

Site Investigation Report and RECAP Evaluation

East White Lake Oil and Gas Field Vermilion Parish, Louisiana Al# 91357

October 1, 2015

www.erm.com

Site Investigation Report and RECAP Evaluation

East White Lake
Oil and Gas Field
Vermilion Parish, Louisiana
AI# 91357

October 1, 2015

Project No. 0116008

Angela M. Levert

Partner-In-Charge

Alyson Hubbs

Project Manager

Environmental Resources Management Southwest, Inc. 3838 North Causeway Boulevard, Suite 3000 Metairie, Louisiana 70002 504-831-6700

TABLE OF CONTENTS

EXECUT	TIVE SUMM	IARY	ix	
	SEDI	IMENT EVALUATION	X	
	GRO	UND WATER EVALUATION	xi	
	SURF	FACE WATER EVALUATION	xii	
	BIOT	TA (CRAB TISSUE) EVALUATION	xii	
	RECC	OMMENDATIONS FOR SITE MANAGEMENT	xiii	
1.0	INTRODUCTION			
	1.1	PROJECT BACKGROUND	2	
		1.1.1 Site Operational History	2	
		1.1.2 Investigation History	2	
		1.1.3 Corrective Actions Completed	4	
	1.2	REGULATORY CONSIDERATIONS	5	
2.0	SITE	CHARACTERIZATION	6	
	2.1	SITE SETTING	6	
	2.2	GEOLOGY AND HYDROGEOLOGY	6	
	2.3	WATER WELL SURVEY	6 7	
	2.4	GROUND WATER CLASSIFICATION AND CHARACTERISTICS		
		2.4.1 Peat Zone	8	
		2.4.2 40-Foot Zone	8	
		2.4.3 70-100 Foot Interval (called 70-Foot Zone and		
		90-Foot Zone)	8	
		2.4.4 Upper Sand of the Chicot Aquifer	9	
	2.5	SURFACE WATER CHARACTERISTICS	9	
3.0	SITE INVESTIGATION SUMMARY			
	3.1	ICON INVESTIGATION	10	
		3.1.1 Sediment	10	
		3.1.2 Ground Water	11	
		3.1.3 Laboratory Analysis	11	
	3.2	MP&A INVESTIGATION	12	
		3.2.1 Sediment	12	
		3.2.2 Ground Water	13	
		3.2.3 Surface Water	13	
		3.2.4 Laboratory Analysis	14	
	3.3	CRAB AND FISH TISSUE STUDY	14	
	3.4	CHEMICAL ANALYTICAL RESULTS		
	3.5	CHEMICAL ANALYTICAL RESULTS DATA QUALITY EVALUATION/ DATA USABILITY REVIEW		
		3.5.1 Sediment, Ground Water, and Surface Water	16	
		3.5.2 Biota Tissue	23	
4.0	CON	CEPTUAL SITE MODEL AND EXPOSURE ASSESSMENT	25	
	4.1	SOURCE MEDIA	25	
	4.2	MIGRATION PATHWAYS		
	4.3	EXPOSURE POINTS	27	

