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	0.362	Mean	-1.32
SD	0.342	SD	0.764
95% DL/2 (1) UCL	0.479	95% H-Stat (DL/2) UCL	0.468
Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
Mean	0.237	Mean in Log Scale	-1.298
SD	0.473	SD in Log Scale	0.744
95% MLE (t) UCL	0.399	Mean in Original Scale	0.365
95% MLE (Tiku) UCL	0.433	SD in Original Scale	0.34
		95% Percentile Bootstrap UCL	0.483
		95% BCA Bootstrap UCL	0.521
Gamma Distribution Test with Detected Values Only	,	Data Distribution Test with Detected Values Only	
k star (bias corrected)	2.717	Data Follow Appr. Gamma Distribution at 5% Significance	Level
Theta Star	0.191		
nu star	81.51`		
A-D Test Statistic	0.815	Nonparametric Statistics	

		•
5% A-D Critical Value	0.743	Kaplan-Meier (KM) Method
K-S Test Statistic	0.743	Mean 0.4

5% K-S Critical Value	0.223	SD	0.311
Data follow Appr. Gamma Distribution at 5% Significance	e Level	SE of Mean	0.0645
		95% KM (t) UCL	0.51
Assuming Gamma Distribution		95% KM (z) UCL	0.506
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	0.498
Minimum	0.123	95% KM (bootstrap t) UCL	0.599
Maximum	1.655	95% KM (BCA) UCL	0.553
Mean	0.458	95% KM (Percentile Bootstrap) UCL	0.526
Median	0.392	95% KM (Chebyshev) UCL	0.68
SD	0.305	97.5% KM (Chebyshev) UCL	0.802
k star	3.157	99% KM (Chebyshev) UCL	1.041
Theta star	0.145		
Nu star	157.9	Potential UCLs to Use	
AppChi2	129.8	95% KM (t) UCL	0.51
95% Gamma Approximate UCL	0.557		
95% Adjusted Gamma UCL	0.564		

Note: DL/2 is not a recommended method.

General UCL Statistics for Full Data Sets

User Selected Options

From File C:\Documents and Settings\My Documents\Clients\East White Lake\Sediment - Chlorides.wst

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

General Statistics

Relevant UCL Statistics

Number of Valid Observations 55

Raw Statistics

Normal Distribution Test

Minimum 540 Maximum 73800 Mean 5381 Median 2875 SD 9857 Coefficient of Variation 1.832

Skewness 6.435

Lilliefors Test Statistic 0.312

Number of Distinct Observations 54

Log-transformed Statistics

Minimum of Log Data 6.292

- Maximum of Log Data 11.21
 - Mean of log Data 8.146
 - SD of log Data 0.813

Lognormal Distribution Test

Lilliefors Test Statistic 0.0978

Lilliefors Critical Value 0.119

Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 6065

95% Chebyshev (MVUE) UCL 7325

97.5% Chebyshev (MVUE) UCL 8434

99% Chebyshev (MVUE) UCL 10612

Data Distribution Data appear Lognormal at 5% Significance Level

Nonparametric Statistics

9

95% CLT UCL	7567
95% Jackknife UCL	7605
95% Standard Bootstrap UCL	7518
95% Bootstrap-t UCL	11842
95% Hall's Bootstrap UCL	15855
95% Percentile Bootstrap UCL	7843
95% BCA Bootstrap UCL	9385
95% Chebyshev(Mean, Sd) UCL	11174
7.5% Chebyshev(Mean, Sd) UCL	13681
99% Chebyshev(Mean, Sd) UCL	18605

Use 95% H-UCL 6065

Lilliefors Critical Value 0.119 Data not Normal at 5% Significance Level Assuming Normal Distribution

95% Student's-t UCL 7605 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 8799 95% Modified-t UCL 7797

Gamma Distribution Test

k star (bias corrected)	1.208
Theta Star	4453
nu star	132.9
Approximate Chi Square Value (.05)	107.3
Adjusted Level of Significance	0.0456
Adjusted Chi Square Value	106.7

Anderson-Darling Test Statistic 2.612 Anderson-Darling 5% Critical Value 0.773

- Kolmogorov-Smirnov Test Statistic 0.169
- Kolmogorov-Smirnov 5% Critical Value 0.123

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL 6666 95% Adjusted Gamma UCL 6705

Potential UCL to Use

General UCL Statistics for Full Data Sets

User Selected Options

From File C:\Documents and Settings\My Documents\Clients\East White Lake\Sediment - Chromium.wst Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations

2000

General Statistics

Number of Valid Observations 29

Number of Distinct Observations 29

Log-transformed Statistics

Raw Statistics

Minimum 7.675 Maximum 207 Меал 22.53 Median 13.87 SD 36.84

Skewness 4.844

Coefficient of Variation 1.635

95% Modified-t UCL 35.2

Minimum of Log Data 2.038 Maximum of Log Data 5.333 Mean of log Data 2.756 SD of log Data 0.644

Relevant UCL Statistics

Normal Distribution Test Shapiro Wilk Test Statistic 0.347 Shapiro Wilk Critical Value 0.926 Data not Normal at 5% Significance Level

Assuming Normal Distribution 95% Student's-t UCL 34.17 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 40.36

Gamma Distribution Test

- k star (bias corrected) 1.401 Theta Star 16.09 nu star 81.25 Approximate Chi Square Value (.05) 61.48 Adjusted Level of Significance 0.0407 Adjusted Chi Square Value 60.45 Anderson-Darling Test Statistic 4.279
- Anderson-Darling 5% Critical Value 0.762
- Kolmogorov-Smirnov Test Statistic 0.297
- Kolmogorov-Smirnov 5% Critical Value 0.165
- Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL 29.78 95% Adjusted Gamma UCL 30.29

Potential UCL to Use

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.732 Shapiro Wilk Critical Value 0.926 Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 24.87

- 95% Chebyshev (MVUE) UCL 29.89
- 97.5% Chebyshev (MVUE) UCL 34.52
- 99% Chebyshev (MVUE) UCL 43.61

Data Distribution

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

- 95% CLT UCL 33.79
- 95% Jackknife UCL 34.17
- 95% Standard Bootstrap UCL 33.79
 - 95% Bootstrap-t UCL 99.2
- 95% Hall's Bootstrap UCL 84.86
- 95% Percentile Bootstrap UCL 35.88
- 95% BCA Bootstrap UCL 43.71
- 95% Chebyshev(Mean, Sd) UCL 52.35
- 97.5% Chebyshev(Mean, Sd) UCL 65.26
- 99% Chebyshev(Mean, Sd) UCL 90.6

Use 95% Chebyshev (Mean, Sd) UCL 52.35

General UCL Statistics for Data Sets with Non-Detects

User Selected Options

From File C:\Documents and Settings\My Documents\Clients\East White Lake\Sediment - Lead.wst

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

General Statistics

Relevant UCL Statistics

Number of Valid Observations 31

Raw Statistics

Minimum 8.11 Maximum 117 Mean 32.23 Median 22.78 SD 23.99 Coefficient of Variation 0.744 Skewness 2.168 Number of Distinct Observations 31

Log-transformed Statistics

Minimum of Log Data 2.093 Maximum of Log Data 4.762 Mean of log Data 3.289 SD of log Data 0.572

Normal Distribution Test Shapiro Wilk Test Statistic 0.709 Shapiro Wilk Critical Value 0.929 Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-LUCL 39.55 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 41.11 95% Modified-t UCL 39.83

Gamma Distribution Test

- k star (bias corrected) 2.623 Theta Star 12.29 nu star 162.6 Approximate Chi Square Value (.05) 134.1 Adjusted Level of Significance 0.0413 Adjusted Chi Square Value 132.7
- Anderson-Darling Test Statistic 2.256
- Anderson-Darling 5% Critical Value 0.753
- Kolmogorov-Smirnov Test Statistic 0.246 Kolmogorov-Smirnov 5% Critical Value 0.159
- Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL 39.08 95% Adjusted Gamma UCL 39.5

Potential UCL to Use

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.896

Shapiro Wilk Critical Value 0.929

Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

- 95% H-UCL 38.87
- 95% Chebyshev (MVUE) UCL 46.26
- 97.5% Chebyshev (MVUE) UCL 52.69
- 99% Chebyshev (MVUE) UCL 65.31

Data Distribution

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

- 95% CLT UCL 39.32
- 95% Jackknife UCL 39.55
- 95% Standard Bootstrap UCL 39.21
 - 95% Bootstrap-t UCL 42.67
 - 95% Hall's Bootstrap UCL 42.65
- 95% Percentile Bootstrap UCL 39.41
- 95% BCA Bootstrap UCL 41.86
- 95% Chebyshev(Mean, Sd) UCL 51.01
- 97.5% Chebyshev(Mean, Sd) UCL 59.14
- 99% Chebyshev(Mean, Sd) UCL 75.1

Use 95% Chebyshev (Mean, Sd) UCL 51.01

General UCL Statistics for Full Data Sets

User Selected Options

From File C:\Documents and Settings\My Documents\Clients\East White Lake\Sediment - Mercury.wst

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

General Statistics

Number of Distinct Observations 31

Number of Valid Observations 35

Raw Statistics

Minimum 0.07 Maximum 7.59 Mean 0.413 Median 0.115 SD 1.272

Skewness 5.603

Coefficient of Variation 3.083

Log-transformed Statistics Minimum of Log Data -2.659 Maximum of Log Data 2.027 Mean of log Data -1.819

SD of log Data 0.953

Relevant UCL Statistics

Normal Distribution Test Shapiro Wilk Test Statistic 0.272 Shapiro Wilk Critical Value 0.934 Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 0.776 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 0.984 95% Modified-t UCL 0.81

Gamma Distribution Test

k star (bias corrected)	0.617
Theta Star	0.669
nu star	43.18
Approximate Chi Square Value (.05)	29.12
Adjusted Level of Significance	0.0425
Adjusted Chi Square Value	28.57

Anderson-Darling Test Statistic 6.329 Anderson-Darling 5% Critical Value 0.797 Kolmogorov-Smirnov Test Statistic 0.328 Kolmogorov-Smirnov 5% Critical Value 0.156 Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL 0.612 95% Adjusted Gamma UCL 0.624

Potential UCL to Use

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.709 Shapiro Wilk Critical Value 0.934 Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 0.374 95% Chebyshev (MVUE) UCL 0.453

97.5% Chebyshev (MVUE) UCL 0.54

99% Chebyshev (MVUE) UCL 0.712

Data Distribution

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

 95% CLT UCL
 0.766

 95% Jackknife UCL
 0.766

 95% Standard Bootstrap UCL
 0.766

 95% Bootstrap UCL
 2.498

 95% Hall's Bootstrap UCL
 2.028

 95% Percentile Bootstrap UCL
 0.834

 95% BCA Bootstrap UCL
 1.115

 95% Chebyshev(Mean, Sd) UCL
 1.355

 97.5% Chebyshev(Mean, Sd) UCL
 1.755

 99% Chebyshev(Mean, Sd) UCL
 2.554

Use 95% Chebyshev (Mean, Sd) UCL 1.35

95% UCL Output File -- Mercury in Sediment Excluding SD-06 (mg/kg-DW) Screening-Level Ecological Risk Assessment East White Lake Oil and Gas Field Vermilion Parish, Louisiana

General UCL Statistics for Full Data Sets

User Selected Options

From File C:\Documents and Settings\My Documents\Clients\East White Lake\Sediment - Mercury Rev2.wst

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

General Statistics

Number of Valid Observations 35

Number of Distinct Observations 31

Raw Statistics

Minimum 0.07 Maximum 1.245 Mean 0.221 Median 0.115 SD 0.267 Coefficient of Variation 1.21 Skewness 2.735

Log-transformed Statistics Minimum of Log Data -2.659

Maximum of Log Data 0.219 Mean of log Data -1.88 SD of log Data 0.744

Relevant UCL Statistics

Normal Distribution Test Shapiro Wilk Test Statistic 0.563 Shapiro Wilk Critical Value 0.934 Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 0.297 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 0.317 95% Modified-t UCL 0.301

Gamma Distribution Test

k star (bias corrected)	1.388
Theta Star	0.159
nu star	97.15
Approximate Chi Square Value (.05)	75.41
Adjusted Level of Significance	0.0425
Adjusted Chi Square Value	74.51

Anderson-Darling Test Statistic 4.12 Anderson-Darling 5% Critical Value 0.767

Kolmogorov-Smirnov Test Statistic 0.297

Kolmogorov-Smirnov 5% Critical Value 0.151

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL 0.284 95% Adjusted Gamma UCL 0.288

Potential UCL to Use

Use 95% Chebyshev (Mean, Sd) UCL 0.418

Shapiro Wilk Test Statistic 0.784 Shapiro Wilk Critical Value 0.934 Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

Lognormal Distribution Test

95% H-UCL 0.264

95% Chebyshev (MVUE) UCL 0.319

97.5% Chebyshev (MVUE) UCL 0.37

99% Chebyshev (MVUE) UCL 0.472

Data Distribution

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

95% CLT UCL 0.295 95% Jackknife UCL 0.297 95% Standard Bootstrap UCL 0.294

- 95% Bootstrap-t UCL 0.355
- 95% Hall's Bootstrap UCL 0.305
- 95% Percentile Bootstrap UCL 0.301
- 95% BCA Bootstrap UCL 0.323
- 95% Chebyshev(Mean, Sd) UCL 0.418
- 97.5% Chebyshev(Mean, Sd) UCL 0.503
- 99% Chebyshev(Mean, Sd) UCL 0.67

October 2010

General UCL Statistics for Data Sets with Non-Detects

User Selected Options

From File C:\Documents and Settings\My Documents\Clients\East White Lake\Sediment - Selenium.wst

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

	General Sta	tistics	
Number of Valid Data	35	Number of Detected Data	21
Number of Distinct Detected Data	21	Number of Non-Detect Data	14
		Percent Non-Detects	40.00%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.818	Minimum Detected	-0.201
Maximum Detected	2.11	Maximum Detected	0.747
Mean of Detected	1.274	Mean of Detected	0.211
SD of Detected	0.325	SD of Detected	0.253
Minimum Non-Detect	0.42	Minimum Non-Detect	-0.868
Maximum Non-Detect	1.74	Maximum Non-Detect	0.554
Note: Data have multiple DLs - Use of KM Method is recommend	ded	Number treated as Non-Detect	34
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	1
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	97.14%
	UCL Statis	tics	
Normal Distribution Test with Detected Values Onl	ly	Lognormal Distribution Test with Detected Values Or	nly
Shapiro Wilk Test Statistic	0.94	Shapiro Wilk Test Statistic	0.961
5% Shapiro Wiłk Critical Value	0.908	5% Shapiro Wilk Critical Value	0.908
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	0.958	Mean	-0.198
SD	0.482	SD	0.61
95% DL/2 (1) UCL	1.096	95% H-Stat (DL/2) UCL	1.241
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE method failed to converge properly		Mean in Log Scale	0.0333
		SD in Log Scale	0.308
		Mean in Original Scale	1.084
		SD in Original Scale	0.351
·		95% Percentile Bootstrap UCL	1.178
		95% BCA Bootstrap UCL	1.189
Gamma Distribution Test with Detected Values On	iy -	Data Distribution Test with Detected Values Only	
k star (bias corrected)	14.25	Data appear Normal at 5% Significance Level	
Theta Star	0.0894		
nu star	598.4	•	

Nonparametric Statistics	
Kaplan-Meier (KM) Method	
Mean	1.118

k star (blas corrected)	14.20
Theta Star	0.0894
nu star	598.4
A-D Test Statistic	0.352
5% A-D Critical Value	0.743
K-S Test Statistic	0.743

5% K-S Critical Value	0.189	SD	0.326
Data appear Gamma Distributed at 5% Significance Le	evel	SE of Mean	0.0583
		95% KM (t) UCL	1.217
Assuming Gamma Distribution		95% KM (z) UCL	1.214
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	1.214
Minimum	0.818	95% KM (bootstrap t) UCL	1.223
Maximum	2.11	95% KM (BCA) UCL	1.235
Mean	1.228	95% KM (Percentile Bootstrap) UCL	1.221
Median	1.234	95% KM (Chebyshev) UCL	1.373
SD	0.289	97.5% KM (Chebyshev) UCL	1.483
k star	18.03	99% KM (Chebyshev) UCL	1.699
Theta star	0.0681	· · · · ·	
Nu star	1262	Potential UCLs to Use	
AppChi2	1180	95% KM (I) UCL	1.217
95% Gamma Approximate UCL	1.312	95% KM (Percentile Bootstrap) UCL	1.221
95% Adjusted Gamma UCL	1.317		

Note: DL/2 is not a recommended method.

General UCL Statistics for Full Data Sets

User Selected Options

From File C:\Documents and Settings\My Documents\Clients\East White Lake\Sediment - Strontium.wst

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

General Statistics

Number of Distinct Observations 30

Number of Valid Observations 30

Raw Statistics

Minimum 44.6 Maximum 459 Mean 107.9 Median 67.25 SD 98.49 Coefficient of Variation 0.913

Skewness 2.321

Log-transformed Statistics

Minimum of Log Data 3.798

Maximum of Log Data 6.129

Mean of log Data 4.43

SD of log Data 0.644

Relevant UCL Statistics

Lognormal Distribution Test Shapiro Wilk Test Statistic 0.829

Shapiro Wilk Critical Value 0.927 Data not Lognormal at 5% Significance Level

ier zegnernizi ar e is eignnezhee zen

Assuming Lognormal Distribution

- 95% H-UCL 132
- 95% Chebyshev (MVUE) UCL 158.6
- 97.5% Chebyshev (MVUE) UCL 182.9
- 99% Chebyshev (MVUE) UCL 230.6

Data Distribution

Data do not follow a Discemable Distribution (0.05)

Nonparametric Statistics

- 95% CLT UCL 137.5
- 95% Jackknife UCL 138.4
- 95% Standard Bootstrap UCL 137.4
 - 95% Bootstrap-t UCL 158
- 95% Hall's Bootstrap UCL 148.7
- 95% Percentile Bootstrap UCL 138.4
- 95% BCA Bootstrap UCL 147.7
- 95% Chebyshev(Mean, Sd) UCL 186.3
- 97.5% Chebyshev(Mean, Sd) UCL 220.2
- 99% Chebyshev(Mean, Sd) UCL 286.8

Use 95% Chebyshev (Mean, Sd) UCL 186.3

Normal Distribution Test Shapiro Wilk Test Statistic 0.656 Shapiro Wilk Critical Value 0.927

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 138.4 95% UCLs (Adjusted for Skewness)

95% Adjusted-CLT UCL 145.6

95% Modified-t UCL 139.7

Gamma Distribution Test

- k star (bias corrected) 1.955 Theta Star 55.19
 - nu star 117.3
- Approximate Chi Square Value (.05) 93.28
 - Adjusted Level of Significance 0.041
 - Adjusted Chi Square Value 92.05

Anderson-Darling Test Statistic 2.663 Anderson-Darling 5% Critical Value 0.758 Kolmogorov-Smirnov Test Statistic 0.269

- Kolmogorov-Smirnov 5% Critical Value 0.162
- Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL 135.6 95% Adjusted Gamma UCL 137.5

Potential UCL to Use

95% UCL Output File -- Total Organic Carbon in Sediment (%) Screening-Level Ecological Risk Assessment East White Lake Oil and Gas Field Vermilion Parish, Louisiana

General UCL Statistics for Full Data Sets

User Selected Options

From File C:\Documents and Settings\My Documents\Clients\East White Lake\Sediment - TOC.wst

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

General Statistics

Number of Distinct Observations 10

Raw Statistics

Number of Valid Observations 10

Minimum 3.61 Maximum 28.4 Mean 7.713 Median 5.355 SD 7.43 Coefficient of Variation 0.963 Skewness 2.932 Log-transformed Statistics Minimum of Log Data 1.284 Maximum of Log Data 3.346 Mean of log Data 1.825 SD of log Data 0.587

Relevant UCL Statistics

Normal Distribution Test Shapiro Wilk Test Statistic 0.522 Shapiro Wilk Critical Value 0.842 Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-LUCL 12.02 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 13.9 95% Modified-LUCL 12.38

Gamma Distribution Test

k star (bias corrected)	1.784
Theta Star	4.323
nu star	35.68
Approximate Chi Square Value (.05)	23.01
Adjusted Level of Significance	0.0267
Adjusted Chi Square Value	21.26

Anderson-Darling Test Statistic 1.693 Anderson-Darling 5% Critical Value 0.734

Kolmogorov-Smirnov Test Statistic 0.411

Kolmogorov-Smirnov 5% Critical Value 0.269

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL 11.96 95% Adjusted Gamma UCL 12.94

Potential UCL to Use

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.702 Shapiro Wilk Critical Value 0.842 Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 11.68

95% Chebyshev (MVUE) UCL 13.22

97.5% Chebyshev (MVUE) UCL 15.82

99% Chebyshev (MVUE) UCL 20.91

Data Distribution

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

95% CLT UCL 11.58

95% Jackknife UCL 12.02

- 95% Standard Bootstrap UCL 11.31
 - 95% Bootstrap-t UCL 41.98
 - 95% Hall's Bootstrap UCL 42.14
- 95% Percentile Bootstrap UCL 12.14
- 95% BCA Bootstrap UCL 14.67
- 95% Chebyshev(Mean, Sd) UCL 17.95
- 97.5% Chebyshev(Mean, Sd) UCL 22.38
- 99% Chebyshev(Mean, Sd) UCL 31.09

Use 95% Chebyshev (Mean, Sd) UCL 17.95

95% UCL Output File -- Moisture Content in Sediment (%) Screening-Level Ecological Risk Assessment East White Lake Oil and Gas Field Vermilion Parish, Louisiana

General UCL Statistics for Full Data Sets

User Selected Options

From File C:\Documents and Settings\My Documents\Clients\East White Lake\Sediment - Moisture.wst

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

General Statistics

Relevant UCL Statistics

Number of Distinct Observations 55

Raw Statistics

Number of Valid Observations 57

Minimum 29.2 Maximum 86 Mean 67.83 Median 68.9 SD 10.57

Skewness -1.131

Coefficient of Variation 0.156

Log-transformed Statistics Minimum of Log Data 3.374 Maximum of Log Data 4.454 Mean of tog Data 4.203 SD of log Data 0.182

Lognormal Distribution Test

Lilliefors Test Statistic 0.183

Lilliefors Critical Value 0.117

Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

- 95% H-UCL 70.85
- 95% Chebyshev (MVUE) UCL 75.13
- 97.5% Chebyshev (MVUE) UCL 78.23
- 99% Chebyshev (MVUE) UCL 84.33

Data Distribution

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

- 95% CLT UCL 70.14
- 95% Jackknife UCL 70.18
- 95% Standard Bootstrap UCL 70.14
 - 95% Bootstrap-t UCL 70.05
 - 95% Hall's Bootstrap UCL 69.98
- 95% Percentile Bootstrap UCL 70.07
- 95% BCA Bootstrap UCL 69.94
- 95% Chebyshev(Mean, Sd) UCL 73.94
- 97.5% Chebyshev(Mean, Sd) UCL 76.58
- 99% Chebyshev(Mean, Sd) UCL 81.77
 - Use 95% Student's-I UCL 70.18 or 95% Modified-t UCL 70.14

Lilliefors Test Statistic 0.135

Lilliefors Critical Value 0.117

Data not Normal at 5% Significance Level

Normal Distribution Test

Assuming Normal Distribution

- 95% Student's-t UCL 70.18 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 69.91 95% Modified-t UCL 70.14
 - Gamma Distribution Test
 - k star (bias corrected) 32.93 Theta Star 2.06 nu star 3754 Approximate Chi Square Value (.05) 3612 Adjusted Level of Significance 0.0458 Adjusted Chi Square Value 3609
 - Anderson-Darling Test Statistic 1.639
 - Anderson-Darling 5% Critical Value 0.748
 - Kolmogorov-Smirnov Test Statistic 0.165
- Kolmogorov-Smirnov 5% Critical Value 0.118
- Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL 70.49 95% Adjusted Gamma UCL 70.56

Potential UCL to Use

							Met	tals (Total Recov	erable)							
Sample ID	Arsenic-T	D_Arsenic-T	Barium-T	D_Barium-T	Calcium-T	D_Calcium-T	Chromium-T	D_Chromium-T	Iron-T	D_Iron-T	Lead-T	D_Lead-T	Magnesium-T	D_Magnesium-T	Manganese-T	D_Manganese-T
SW-01	0.00079	0	0.282	1	38.4	1	0.0026	1	1.26	1	0.0015	0	88.2	1	0.23	1
SW-02	0.00079	0	0.288	1	44.1	1	0.0023	1	0.8	1	0.0015	0	100	1	0.27	1
SW-03	0.00079	0	0.281	1	43.3	1	0.0026	1	1.08	1	0.0015	0	98.3	1	0.3	1
SW-04	0.00079	0	0.258	1	44.6	1	0.0022	1	0.49	1	0.0015	0	103	1	0.16	1
SW-05	0.0019	1	0.278	1	43.1	1	0.0025	1	0.85	1	0.0015	0	99.1	1	0.31	1
SW-06	0.00079	0	0.368	1	54.3	1	0.0025	1	0.94	1	0.0015	0	127	1	0.46	1
SW-07	0.00079	0	0.432	1	56.1	1	0.0025	1	0.94	1	0.0015	0	130	1	0.61	1
SW-09	0.00079	0	0.397	1	59	1	0.0027	1	1.115	1	0.0015	0	140.5	1	0.505	1
SW-10	0.00079	0	0.363	1	50.6	1	0.0022	1	1.09	1	0.0015	0	120	1	0.48	1
SW-20	0.013	1	1.23	1	73.9	1	0.0075	1	11.3	1	0.021	1	149	1	0.83	1

Results from 2010 split samples are incorporated in the shaded cells.

				Ν	Ietals (Total I	Recoverable)				
Sample ID	Potassium-T	D_Potassium-T	Sodium-T	D_Sodium-T	Selenium-T	D_Selenium-T	Strontium-T	D_Strontium-T	Zinc-T	D_Zinc-T
SW-01	29.2	1	631	1	0.0193	1	0.597	1	0.0116	1
SW-02	33.3	1	727	1	0.0188	1	0.674	1	0.0087	1
SW-03	32.7	1	771	1	0.0213	1	0.629	1	0.0095	1
SW-04	34.4	1	808	1	0.0183	1	0.667	1	0.008	1
SW-05	33.1	1	769	1	0.0203	1	0.661	1	0.008	1
SW-06	38.6	1	935	1	0.0258	1	0.815	1	0.01	1
SW-07	40.7	1	981	1	0.0178	1	0.864	1	0.007	0
SW-09	42.75	1	1007.5	1	0.0198	1	0.915	1	0.007	0
SW-10	37.2	1	917	1	0.0213	1	0.791	1	0.012	1
SW-20	59.6	1	1230	1	0.0037	0	1.74	1	0.067	1

						Ν	Ietals (D	issolved)						
Sample ID	Arsenic-D	D_Arsenic-D	Barium-D	D_Barium-D	Chromium-D	D_Chromium-D	Lead-D	D_Lead-D	Mercury-D	D_Mercury-D	Strontium-D	D_Strontium-D	Zinc-D	D_Zinc-D
SW-01	0.00079	0	0.28	1	0.0017	1	0.0015	0	0.000055	0	0.69	1	0.004	0
SW-02	0.00079	0	0.28	1	0.0016	1	0.0015	0	0.00009	1	0.74	1	0.004	0
SW-03	0.00079	0	0.29	1	0.0018	1	0.0015	0	0.00009	1	0.71	1	0.004	0
SW-04	0.00079	0	0.26	1	0.0017	1	0.0015	0	0.00006	1	0.73	1	0.004	0
SW-05	0.00079	0	0.26	1	0.0018	1	0.0015	0	0.00007	1	0.69	1	0.004	0
SW-06	0.00079	0	0.37	1	0.0021	1	0.0015	0	0.0001	1	0.91	1	0.004	0
SW-07	0.00079	0	0.42	1	0.002	1	0.0015	0	0.00009	1	0.93	1	0.004	0
SW-09	0.00079	0	0.375	1	0.0023	1	0.0015	0	0.00008	1	1.015	1	0.00675	1
SW-10	0.00079	0	0.35	1	0.0022	1	0.0015	0	0.00012	1	0.88	1	0.004	0
SW-20	0.0075	1	1.1	1	0.0051	1	0.0088	1	0.000055	0	1.66	1	0.023	1

		Total PAHs			Other Parameters								
Sample ID	Total LPAHs	Total HPAHs	Total PAHs	Calcium	D_Calcium	Hardness	D_Hardness	Magnesium	D_Magnesium	Chloride	D_Chloride	TDS	D_TDS
SW-01	0.000153	0.000230	0.000383	38.4	1	437	1	88.2	1	1370	1	2645	1
SW-02	0.000155	0.000234	0.000389	44.1	1	505	1	100	1	1445	1	2820	1
SW-03	0.000155	0.000234	0.000389	43.3	1	463	1	98.3	1	1370	1	2725	1
SW-04	0.000155	0.000232	0.000387	44.6	1	500	1	103	1	1475	1	3005	1
SW-05	0.000151	0.000228	0.000379	43.1	1	485	1	99.1	1	1460	1	2770	1
SW-06	0.000154	0.000231	0.000385	54.3	1	597	1	127	1	1765	1	3715	1
SW-07	0.000153	0.000230	0.000383	56.1	1	623	1	130	1	1885	1	3425	1
SW-09	0.000153	0.000230	0.000383	59	1	670	1	140.5	1	2133	1	3818	1
SW-10	0.000153	0.000230	0.000383	50.6	1	633	1	120	1	1905	1	3370	1
SW-20	0.000151	0.000228	0.000379	73.9	1	677	1	149	1	2460	1	4870	1

General UCL Statistics for Data Sets with Non-Detects

User Selected Options		
From File	C:\Documents and Settings\My Documents\Clients\East White Lake\East White Lake Stats Combined SW Data Rev2.w	st
Full Precision	OFF	
Confidence Coefficient	95%	
Number of Bootstrap Operations		2000

General Statistics		
Number of Valid Data	10 Number of Detected Data	2
Number of Distinct Detected Data	2 Number of Non-Detect Data	8
	Percent Non-Detects	80.00%
Raw Statistics	Log-transformed Statistics	
Minimum Detected	0.0019 Minimum Detected	-6.266
Maximum Detected	0.013 Maximum Detected	-4.343
Mean of Detected	0.00745 Mean of Detected	-5.304
SD of Detected	0.00785 SD of Detected	1.36
Minimum Non-Detect	0.00079 Minimum Non-Detect	-7.143
Maximum Non-Detect	0.00079 Maximum Non-Detect	-7,143

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates. The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods. It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

UCL Statistics Normal Distribution Test with Detected Values Only Lognormal Distribution Test with Detected Values Only Shapiro Wilk Test Statistic 1 Shapiro Wilk Test Statistic 1 5% Shapiro Wilk Critical Value N/A 5% Shapiro Wilk Critical Value N/A Data not Normal at 5% Significance Level Data not Lognormal at 5% Significance Level Assuming Normal Distribution Assuming Lognormal Distribution DL/2 Substitution Method **DL/2 Substitution Method** 0.00181 Mean -7.33 Mean 0.00396 SD SD 1.16 0.0041 95% H-Stat (DL/2) UCL 95% DL/2 (t) UCL 0.00404 Maximum Likelihood Estimate(MLE) Method N/A Log ROS Method MLE method failed to converge properly N/A Mean in Log Scale SD in Log Scale N/A Mean in Original Scale N/A SD in Original Scale N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A Gamma Distribution Test with Detected Values Only Data Distribution Test with Detected Values Only k star (bias corrected) N/A Data do not follow a Discernable Distribution (0.05) Theta Star N/A N/A nu star 0.358 Nonparametric Statistics A-D Test Statistic

5% A-D Critical Value	N/A	Kaplan-Meier (KM) Method	
K-S Test Statistic	N/A	Mean	0.00301
5% K-S Critical Value	N/A	SD	0.00333
Data not Gamma Distributed at 5% Significance Level		SE of Mean	0.00149
		95% KM (t) UCL	0.00574
Assuming Gamma Distribution		95% KM (z) UCL	0.00546
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	N/A
Minimum	N/A	95% KM (bootstrap t) UCL	N/A
Maximum	N/A	95% KM (BCA) UCL	N/A
Mean	N/A	95% KM (Percentile Bootstrap) UCL	N/A
Median	N/A	95% KM (Chebyshev) UCL	0.0095
SD	N/A	97.5% KM (Chebyshev) UCL	0.0123
k star	N/A	99% KM (Chebyshev) UCL	0.0178
Theta star	N/A		
Nu star	N/A	Potential UCLs to Use	
AppChi2	N/A	95% KM (BCA) UCL	N/A
95% Gamma Approximate UCL	N/A	· ·	
95% Adjusted Gamma UCL	N/A		•
Note: DL /D is not a recommanded method			

Note: DL/2 is not

General UCL Statistics for Data Sets with Non-Detects

User Selected Options		
From File	C:\Documents and Settings\My Documents\Clients\East White Lake\95UCL_Input_SW_MPA_ICON May2010_MDL_ALL_(С
Full Precision	OFF	
Confidence Coefficient	95%	
Number of Bootstrap Operations	20	000

General Statistics	
Number of Valid Observations 10	Number of Distinct Observations 10
Raw Statistics	Log-transformed Statistics
Minimum 0.258	Minimum of Log Data -1.355
Maximum 1.23	Maximum of Log Data 0.207
Mean 0.418	Mean of log Data -0.998
Median 0.326	SD of log Data 0.459
SD 0.292	
Coefficient of Variation 0.698	
Skewness . 2.924	

Relevant UCL Statistics
Normal Distribution Test
Shapiro Wilk Test Statistic
Shapiro Wilk Critical Value
Data not Normal at 5% Significance Level

ļ	Assuming Normal Distribution
	95% Student's-t UCL
	95% UCLs (Adjusted for Skewness)
	95% Adjusted-CLT UCL
	95% Modified-t UCL

Gamma Distribution Test
k star (bias corrected)
Theta Star
nu star
Approximate Chi Square Value (.05)
Adjusted Level of Significance
Adjusted Chi Square Value

Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL 95% Adjusted Gamma UCL

Potential UCL to Use

	Lognormal Distribution Test	
0.547	Shapiro Wilk Test Statistic	0.706
0.842	Shapiro Wilk Critical Value	0.842
	Data not Lognormal at 5% Significance Level	

	Assuming Lognormal Distribution	
0.587	95% H-UCL	
	95% Chebyshev (MVUE) UCL	
0.66	97.5% Chebyshev (MVUE) UCL	
0.601	99% Chebyshev (MVUE) UCL	

Data Distribution

2.969	Data do not follow a Discernable Distribution (0.05)	`
0.141		
59.38		
42.66	Nonparametric Statistics	
0.0267	95% CLT UCL	0.569
40.21	95% Jackknife UCL	0.587
	95% Standard Bootstrap UCL	0.564
1.46	95% Bootstrap-t UCL	1.018
0.729	95% Hall's Bootstrap UCL	1.162
0.308	95% Percentile Bootstrap UCL	0.593
0.268	95% BCA Bootstrap UCL	0.685
	95% Chebyshev(Mean, Sd) UCL	0.82
	97.5% Chebyshev(Mean, Sd) UCL	0.993
	99% Chebyshev(Mean, Sd) UCL	1.335
0.581		
0.617		
	Use 95% Student's-t UCL	0.587
	or 95% Modified-t UCL	0.601

0.57 0.665 0.777

0.998

General UCL Statistics for Data Sets with Non-Detects

User Selected Options From File Full Precision Confidence Coefficient

General Statistics

C:\Documents and Settings\My Documents\Ctients\East White Lake\East White Lake Stats Combined SW Data Rev2.wst OFF 95%

2000

Number of Valid Observations	10 Number of Distinct Observations		6
Raw Statistics		Log-transformed Statistics	
Minimum	0.0022	Minimum of Log Data	-6.119
Maximum	0.0075	Maximum of Log Data	-4.893
Mean	0.00296	Mean of log Data	-5.9
Median	0.0025	SD of log Data	0.361
SD	0.0016		
Coefficient of Variation	0.542		
Skewness	3.095		

Relevant UCL Statistics
Normal Distribution Test
Shapiro Wilk Test Statistic
Shapiro Wilk Critical Value
Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL

Gamma Distribution Test

k star (bias corrected) Theta Star nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value

Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL 95% Adjusted Gamma UCL

Potential UCL to Use

	Lognormal Distribution Test	
0.465	Shapiro Wilk Test Statistic	0.549
0.842	Shapiro Wilk Critical Value	0.842
	Data not Lognormal at 5% Significance Level	
	Assuming Lognormal Distribution	

0.00389	95% H-UCL	0.00	374
	95% Chebyshev (MVUE) UCL	0.00	436
0.00432	97.5% Chebyshev (MVUE) UCL	0.00	499
0.00397	99% Chebyshev (MVUE) UCL	0.00	623

Data Distribution

4.702	Data do not follow a Discernable Distribution (0.05)	
0.00062951		,
94.04		
72.68	Nonparametric Statistics	
0.0267	95% CLT UCL	0.00379
69.42	95% Jackknife UCL	0.00389
1	95% Standard Bootstrap UCL	0.00372
2.226	95% Bootstrap-t UCL	0.00874
0.728	95% Hall's Bootstrap UCL	0.00895
0.441	95% Percentile Bootstrap UCL	0.00396
0.267	95% BCA Bootstrap UCL	0.00447
	95% Chebyshev(Mean, Sd) UCL	0.00517
	97.5% Chebyshev(Mean, Sd) UCL	0.00613
	99% Chebyshev(Mean, Sd) UCL	0.00801
0.00383		
0.00401		
	Lise 95% Student's-t UCI	0.00389

or 95% Modified-t UCL

0.00397

General UCL Statistics for Data Sets with Non-Detects

User Selected Options From File Full Precision Confidence Coefficient

C:\Documents and Settings\My Documents\Clients\East White Lake\East White Lake Stats Combined SW Data Rev2.wst OFF 95%

Number of Bootstrap Operations

2000

General Statistics Number of Valid Data Number of Distinct Detected Data

10 Number of Detected Data 1 Number of Non-Detect Data Percent Non-Detects

1

9

90.00%

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Lead-T was not processed!

Percent Non-Detects

General UCL Statistics for Data Sets with Non-Detects

User Selected Options	
From File	C:\Documents and Settings\brenda_basile\My Documents\Clients\East White Lake\East White Lake Statistics Comb
Full Precision	OFF
Confidence Coefficient	95%
Number of Bootstrap Operations	2000

General Statistics	
Number of Valid Data	10 Number of Detected Data
Number of Distinct Detected Data	8 Number of Non-Detect Data

Raw Statistics	Log-transformed Statistics
Minimum Detected 0.0178	Minimum Detected -4.029
Maximum Detected 0.0258	Maximum Detected -3.657
Mean of Detected 0.0203	Mean of Detected -3.903
SD of Detected 0.0024	SD of Detected 0.111
Minimum Non-Detect 0.0037	Minimum Non-Detect -5.599
Maximum Non-Detect 0.0037	Maximum Non-Detect -5.599

Warning: There are only 9 Detected Values in this data

Theta Star

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough tp draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

	Normal Distribution Test with Detected Values Only	Lognormal Distribution Test with Detected Values Only		
Shapiro Wilk Test Statistic		0.855	Shapiro Wilk Test Statistic	0.893
	5% Shapiro Wilk Critical Value	0.829	5% Shapiro Wilk Critical Value	0.829
	Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
	Assuming Normal Distribution		Assuming Lognormal Distribution	
	DL/2 Substitution Method		DL/2 Substitution Method	
	Mean	0.0185	Mean	-4.142
	SD	0.00626	SD ·	0.763
	95% DL/2 (t) UCL	0.0221	95% H-Stat (DL/2) UCL	0.0274
	Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
	Mean	0.0184	Mean in Log Scale	-3.929
	SD	0.00599	SD in Log Scale	0.134
	95% MLE (t) UCL	0.0219	Mean in Original Scale	0.0198
	95% MLE (Tiku) UCL	0.0221	SD in Original Scale	0.00272
			95% Percentile Bootstrap UCL	0.0213
			95% BCA Bootstrap UCL	0.0214
	Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Values Only	
k star (bias corrected) 58.51 Data appear Normal at 5% Significance Level				

58.51 Data appear Normal at 5% Significance Level

0.0003469

9 1

10.00%

nu star	1053		
A-D Test Statistic	0.444	Nonparametric Statistics	
5% A-D Critical Value	0.72	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.72	Mean	0.0201
5% K-S Critical Value	0.279	SD	0.00227
Data appear Gamma Distributed at 5% Significance Level		SE of Mean	0.0007621
		95% KM (t) UCL	0.0214
Assuming Gamma Distribution		95% KM (z) UCL	0.0213
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	0.0214
Minimum	0.0164	95% KM (bootstrap t) UCL	0.0221
Maximum	0.0258	95% KM (BCA) UCL	0.0214
Mean	0.0199	95% KM (Percentile Bootstrap) UCL	0.0215
Median	0.0196	95% KM (Chebyshev) UCL	0.0234
SD	0.00258	97.5% KM (Chebyshev) UCL	0.0248
k star	49.33	99% KM (Chebyshev) UCL	0.0276
Theta star	0.0004035		
Nu star	986.7	Potential UCLs to Use	
AppChi2	914.8	95% KM (t) UCL	0.0214
95% Gamma Approximate UCL	0.0215	95% KM (Percentite Bootstrap) UCL	0.0215
95% Adjusted Gamma UCL	0.0218		
Note: DL/2 is not a recommended method.			

General UCL Statistics for Data Sets with Non-Detects

C:\Documents and Settings\My Documents\Clients\East White Lake\95UCL_Input_SW_MPA_ICON May2010_MDL_AL	L_0
OFF	
95%	
	2000
	C:\Documents and Settings\My Documents\Clients\East White Lake\95UCL_Input_SW_MPA_ICON May2010_MDL_AL OFF 95%

General Statistics Number of Valid Observations 10 Number of Distinct Observations **Raw Statistics** Log-transformed Statistics Minimum 0.597 Minimum of Log Data -0.516 0.554 Maximum 1.74 Maximum of Log Data -0.231 Mean 0.835 Mean of log Data Median 0.311 0.733 SD of log Data 0.335 Coefficient of Variation 0.401 2.594 Skewness Relevant UCL Statistics I opported Distribution Test Normal Distribution Test

	cognormal Distribution rest
0.658	Shapiro Wilk Test Statistic
0.842	Shapiro Wilk Critical Value
	Data not Lognormal at 5% Significance Level
- · ·	Assuming Lognormal Distribution
1.03	95% H-UCL

	95% Chebyshev (MVUE) UCL	1.186
1.103	97.5% Chebyshev (MVUE) UCL	1.341
1.044	99% Chebyshev (MVUE) UCL	1.645

Data Distribution

k star (bias corrected) 6.998	Data Follow Appr. Gamma Distribution at 5% Significance Level
Theta Star 0.119) · · ·
nu star 140	
Approximate Chi Square Value (.05) 113.6	Nonparametric Statistics
Adjusted Level of Significance 0.0267	' 95% CLT UCL 1.01
Adjusted Chi Square Value 109.5	95% Jackknife UCL 1.03
	95% Standard Bootstrap UCL 0.997
Anderson-Darling Test Statistic 1.011	95% Bootstrap-t UCL 1.315
Anderson-Darling 5% Critical Value 0.725	95% Hall's Bootstrap UCL 1.679
Kolmogorov-Smirnov Test Statistic 0.246	95% Percentile Bootstrap UCL 1.026
Kolmogorov-Smirnov 5% Critical Value 0.267	95% BCA Bootstrap UCL 1.073
Data follow Appr. Gamma Distribution at 5% Significance Level	95% Chebyshev(Mean, Sd) UCL 1.298
	97.5% Chebyshev(Mean, Sd) UCL 1.498
Assuming Gamma Distribution	99% Chebyshev(Mean, Sd) UCL 1.85
95% Approximate Gamma UCL 1.029	
95% Adjusted Gamma UCL 1.068	

Potential UCL to Use

SÐ

Shapiro Wilk Test Statistic

Shapiro Wilk Critical Value

Assuming Normal Distribution 95% Student's-t UCL

95% Adjusted-CLT UCL

Gamma Distribution Test

95% Modified-t UCL

Data not Normal at 5% Significance Level

95% UCLs (Adjusted for Skewness)

Use 95% Approximate Gamma UCL

1.029

10

0.783

0.842

1.023

General UCL Statistics for Data Sets with Non-Detects

User Selected Options		
From File	C:\Documents and Settings\brenda_basile\My Documents\Clients\East White Lake\East White Lake Statistics C	comb
Full Precision	OFF	
Confidence Coefficient	95%	
Number of Bootstrap Operations		2000

General Statistics		
Number of Valid Data	10 Number of Detected Data	8
Number of Distinct Detected Data	7 Number of Non-Detect Data	. 2
	Percent Non-Detects	20.00%
Raw Statistics	Log-transformed Statistics	
Minimum Detected	0.008 Minimum Detected	-4.828
Maximum Detected	0.067 Maximum Detected	-2.703
Mean of Detected	0.0169 Mean of Detected	-4.406
SD of Detected	0.0203 SD of Detected	0.705
Minimum Non-Detect	0.007 Minimum Non-Detect	-4.962
Maximum Non-Detect	0.007 Maximum Non-Detect	-4.962

Warning: There are only 8 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough tp draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

UCL Statistics

Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values Only	
Shapiro Wilk Test Statistic	0.487	Shapiro Wilk Test Statistic	0.619
5% Shapiro Wilk Critical Value	0.818	5% Shapiro Wilk Critical Value	0.818
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	0.0142	Mean	-4.656
SD	0.0188	SD	0.815
95% DL/2 (I) UCL	0.0251	95% H-Stat (DL/2) UCL	0.0232
Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
Mean	0.012	Mean in Log Scale	-4.69
SD	0.0202	SD in Log Scale	0.867
95% MLE (t) UCL	0.0237	Mean in Original Scate	0.0141
95% MLE (Tiku) UCL	0.0234	SD in Original Scale	0.0188
		95% Percentile Bootstrap UCL	0.0254
		95% BCA Bootstrap UCL	0.0312

Gamma Distribution Test with Detected Values Only	Data Distribution Test with Detected Values Only
k star (bias corrected)	1.145 Data do not follow a Discernable Distribution (0.05)
Theta Star	0.0147
nu star	18.32

A-D Test Statistic	1.715 Nonparametric Statistics	
5% A-D Critical Value	0.727 Kaplan-Meier (KM) Method	:
K-S Test Statistic	0.727 Mean	0.0151
5% K-S Critical Value	0.298 SD	0.0174
Data not Gamma Distributed at 5% Significance Level	SE of Mean	0.00587
	95% KM (t) UCL	0.0258
Assuming Gamma Distribution	95% KM (z) UCL	0.0247
Gamma ROS Statistics using Extrapolated Data	95% KM (jackknife) UCL	0.0257
Minimum	1E-09 95% KM (bootstrap t) UCL	0.108
Maximum	0.067 95% KM (BCA) UCL	0.027
Mean	0.0137 95% KM (Percentile Bootstrap) UCL	0.0265
Median	0.0091 95% KM (Chebyshev) UCL	0.0407
SD	0.0191 97.5% KM (Chebyshev) UCL	0.0517
k star	0.314 99% KM (Chebyshev) UCL	0.0735
Theta star	0.0438	
Nu star	6.276 Potential UCLs to Use	
AppChi2	1.782 95% KM (BCA) UCL	0.027
95% Gamma Approximate UCL	0.0484	
95% Adjusted Gamma UCL	0.0617	
Note: DL/2 is not a recommended method.		

General UCL Statistics for Data Sets with Non-Detects

User Selected Options					
From File	C:\Documents and Settings\My Documents\Clients\East White Lake\95UCL_Input_S\	V_MPA_ICO	N May201	10_MDL_A	LL_O
Full Precision	OFF				
Confidence Coefficient	95%				
Number of Bootstrap Operations				×	2000

General Statistics			
Number of Valid Observations	10	Number of Distinct Observations	9
Raw Statistics		Log-transformed Statistics	
Minimum	1370	Minimum of Log Data	7.223
Maximum	2460	Maximum of Log Data	7.808
Mean	1727	Mean of log Data	7.435
Median	1620	SD of log Data	0.204
SD	369.6		
Coefficient of Variation	0.214		
Skewness	0.888		

Relevant UCL Statistics
Normal Distribution Test
Shapiro Wilk Test Statistic
Shapiro Wilk Critical Value
Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL

Gamma Distribution Test

k star (bias corrected) Theta Star nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value

Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution 95% Approximate Gamma UCL

95% Adjusted Gamma UCL

Potential UCL to Use

	Lognormal Distribution Test	
0.878	Shapiro Wilk Test Statistic	0.893
0.842	Shapiro Wilk Critical Value	0.842
	Data appear Lognormal at 5% Significance Level	
	Assuming Lognormal Distribution	
1941	95% H-UCL	1966
	95% Chebyshev (MVUE) UCL	2213
1954	97.5% Chebyshev (MVUE) UCL	2425
1947	99% Chebyshev (MVUE) UCL	2839

			•	·		
Data	Distril	oution				

18.26	Data appear Normal at 5% Significance Level	
94.57		
365.2		
321.9	Nonparametric Statistics	
0.0267	95% CLT UCL	1919
314.8	95% Jackknife UCL	1941
	95% Standard Bootstrap UCL	1913
0.529	95% Bootstrap-t UCL	1994
0.725	95% Hall's Bootstrap UCL	1977
0.263	95% Percentile Bootstrap UCL	1917
0.266	95% BCA Bootstrap UCL	1933
	95% Chebyshev(Mean, Sd) UCL	2236
	97.5% Chebyshev(Mean, Sd) UCL	2457
	99% Chebyshev(Mean, Sd) UCL	2890
1959		
2003		

Use 95% Student's-t UCL

1941

General UCL Statistics for Data Sets with Non-Detects

General Statistics

User Selected Options		
From File	C:\Documents and Settings\My Documents\Clients\East White Lake\95UCL_Input_SW_MPA_ICON May2010_MDL_ALL	0
Full Precision	OFF	
Confidence Coefficient	95%	
Number of Bootstrap Operations		2000

Number of Valid Observations	10	Number of Distinct Observations	10
Raw Statistics		Log-transformed Statistics	
Minimum	437	Minimum of Log Data	6.08
Maximum	677	Maximum of Log Data	6.518
Mean	559	Mean of log Data	6.314
Median	551	SD of log Data	0.163
SD	90.21	•	
Coefficient of Variation	0.161		
Skewness	0.05		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.897	Shapiro Wilk Test Statistic	0.9
Shapiro Wilk Critical Value	0.842	Shapiro Wilk Critical Value	0.842
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	611.3	95% H-UCL	618.9
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	684.8
95% Adjusted-CLT UCL	606.4	97.5% Chebyshev (MVUE) UCL	739.2
95% Modified-t UCL	611.4	99% Chebyshev (MVUE) UCL	846.1
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	29.68	Data appear Normal at 5% Significance Level	
Theta Star	18.83		
nu star	593.7		
Approximate Chi Square Value (.05)	538.2	Nonparametric Statistics	
Adjusted Level of Significance	0.0267	95% CLT UCL	605.9
Adjusted Chi Square Value	529	95% Jackknife UCL	611.3
		95% Standard Bootstrap UCL	603.6
Anderson-Darling Test Statistic	0.521	95% Bootstrap-t UCL	610.8
Anderson-Darling 5% Critical Value	0.724	95% Hall's Bootstrap UCL	598.3
Kolmogorov-Smirnov Test Statistic	0.225	95% Percentile Bootstrap UCL	604.4
Kolmogorov-Smirnov 5% Critical Value	0.266	95% BCA Bootstrap UCL	602.6
Data appear Gamma Distributed at 5% Significance Level		95% Chebyshev(Mean, Sd) UCL	683.3
		97.5% Chebyshev(Mean, Sd) UCL	737.1
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	842.8
95% Approximate Gamma UCL	616.7		
95% Adjusted Gamma UCL	627.4		
Potential UCL to Use		Use 95% Student's-t UCL	611.3

95% UCL Output File -- Total Dissolved Solids (TDS) in Surface Water (mg/L) Screening-Level Ecological Risk Assessment East White Lake Oil and Gas Field Vermilion Parish, Louisiana

General UCL Statistics for Data Sets with Non-Detects

User Selected Options		
From File	C:\Documents and Settings\My Documents\Clients\East White Lake\95UCL_Input_SW_MPA_ICON May2010_MDL_A	LL_O
Full Precision	OFF	
Confidence Coefficient	95%	
Number of Bootstrap Operations		2000

10 Number of Distinct Observations

General Statistics Number of Valid Observations

Raw Statistics Minimum Maximum Mean Median SD Coefficient of Variation Skewness

Relevant UCL Statistics Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level

Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL

Gamma Distribution Test k star (bias corrected) Theta Star nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value

Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL

95% Adjusted Gamma UCL

Potential UCL to Use

	Log-transformed Statistics	
2645	Minimum of Log Data	7.88
4870	Maximum of Log Data	8.491
3316	Mean of log Data	8.089
3188	SD of log Data	0.193
689.7		
0.208		
1.319		
	Lognormal Distribution Test	
0.868	Shapiro Wilk Test Statistic	0.907
0.842	Shapiro Wilk Critical Value	0.842

	Data appear Lognormal at 5% Significance Level	
	Assuming Lognormal Distribution	
3716	95% H-UCL	3747
	95% Chebyshev (MVUE) UCL	4200
3772	97.5% Chebyshev (MVUE) UCL	4583
3731	99% Chebyshev (MVUE) UCL	5336
	Data Distribution	

20.04	Data appear Normal at 5% Significance Level	
165.5		
400.7		
355.3	Nonparametric Statistics	
0.0267	95% CLT UCL	3675
347.9	95% Jackknife UCL	3716
	95% Standard Bootstrap UCL	3653
0.439	95% Bootstrap-t UCL	3900
0.725	95% Hall's Bootstrap UCL	3938
0.182	95% Percentile Bootstrap UCL	3672
0.266	95% BCA Bootstrap UCL	3766
	95% Chebyshev(Mean, Sd) UCL	4267
	97.5% Chebyshev(Mean, Sd) UCL	4678
	99% Chebyshev(Mean, Sd) UCL	5486
3740		
3820		

Use 95% Student's-t UCL

3716

10

A Site-Specific Evaluation of Mercury Toxicity in Sediment

J. C. Sferra,^{1*} P. C. Fuchsman,^{1**} R. J. Wenning,² T. R. Barber^{1**}

¹ McLaren/Hart-ChemRisk, 5900 Landerbrook Dr., Cleveland, Ohio 44124, USA

² McLaren/Hart-ChemRisk, 1135 Atlantic Ave., Alameda, California 94501, USA

Received: 17 November 1998/Accepted: 7 June 1999

Abstract. A site-specific evaluation of mercury toxicity was conducted for sediments of the Calcasieu River estuary (Louisiana, USA). Ten-day whole-sediment toxicity tests assessed survival and growth (dry weight) of the amphipods Hyalella azteca and Leptocheirus plumulosus under estuarine conditions (10 ppt salinity). A total of 32 sediment samples were tested for toxicity, including 14 undiluted site sediment samples and 6 sediment dilution series. All sediment samples were analyzed for total mercury and numerous other chemical parameters, including acid volatile sulfide (AVS) and simultaneously extracted metals (SEM). No toxicity attributable to mercury was observed, indicating that a site-specific threshold for total mercury toxicity to amphipods exceeds 4.1 mg/kg dry weight. Site-specific factors that may limit mercury bioavailability and toxicity include relatively high sulfide levels. Additionally, the chemical extractability of mercury in site sediments is low, as indicated by SEM mercury analyses for three sediment samples containing a range of total mercury concentrations.

The Calcasieu River in southwestern Louisiana, USA, is an economically important tributary to the Gulf of Mexico. Portions of the Calcasieu River estuary are highly industrialized, particularly in the vicinity of the tributary Bayou d'Inde, and the estuary has historically been impacted by industrial and municipal discharges, navigation channel maintenance, agricultural and urban storm runoff, and local oil and gas fields. Mercury is present at elevated concentrations in the sediments of Bayou d'Inde (Mueller *et al.* 1989) and has been identified as one of several chemicals of concern in the Calcasieu River estuary (Pereira *et al.* 1988; Cunningham *et al.* 1990; Redmond *et al.* 1996). This paper presents the results of site-specific sediment toxicity studies designed to determine a safe concentration for mercury exposure to benthic inverte-brates.

Correspondence to: P. C. Fuchsman (email: pfuchsma@gmgw.com)

Studies conducted by Cunningham *et al.* (1990) and reported by Redmond *et al.* (1996) identified toxicity to *Ampelisca abdita* following exposure to sediments collected from the Calcasieu River estuary, including Bayou d'Inde; these authors concluded that mercury or other measured or unmeasured chemicals could have contributed to the observed toxicity. Gaston and Young (1992) reported an inverse relationship between various heavy metals, including mercury, and the numbers of benthic organisms in the Bayou d'Inde estuary. None of these studies demonstrated a causal relationship between mercury concentrations and observed effects.

Though the toxicity of all chemicals in sediment is affected by site-specific conditions, the factors that interact to affect the toxicity of mercury are especially numerous. Important factors influencing the bioavailability and chemical form of mercury in sediments include concentrations of organic carbon, sulfide, sulfate, nutrients, group VI anions, pH, salinity, and temperature (Gilmour and Henry 1991; Beckvar et al. 1996). The industrialized portion of the Calcasieu River estuary is characterized by relatively slow flow through marshy areas, and thus the sediment of Bayou d'Inde in particular consists of fine-grain depositional material that is high in total organic carbon (TOC), with typical TOC levels of 5-6%. Sulfide levels in these sediments are also relatively high. Both of these characteristics can generally be expected to reduce the bioavailability and toxicity of mercury in sediment (Breteler et al. 1981; Langston 1982, 1985, 1986; Gilmour and Capone 1987; Persaud et al. 1987; Parks et al. 1989; Winfrey and Rudd 1990).

Two sediment toxicity studies were conducted in Bayou d'Inde and surrounding areas of the estuary to evaluate the relationship between mercury concentrations and toxicological responses of the amphipods *Hyalella azteca* and *Leptocheirus plumulosus*. First, a dilution study was conducted to develop site-specific no-effect concentrations for a variety of chemicals, including mercury. As described by Fuchsman *et al.* (1999), the dilution study revealed a strong concentration-response relationship for hexachlorobutadiene, which could potentially have obscured effects due to mercury in some samples. Therefore, a follow-up study was conducted focusing specifically on mercury toxicity. Considered together, the two studies provide a basis for a site-specific evaluation of mercury toxicity to amphipods.

^{*} Present address: 11490 Windridge Dr., Pickerington, Ohio 43147, USA

^{**} *Present address:* ARCADIS Geraghty and Miller, 3951 Erie St., Suite 213, Willoughby, Ohio 44094, USA

Materials and Methods

Dilution Study

Surface sediment samples were collected at three locations in Bayou d'Inde and seven locations in an industrial discharge canal, as described by Fuchsman et al. (1999). One 20-L sediment sample was collected from each location, and a 50-L sample for use as a sediment diluent was also collected from Bayou d'Inde. Depending on sample location conditions, sediment samples were collected using a standard ponar dredge, a petite ponar, or the extended arm of a trackhoe. Following sediment processing (sieving to remove large debris, homogenization) and the collection of subsamples for physical and chemical analysis, the headspace in each sediment sample container for toxicity testing was filled with laboratory-supplied estuarine water (5 ppt salinity), approximately equaling one part water to two parts sediment. The addition of water was intended to reduce ammonia concentrations and allow equilibration of salinity levels; however, the effectiveness of this procedure in reducing ammonia levels is unclear and was not tested as part of this study.

Following laboratory confirmation that the diluent sediment was not toxic, sediment dilution ratios were designed to provide a range of chemical concentrations and test organism responses. As the dilution study was intended to investigate the toxicity of multiple chemicals, the dilution ratios were based on a holistic review of each sample's chemical composition, rather than on mercury concentrations alone. In fact, the mercury concentration in the diluent was greater than in three of the samples that were diluted. A total of six dilution series were prepared for toxicity testing, each series consisting of four samples (one undiluted and three diluted sediment samples). The four remaining undiluted sediment samples and a duplicate 100% diluent sample were also tested for toxicity. All sediment samples (including undiluted samples) were thoroughly mixed using a rolling mill, and sediments were then dispensed to the toxicity test chambers and allowed to settle for 24 h.

Prior to the initiation of the toxicity tests, physical and chemical analyses were performed on subsamples of each prepared dilution series sample. Additionally, potential losses of mercury and other chemicals prior to toxicity testing were evaluated by reanalyzing three of the undiluted sediment samples. Total mercury concentrations were measured using atomic absorption spectroscopy (method 7040; US EPA 1986); other analyses are detailed by Fuchsman *et al.* (1999). Following the completion of toxicity tests, analyses of acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) (Allen *et al.* 1991), and water quality parameters in porewater were conducted using sediment subsamples that had been treated as toxicity test replicates. No organisms were added to these "chemistry" replicates in the dilution study, and SEM mercury was not analyzed.

Standard 10-day toxicity tests measured survival and growth (dry weight) of *L. plumulosus* (ASTM 1996) and *H. azteca* (ASTM 1995). The tests were initiated with juvenile *L. plumulosus* (2–4 mm) and *H. azteca* (2–3 mm) obtained from commercial suppliers. Test chambers were held at $20 \pm 2^{\circ}$ C, and continuous light was used to induce burrowing of the *H. azteca* test organisms. Preliminary tests of the sediment diluent at 5 ppt and 10 ppt salinity indicated higher *L. plumulosus* survival and acceptable *H. azteca* survival at 10 ppt (TR Barber, unpublished data); subsequent toxicity tests were conducted with overlying water at 10 ppt, which is also approximately equal to the average salinity of bottom waters in the vicinity of lower Bayou d'Inde. Overlying water was renewed three times during the tests, and test organisms were fed 7 mg rabbit chow five times during the course of the test.

Significant toxicity of the test samples was defined based on comparisons to laboratory control samples (*L. plumulosus* native sediment from St. Augustine, FL). Statistical comparisons used one-way analysis of variance (ANOVA) and Dunnett's test (parametric) or Kruskal-Wallis one-way ANOVA on ranks and Dunn's method (nonpar-

ametric). Parametric tests were used unless the assumptions of normality (Kolmogorov-Smirnov test) and equality of variances (Levene's method) were not satisfied following arcsine square root transformation. Samples were considered toxic if a given test end point (survival or weight) was both statistically different from the laboratory control sample (p < 0.05) and at least 20% lower than mean test organism response in the control sample (Thursby *et al.* 1997).

Follow-up Study

A follow-up study was conducted to evaluate the toxicity of three Bayou d'Inde sediment samples containing a range of mercury concentrations and relatively low concentrations of other cocontaminants. Sediment collection, toxicity testing, and analytical chemistry procedures were similar to those employed in the dilution study. Mercury concentrations in each sample were evaluated three times, including an expedited field analysis, an analysis conducted prior to toxicity testing, and an analysis conducted following completion of toxicity tests. No trend of increasing or decreasing concentrations was observed, and the average concentration was considered representative of the total mercury concentration to which toxicity test organisms were exposed.

Three differences between dilution study and follow-up study methods are noteworthy. Due to concerns about potential loss of chemical contaminants, estuarine water was not added to sediment sample containers in the follow-up study, although the possibility of elevated ammonia concentrations was recognized. Ammonia concentrations in overlying water were monitored during toxicity testing. Additionally, amphipods were placed in the sediment replicates used for post-toxicity test analyses. The addition of organisms was intended to provide analytical results that most closely approximated toxicity test exposure conditions by incorporating any effects of bioturbation on AVS levels. Finally, in the follow-up study, SEM mercury was included in the post-toxicity chemical analyses. Though mercury is not among the metals for which the comparison of SEM and AVS concentrations has been demonstrated to provide a consistent no-effect threshold for sediment toxicity (Ankley et al. 1996), the difference between total mercury concentrations and the concentrations of mercury extractable using the less aggressive SEM extraction procedure may provide some insight into the site-specific bioavailability of mercury.

Results

Dilution Study

Mercury was detected in 28 of 29 dilution study sediment samples, with concentrations ranging from 0.5 to 4.3 mg/kg. These and subsequent chemical concentrations are reported on a dry-weight basis unless stated otherwise. Mercury concentrations measured in three of the undiluted sediment samples immediately prior to toxicity testing were 0%, 35%, and 60% lower than the corresponding concentrations measured prior to the addition of water to the samples in the field. However, mercury is considered highly persistent in sediment, and further evaluation suggests no systematic loss of mercury from the sediment samples. Measured mercury concentrations in the diluted sediment samples were compared to concentrations predicted from measurements of the undiluted samples, the diluent, and the appropriate ratio between the two. This evaluation included three dilution series for which the undiluted "parent" samples had not been reanalyzed for mercury immediately prior to toxicity testing; a loss of mercury due to sediment-handling procedures would have resulted in overprediction of mercury concentrations in the associated diluted sediment samples. In fact, measured and predicted values were within 25% of each other for all but two sediment samples (data not shown). One measured mercury concentration was identified as an outlier, because it was twice as high as the predicted concentration. To conserve space, analytical results for chemicals other than mercury in the dilution study are not shown here but are available on request.

The toxicity tests for the dilution study were considered acceptable, based on control survival exceeding 90% for both test species. Overlying water quality conditions were acceptable for temperature (18.0–20.9°C, averaging approximately 19°C), pH (6.8–8.8, averaging 7.9), dissolved oxygen (36–117% of saturation, averaging approximately 90% of saturation), and salinity (9.0–11.2 ppt, averaging 10.0 ppt). Porewater salinity levels were very similar to levels measured in overlying water (9.6–11.0 ppt, averaging 10.4 ppt). Porewater ammonia concentrations ranged from 0.55 to 4.15 mg/L, averaging 1.7 mg/L.

Toxicity test results showed a range of test organism responses (Table 1), which appeared to be explained primarily by concentrations of hexachlorobutadiene rather than mercury. In fact, logistic curve-fitting analysis explained approximately 90% of the variation in survival of both test species based on hexachlorobutadiene concentrations (Fuchsman *et al.* 1999). By comparison, Spearman rank correlation analysis indicated no significant negative correlation between mercury concentrations and test organism survival or dry weight (Figure 1). However, a preliminary evaluation of site-specific mercury toxicity was possible based on mercury concentrations in nontoxic sediment samples.

A total of six sediment samples in the dilution study were not toxic to either test species. The maximum mercury concentration among these samples was 2.8 mg/kg. Toxicity associated with mercury concentrations greater than 2.8 mg/kg was either marginal (survival or weight measured at 70–80% of control) or was clearly attributable to hexachlorobutadiene (sample 06 and its dilutions; Fuchsman *et al.* 1999). Mercury concentrations associated with marginal toxicity ranged from undetectable (<0.2 mg/kg) to 3.5 mg/kg (excluding the concentration of 4.3 mg/kg identified as an outlier). Thus, the dilution study provided a lower limit of 2.8 mg/kg for the estimate of a site-specific sediment effects threshold for mercury.

Follow-up Study

Average mercury concentrations in the follow-up study sediment samples were 0.3, 3.6, and 4.1 mg/kg (sample codes HG-001, HG-007, and HG-010, respectively). Interestingly, sample HG-007 was initially measured as containing a mercury concentration of 10.7 mg/kg. Triplicate reanalyses of sediment from each of the first two HG-007 subsamples analyzed for mercury failed to confirm this initial measurement, although the sediment had been homogenized prior to subsampling. It is not possible to determine whether these results indicate analytical variability or sample heterogeneity. SEM mercury concentrations were much lower than total mercury concentrations, ranging from undetectable (<0.06 mg/kg; samples HG-001, HG-010) to 0.06 mg/kg (sample HG-007). Concentrations of AVS in the follow-up study ranged from 10 to 770 mg/kg. Depletion of AVS associated with bioturbation was not evident, as AVS levels were generally higher than in the dilution study, in which amphipods were not added to chemistry replicates.

Toxicity test results for the follow-up study include two rounds of testing (Table 2). It was necessary to repeat the toxicity tests because amphipod survival in the laboratory control sediment was below ASTM-specified acceptability criteria for both species, and both species showed anomalously low survival in individual replicate test chambers (0-10% survival as compared to 75-100% survival in other replicates of the same sediment sample). This replicate-specific mortality occurred in both the control and test samples and was not explained by measured water quality conditions (e.g., ammonia, dissolved oxygen; Table 3). However, results are reported for the first round of toxicity testing (Test 1) because L. plumulosus survival was notably higher than in the second round of testing (Test 2), whereas the difficulties identified in Test 1 would be expected to have produced the opposite effect. Post-toxicity test analyses of AVS, SEM, and porewater chemistry were conducted only for Test 2.

H. azteca survival and growth appeared to be unaffected by mercury concentrations. Although H. azteca weight decreased slightly with increasing mercury concentrations in Test 1, and organism weights for the two highest test concentrations were significantly different from the laboratory control, H. azteca weight showed no toxicity during Test 2. Survival of L. plumulosus in Test 1 showed no evidence of toxicity (Table 2). However, without exhibiting a concentrations-response relationship with mercury, all three test samples were associated with poor L. plumulosus survival in Test 2. This result does not appear to be explained by measured chemical concentrations, as sample HG-001 exhibited the highest mortality and contained the lowest concentrations of most detected chemicals (Table 4). Water quality data collected during the course of Test 2 also do not explain the observed results, although a single replicate test chamber of sample HG-007 exhibited 0% survival after developing cloudy overlying water and an ammonia concentration of 8.7 mg/L. By comparison, the next highest ammonia concentration noted in Test 2 (6.2 mg/L) occurred in the control sample and did not appear to affect the test organisms (survival of 95%). Test organism variability may be one contributing factor, as the L. plumulosus test organisms used for the follow-up study were smaller than those used during the dilution study (though within ASTM protocol guidelines), and it is possible that the organisms were responding to some physical attribute of the test sediments. For example, increasing clay content has been shown to adversely affect L. plumulosus survival in 28-day toxicity tests (Emery et al. 1997), although the species is generally considered to be tolerant of a variety of sediment types (ASTM 1996). Regardless, the observed toxicity did not appear to be associated with mercury at the concentrations tested. Thus, no toxicity attributable to total mercury was observed for either species or endpoint at a maximum mercury concentration of 4.1 mg/kg.

Discussion

Published sediment quality guidelines for mercury range from 0.13 mg/kg (MacDonald 1994) to 2 mg/kg (Jaagumagi 1993). These guidelines are based on compilations of data associating mercury concentrations with various measures of toxicity and are relatively unsuccessful at predicting sediment toxicity, even within the data sets from which they are derived. For example,

Table 1. Summary of dilution study mercury concentrations and associated toxicity test re	sults
---	-------

Sample ^a	Mercury (mg/kg)	Total Organic Carbon (%)	AVS (mg/kg)	H. azteca		L. plumulosus	
				Survival (% of Control)	Mean Weight (% of Control)	Survival (% of Control)	Mean Weight (% of Control)
Diluent-100%	2.3	3.39	19.8	89	93	97	76
01-100%	2.5 J	3.93	37.4	79	87	86	84
02-100%	3.0 J	3.99	13.4	81	70*	80*	93
03-100%	3.5 J	3.08	17.8	80*	101	99	101
08-100%	0.1 U	0.277	0.01	79*	87	92	91
04-100%	0.5 J	7.41	3.4	59*	55*	59*	67
04–90%	1.26 J	5.05	31.2	72	76*	80*	80
04-20%	2.4 J	5.61	29.0	74	81	77*	63
04-10%	2.4 J	4.41	34.3	85	70*	84	86
05-100%	1.8 J	2.32	0.1	50*	40*	37*	57
05-60%	1.8 J	2.22	5.0	84	54*	77*	74
05-40%	2.1 J	2.86	13.7	81	74*	90	96
05-20%	4.3 J ^b	3.81	21.2	88	87	74*	162
06-100%	4.3 J	5.24	2.7	0*	NC	0*	NC
06-20%	3.3 J	5.18	2.5	1*	NC	9*	62
06-10%	2.8 J	5.08	31.2	27*	54*	62*	107
06–5%	3.1 J	4.52	40.5	38*	49*	82	101
07-100%	1.9 J	1.23	2.8	0*	NC	0*	NC
07-20%	2.2 J	3.24	34.3	1*	NC	0*	NC
07-10%	2.3 J	3.71	34.3	0*	NC	0*	NC
07-5%	2.3 J	3.97	7.5	0*	NC	2*	NC
09-100%	0.5 J	1.95	10.3	0*	NC	0*	NC
09-50%	1.2 J	4.11	27.4	0*	NC	0*	NC
09-20%	2.1 J	3.89	34.3	0*	NC	39*	66
09–10%	2.5 J	3.69	24.6	0*	NC	94	96
10-100%	2.8 J	3.20	12.8	92	91	104	104
10-60%	2.2 J	3.01	24.3	88	102	92	107
10-40%	2.4 J	3.11	18.7	87	103	104	111
10-20%	2.6 J	3.13	15.0	88	92	95	91

^a Sample codes indicate the percentage of "parent" sediment for diluted sediment samples. For example, sample 04–90% contained 90% sediment from sample 04 and 10% diluent sediment

^b Mercury concentration identified as an outlier based on comparison of measured and predicted concentrations

* Indicates statistical and at least 20% difference from control samples

J Laboratory qualifier: estimated concentration

U Not detected; concentration represents one-half the sample detection limit

NC Not calculated; survival exhibited severe toxicity

Sample Code	Mercury Concentration	L. plumulosus		H. azteca	
	(Mean \pm SD [# samples] [mg/kg])	Survival (%)	Mean Weight (mg/organism)	Survival (%)	Mean Weight (mg/organism)
Test 1					
_	Control	88	0.42	75	0.20
HG-001	0.27 ± 0.17 (3)	83	0.24*	88	0.16
HG-007	$3.6^{a} \pm 2.5$ (9)	73	0.30	91	0.15*
HG-010	4.1 ± 0.39 (3)	76	0.32	77	0.14*
Test 2					
_	Control	95	0.18	91	0.30
HG-001	0.27 ± 0.17 (3)	34*	0.11*	89	0.25
HG-007	$3.6^{a} \pm 2.5$ (9)	63*	0.17	87	0.25
HG-010	4.1 ± 0.39 (3)	37*	0.14	90	0.24

Table 2. Summary of follow-up study mercury concentrations and toxicity test results

^a Original field sample analysis excluded as an outlier

* At least 20% different and statistically different from the control sample (p < 0.05)

Table 3.	Summary of	overlying	water quality	in follow-up	study toxicity tests ^a
----------	------------	-----------	---------------	--------------	-----------------------------------

Sample	рН	Dissolved Oxygen (% Sat.)	Temperature (°C)	Salinity (ppt)	Ammonia (mg/L)
Lentocheirus plumulosus Test 1					
Control	7.8 (7.1-8.2)	86 (53-100)	20.3 (19.7-20.7)	10.5 (10.2–10.9)	0.109 (0.055-0.172)
HG-001	7.6 (6.9–8.0)	85 (23–100)	20.3(19.1-20.7)	10.5(10.1-10.8)	0.528 (0.285–0.739)
HG-007	7.8 (7.5–8.2)	85 (56–97)	20.2 (19.7–20.6)	10.5 (9.9–10.8)	1.442(0.336-2.470)
HG-010	7.8 (7.3-8.0)	87 (68–98)	20.2 (19.7–20.6)	10.5 (10.1–10.7)	1.464 (0.596-2.010)
Leptocheirus plumulosus Test 2	, (,,		(
Control	7.9 (7.7-8.1)	92 (73-100)	20.2 (19.6–20.6)	10.4 (10.2–10.7)	2.283 (0.550-6.180)
HG-001	7.7 (6.9-8.0)	90 (50-102)	20.2 (19.7–20.7)	10.4 (10.2–10.5)	0.670 (0.356-0.940)
HG-007	7.9 (7.7–8.1)	93 (79–101)	20.0 (19.5–20.7)	10.4 (10.2–10.5)	2.623 (0.652-8.660)
HG-010	7.8 (7.4-8.0)	90 (72–100)	20.0 (19.4–20.8)	10.3 (10.2–10.5)	1.219 (0.558–1.800)
Hyalella azteca Test 1	(,				(,
Control	7.9 (7.2-8.2)	84 (9–99)	20.1 (19.2-20.6)	10.5 (10.0-10.8)	0.031 (0.029-0.032)
HG-001	7.7 (7.4–7.9)	89 (76–99)	20.1 (19.5-20.6)	10.4 (10.0–10.7)	0.485 (0.108-0.790)
HG-007	7.8 (7.3-8.1)	86 (65–105)	20.0 (19.2–20.4)	10.4 (10.0–10.7)	1.855 (0.639-2.990)
HG-010	7.8 (7.1–8.1)	83 (42–98)	20.1 (19.2–20.5)	10.4 (10.1–10.6)	1.669 (0.276-2.470)
Hyalella azteca Test 2	(, , , ,				(,
Control	8.0 (7.5-8.1)	95 (84–99)	20.3 (19.9-20.7)	10.4 (10.1–10.5)	0.282 (0.144-0.398)
HG-001	7.8 (7.6–8.0)	96 (87–103)	20.2 (19.7–20.9)	10.3 (10.2–10.4)	0.175 (0.035-0.356)
HG-007	8.0 (7.7-8.3)	94 (84–100)	20.2 (19.9–20.6)	10.4 (10.2–10.5)	0.256 (0.074-0.966)
HG-010	7.9 (7.7–8.2)	95 (88–99)	20.3 (19.9–20.7)	10.3 (10.1–10.4)	0.259 (0.094–0.700)

^a Average (minimum–maximum)

within the data set of Long *et al.* (1995), toxicity was observed in less than half of the studies reporting mercury concentrations that exceeded the effects-range median benchmark. The biological effects database for sediment compiled by MacDonald (1994) includes studies in which mercury concentrations as high as 254 mg/kg in sediment (Salazar *et al.* 1980) did not produce a biological effect. The relatively poor predictive ability of the available sediment quality guidelines for mercury may reflect the site-specific nature of mercury toxicity, or it may reflect in part the uncertainty of association-based data collected at sites contaminated with multiple potentially toxic chemicals.

Several studies at mercury-contaminated sites have provided results that are consistent with this study's findings of a lack of toxicity to benthic invertebrates at mercury concentrations that exceed available sediment quality guidelines. In a study noteworthy for its long exposure duration, Rubinstein *et al.* (1983) found that survival of polychaete worms (*Nereis viriens*), clams (Mercenaria mercenaria), and grass shrimp (Palaemonetes pugio) was unaffected following 100 days of exposure to New York Harbor sediment containing 35 mg/kg mercury. The authors hypothesized that high organic content of the test sediment (up to 22%) could account for the lack of bioavailability. The sediment also contained a considerable amount of sulfur, and formation of mercuric sulfide (cinnabar) could also have accounted for the low availability of mercury (Rubinstein et al. 1983). Similarly, sediment samples from Brunswick Estuary, GA (USA), containing 17.8 mg/kg and 24.7 mg/kg mercury caused no mortality in 10-day whole-sediment tests with H. azteca; these sediment samples also contained relatively high levels of organic carbon and sulfide (Winger et al. 1993). More recently, a dilution study with sediment from Brunswick Estuary indicated significant mortality to L. plumulosus following 28-day exposures to mercury concentrations exceeding 550 mg/kg, but no significant toxicity at mercury

 Table 4. Physical and chemical concentrations detected in follow-up study sediment samples

Sample Code	HG-001	HG-007	HG-010
Physical parameters (%)			
Total organic carbon	3.2	3.8	3.6
Solids	48	36	34
Sand	8.3	36	32
Silt	49	31	34
Clay	43	32	34
Inorganic chemicals			
(mg/kg)			
Aluminum	7,271	7,778	8,088
Ammonia (porewater,			
mg/L)	1.48	2.34	1.12
Barium	108	517	638
Chromium	13	36	41
Cobalt	1.7 U	6.9 B	5.3 B
Copper	13	103	124
Iron	4,833	11,167	11,029
Lead	21	53	68
Manganese	59 J	117	103 J
Nickel	4.8 U	39	44
Selenium	0.86 U	2.0 B	1.7 B
Vanadium	17 B	15 B	15 B
Zinc	25 J	183	191
AVS and SEM			
(mmol/kg)			
AVS	0.31	24	14
Cadmium	0.002 U	0.002 U	0.002 U
Copper	0.05	0.57	0.44
Lead	0.05	0.25	0.25
Mercury	0.0001 U	0.0003	0.0001 U
Nickel	0.04 U	0.24	0.19
Zinc	0.18	2.7	2.5
SEM – AVS	0.01	-20.28	-10.95
Organic chemicals			
(mg/kg normalized			
to 1% TOC)			
Chlorobenzene	0.002 U	0.08	0.002 U
1,3-Dichlorobenzene	0.07 J	0.01 NJ	0.33
1,4-Dichlorobenzene	0.04 J	0.01 NJ	0.24 J
1,2,4-Trichloroben-			
zene	0.11 U	0.08 J	0.06 J
Hexachlorobenzene	0.37	5.8 D	2.0
DD1, 4,4' -	0.02 J	0.16 J	0.08 J
Hexachlorobutadiene	0.11 U	0.19 J	0.12 J
Iotal Petroleum	40 T	5(2)	515 I
Hydrocardons	49 J	202 J	515 J
Polycyclic aromatic			
(mg/kg normalized			
(ing/kg normalized			
Dhenonthrane	0.11.11	0.07 I	0.07 I
Banzo(a)anthracana	0.11 UI	0.07 J	0.07 J
Benzo(a)pyrapa	0.11 UJ	0.05 J	0.05 1
Benzo(h)fluoranthene	0.11 U	0.05 J	0.00 J
Benzo(g h i)pervlene	0.11 U	0.05 1	0.04 J
Benzo(k)fluoranthene	0.11 U	0.03 1	0.03 1
Chrysene	0 11 111	0.12 I	0.11 I
Fluoranthene	0.11 U	0.12 J	0.07 1
Pyrene	0.11 UI	0.17 I	0.13 I
-)	0.11 05	0.17.5	0.100

D Reported from a dilution

B Inorganics: reported concentration below quantitative detection limit

J Estimated value

N Presumptively present

U Not detected; concentration represents one-half the sample detection limit

Fig. 2. Cumulative frequencies of mercury concentrations measured in toxic (\bullet) and nontoxic (\bigcirc) sediment samples. Results are included for each of four toxicity test endpoints in the dilution and follow-up studies

concentrations of 390 mg/kg or less (PTI 1998). Recent studies in Lavaca Bay, TX (USA), showed no evidence of mercuryrelated effects on benthic macroinvertebrate community structure (MacLellan *et al.* 1997) and no toxicity to *Leptocheirus* sp. (28-day exposure) or the polychaete *Neanthes* sp. (21-day exposure) related to mercury at concentrations ranging from 0.3 to 4.6 mg/kg (Robinson *et al.* 1997). The sediments of Lavaca Bay contain a high proportion of fine-grain material, but a relatively low concentration of organic carbon (0.5–1% organic carbon; Locarnini and Presley 1996).

In the present study, the lack of mercury-related adverse effects indicates that the bioavailable fraction of the total sediment concentration of mercury was minimal, less than the effects threshold for *H. azteca* and *L. plumulosus*. The lack of mercury-related toxicity in the test sediments is further illustrated by compiling the results of the dilution and follow-up studies (Figure 2) to show that the distribution of mercury concentrations associated with toxicity is essentially the same as the distribution of concentrations associated with no toxicity. The lack of a concentration-response relationship between mercury concentrations and toxicity test results suggests that a site-specific sediment effects threshold for mercury may be higher than 4.1 mg/kg.

The extent to which organic carbon and AVS concentrations account for the observed lack of mercury-related toxicity cannot be determined from this study. The concentrations of AVS measured in the follow-up study were much greater than those of SEM mercury, indicating that if the detected SEM mercury were present as the mercuric ion, the formation of sulfide complexes would greatly reduce its bioavailability (Di Toro *et al.* 1990; Ankley *et al.* 1996). The bioavailability of other forms of mercury, such as methylmercury, is not predictable based on SEM and AVS results. However, sulfide is known to inhibit mercury methylation (Benoit *et al.* 1999), and methylmercury can form strong complexes with sulfide (Faust 1992), as well as sulfhydryl groups in organic matter (Loux 1999).

Because methylmercury was not measured in this study, the possibility that methylmercury, rather than total mercury, contributed to observed toxicity cannot be completely eliminated. However, in *L. plumulosus* toxicity tests using Bruns-

wick estuary sediments, PTI (1998) demonstrated a better concentration-response relationship based on total mercury than based on methylmercury concentrations, although total mercury and methylmercury levels were generally correlated. Perhaps similar to the present study, toxicity tests conducted using Lavaca Bay sediments showed minor but statistically significant reductions in test organism growth that were not correlated with either total or methylmercury concentrations; these "effects" appeared to represent toxicity test artifacts based on a lack of apparent impacts on benthic community quality (Parametrix 1997). Though methylmercury is the primary mercury species of concern with regard to bioaccumulation and potential impacts on higher trophic levels, it is reasonable to expect that methylmercury is less important with regard to direct toxicity. A small number of experiments comparing the aquatic toxicity of methylmercury and inorganic mercury suggest that methylmercury may be approximately 50 times as toxic as inorganic mercury (Biesinger et al. 1982; Hempel et al. 1995). However, concentrations of inorganic forms of mercury are typically 200 times higher than methylmercury in marine and estuarine sediments (Gilmour and Henry 1991; Kannan and Falandysz 1998). Therefore, the overall contribution of methylmercury to the direct toxicity of total mercury may be minor.

Acknowledgments. Thanks to Deborah Duda, Dan Chappie, and Kaela Smith for assistance in preparing this manuscript. The authors also thank two anonymous reviewers for helpful comments. Toxicity tests were conducted by MEC Analytical Systems (Carlsbad, CA), under the direction of F. Charles Newton. Chemical analyses were conducted by Columbia Analytical Services in Kelso, WA (AVS and SEM analyses), RECRA LabNet in Houston, TX (dilution study), and American Analytical and Technical Services in Baton Rouge, LA (follow-up study).

References

- Allen HE, Fu G, Boothman W, Di Toro DM, Mahony JD (1991) Draft analytical method for determination of acid volatile sulfide in sediment: determination of acid volatile sulfide and simultaneous extracted metals in sediment. US Environmental Protection Agency, Division of Water, Washington, DC
- Ankley GT, Di Toro DM, Hansen DJ, Berry WJ (1996) Technical basis and proposal for deriving sediment quality criteria for metals. Environ Toxicol Chem 15:2056–2066
- ASTM (1995) Standard guide for conducting sediment toxicity tests with freshwater invertebrates. E 1383-92, Annual book of ASTM standards. American Society of Testing and Materials, Philadelphia, PA
- ASTM (1996) Standard guide for conducting 10-day static sediment toxicity tests with marine and estuarine amphipods. E1367-92, volume 11.05, Annual book of ASTM standards. American Society of Testing and Materials, Philadelphia, PA
- Beckvar N, Field J, Salazar S, Hoff R (1996) Contaminants in aquatic habitats at hazardous waste sites: mercury. NOAA Technical Memorandum, NOS ORCA 100. National Oceanic and Atmospheric Administration, Hazardous Materials Response and Assessment Division, Seattle, WA
- Benoit JM, Gilmour CC, Mason RP, Heyes A (1999) Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Env Sci Technol 33:951–957
- Biesinger KE, Anderson LE, Eaton JG (1982) Chronic effects of inorganic and organic mercury on *Daphnia magna:* toxicity, accumulation, and loss. Arch Environ Contam Toxicol 11:769–774

- Breteler RJ, Valiela I, Teal JM (1981) Bioavailability of mercury in several north-eastern U.S. Spartina ecosystems. Estuar Cstl Shelf Sci 12:155–166
- Cunningham P, Williams R, Chessin R, Little K, Crocker P, Schurtz M, Demas C, Petrocelli E, Redmond M, Morrison G, Manuel R (1990) Toxics study of the lower Calcasieu River. Final Report. NTIS# PB902261150/AS, Research Triangle Institute, Research Triangle Park, NC
- Di Toro D, Mahony J, Hansen D, Scott K, Hicks M, Mayr S, Redmond M (1990) Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environ Toxicol Chem 9:1487–1502
- Emery VL Jr, Moore DW, Gray BR, Duke BM, Gibson AB, Wright RB, Farrar JD (1997) Development of a chronic sublethal sediment bioassay using the estuarine amphipod *Leptocheirus plumulosus* (Shoemaker). Environ Toxicol Chem 16:1912–1920
- Faust BC (1992) The octanol/water distribution coefficients of methylmercuric species: the role of aqueous-phase chemical speciation. Environ Toxicol Chem 11:1373–1376
- Fuchsman P, Sferra J, Barber T (1999) Three lines of evidence in a sediment toxicity evaluation for hexachlorobutadiene. Environ Toxicol Chem (submitted)
- Gaston G, Young J (1992) Effects of contaminants on macrobenthic communities in the Upper Calcasieu estuary, Louisiana. Bull Environ Contam Toxicol 49:922–928
- Gilmour CC, Capone DG (1987) Relationship between Hg methylation and the sulfur cycle in estuarine sediments. EOS 68:1718
- Gilmour CC, Henry EA (1991) Mercury methylation in aquatic systems affected by acid deposition. Environ Pollut 71:131–169
- Hempel M, Chau YK, Dutka BJ, McInnis R, Kwan KK, Liu D (1995) Toxicity of organomercury compounds: bioassay results as a basis for risk assessment. Analyst 120:721–724
- Jaagumagi R (1993) Development of the Ontario Provincial sediment quality guidelines for arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, and zinc. Ontario Ministry of Environment and Energy, Toronto, ON
- Kannan K, Falandysz J (1998) Speciation and concentrations of mercury in certain coastal marine sediments. Water Air Soil Pollut 103:129–136
- Langston WJ (1982) The distribution of mercury in British estuarine sediments and its availability to deposit-feeding bivalves. J Mar Biol Assn UK 62:667–684
- Langston WJ (1985) Assessment of the distribution and availability of arsenic and mercury in estuaries. In: Wilson JG, Halcrow W (eds) Estuarine management and quality assessment. Plenum Press, New York, NY, pp 131–146
- Langston WJ (1986) Metals in sediments and benthic organisms in the Mersey estuary. Estuar Cstl Shelf Sci 23:239–261
- Locarnini S, Presley B (1996) Mercury concentrations in benthic organisms from a contaminated estuary. Mar Environ Res 41:225–239
- Long E, MacDonald D, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manage 19:81–97
- Loux TL (1999) An assessment of mercury-species-dependent binding with natural organic carbon. Chem Speciat Bioavail 10:127–136
- MacDonald DD (1994) Approach to the assessment of sediment quality in Florida coastal waters, volume 1—Development and evaluation of sediment quality guidelines. Prepared for Florida Department of Environmental Protection, Tallahassee, FL. MacDonald Environmental Sciences Ltd, Ladysmith, BC
- MacLellan D, Robinson S, Tear L, Harper D Jr, Gribben K (1997) Benthic macroinvertebrate community structure evaluations in relation to sediment mercury concentrations. Abstract, 18th Annual Society of Environmental Toxicology and Chemistry (SETAC) meeting, San Francisco, CA
- Mueller C, Ramelow G, Beck J (1989) Spatial and temporal variation of heavy metals in sediment cores from the Calcasieu River/Lake complex. Water Air Soil Pollut 43:213–230
- Parametrix (1997) Draft RI workplan for the ALCOA (Point Comfort)/ Lavaca Bay Superfund Site, Volume B2g: sediment quality triad

investigation data report. Prepared for Aluminum Company of America by Parametrix, Inc., Kirkland, WA

- Parks JW, Lutz A, Sutton JA, Townsend BE (1989) Water column methylmercury in the Wabigoon/English River-Lake system: factors controlling concentrations, speciation, and net production. Can J Fish Aquat Sci 46:2184–2202
- Pereira W, Rostad C, Chiou C, Brinton T, Barber L, Demcheck D, Demas C (1988) Contamination of estuarine water biota and sediment by halogenated organic compounds: a field study. Environ Sci Technol 22:772–778
- Persaud D, Lomas TD, Hayton A (1987) The in-place pollutants program. Ontario Ministry of the Environment Technical Report, Toronto, ON
- PTI (1998) Ecological risk assessment of the marsh area of the LCP chemical site in Brunswick, Georgia. Prepared for Allied Signal Inc. by PTI Environmental Services, Bellevue, WA
- Redmond MS, Crocker PA, McKenna KM, Petrocelli EA, Scott KJ, Demas CR (1996) Sediment toxicity testing with the amphipod *Ampelisca abdita* in Calcasieu Estuary Louisiana. Arch Environ Contam Toxicol 30:53–61
- Robinson S, MacLellan D, Tear L, Gribbon K (1997) Triad evaluation of mercury contaminated sediments in a shallow Texas Gulf coast

estuary. Abstract, 18th Annual Society of Environmental Toxicology and Chemistry (SETAC) meeting, San Francisco, CA

- Rubinstein NI, Lores E, Gregory NR (1983) Accumulation of PCBs, mercury and cadmium by *Nereis virens*, *Mercenaria mercenaria* and *Palaemonetes pugio* from contaminated harbor sediments. Aquat Toxicol 3:249–260
- Salazar M, U'ren S, Steinert S (1980) Sediment bioassays for NAVSTA San Diego dredging project. Technical Report 570, Naval Ocean Systems Center, San Diego, CA
- Thursby GB, Heltshe J, Scott KJ (1997) Revised approach to toxicity test acceptability criteria using a statistical performance assessment. Environ Toxicol Chem 16:1322–1329
- US EPA (1986) Test methods for evaluating solid waste, 3d ed. SW-846, US Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC
- Winfrey MR, Rudd JM (1990) Environmental factors affecting the formation of methylmercury in low pH lakes. Environ Toxicol Chem 9:853–869
- Winger PV, Lasier PJ, Geitner H (1993) Toxicity of sediments and pore water from Brunswick Estuary, Georgia. Arch Environ Contam Toxicol 25:371–376