	4.4	ROUTE	ES OF EXPOSURE	28
	4. 5	RECEP'	TORS	29
	4.6	SUMM	ARY OF EXPOSURE PATHWAY ANALYSIS	30
5.0	REC	AP EVALU	ATION METHODS AND RESULTS: SELECTION OF CO	CS
	FOR :	SEDIMENT	T AND GROUND WATER	32
	5.1	SCREE	NING FOR SELECTION OF CONSTITUENTS OF CONC	ERN
		(COCS)		32
		5.1.1	Sediment	33
		5.1.2	Ground Water	35
	5.2	DELINI	EATION AND IDENTIFICATION OF AREAS OF	
			ΓΙGATION (AOIS)	36
		5.2.1	Sediment	36
		5.2.2	Ground Water	37
6.0	RECAP EVALUATION METHODS AND RESULTS: MANAGEMENT			
	OPTI	ON 3 FOR	ALL MEDIA	38
	6.1	LAND U	USE AND EXPOSURE ASSUMPTIONS	39
	6.2	MO-3 S	SEDIMENT EVALUATION	40
	6.3	MO-3 G	GROUND WATER EVALUATION	43
		6.3.1	Peat Zone Ground Water Evaluation	43
		6.3.2	40-Foot Zone Ground Water Evaluation	45
		6.3.3	70-Foot Zone Ground Water Evaluation	47
	6.4	MO-3 S	SURFACE WATER EVALUATION	47
	6.5	MO-3 1	BIOTA (CRAB TISSUE) EVAUATION	49
		6.5.1	Site-Specific Biota Assessment	49
		6.5.2	Sensitivity Analyses	54
		6.5.3	LDHH Crab Collection and Evaluation	57
		6.5.4	LDEQ Mercury Monitoring Program - Biota Data	
			Collection	58
	6.6	CUMUI	LATIVE RISK	58
	6.7		RTAINTY ANALYSIS	60
7.0	ECO	DLOGICAL RISK EVALUATION		
8.0	RECAP EVALUATION RESULTS AND RECOMMENDATIONS			68
	8.1	SEDIM	ENT EVALUATION	68
	8.2	GROUN	ND WATER EVALUATION	69
	8.3	SURFA	CE WATER EVALUATION	70
	8.4	BIOTA	(CRAB TISSUE) EVALUATION	70
	8.5	ECOLO	OGICAL EVALUATION	71
	8.6	SITE RA	ANKING	<i>7</i> 1
	8.7	RECOM	MENDATIONS FOR SITE MANAGEMENT	72
9.0	REFI	ERENCES		74

APPENDICES

A	SUMMARY OF RECAP FORMS
В	WATER WELL SURVEY RESULTS
С	QUALITY ASSURANCE PROJECT PLAN/SAMPLING ANALYSIS AND ASSESSMENT PLAN FOR CRAB AND FORAGE FISH TIESSUE AT THE EAST WHITE LAKE OILFIELD
D	CRAB AND FISH COLLECTION REPORT
E	CHEMICAL ANALYTICAL DATA
F	DATA QUALITY REVIEW DOCUMENTATION
G	SUPPORTING CALCUATIONS FOR RECAP STANDARD DEVELOPMENT
Н	EAST WHITE LAKE OIL AND GAS FIELD SEAFOOD SAMPLING EVALUATION VERMILION PARISH, LOUISIANA, BY LOUISIANA DEPARTMENT OF HEALTH AND HOSPITALS, MARCH 13, 2015
I	FISH TISSUE DATA COLLECTED BY LDEQ FOR MERCURY MONITORING PROGRAM, SUBSEGMENT 050703 (WHITE LAKE)
I	ECOLOGICAL CHECKLIST
K	ASSESSMENT OF SEDIMENT DIRECT CONTACT USING ANALYTICAL RESULTS IN DRY WEIGHT
L	LABORATORY REPORTS FOR BIOTA SAMPLES

List of Tables

1- 1	Confirmation Sample Results for Sed-15 Area Pit Closure
1-2	Overburden/Backfill Source Samples - Sed-15 Area Pit Closure
5-1	Sediment (0-3 Ft): Comparison to RECAP Direct Contact Screening Standards
5-2	Sediment (All Depths): Comparison to RECAP Ground Water Protection Screening Standards
5 - 3	Sediment Data Included in Direct Contact Quantitative Evaluation
5-4	Sediment Data Included in Ground Water Protection Quantitative Evaluation
5- 5	Summary of Constituent Concentrations and Locations that Exceed RECAP Screening Standards
5-6	Ground Water Data Included in Quantitative Evaluation
5 - 7	Ground Water: Comparison to RECAP Screening Standards
5-8	Summary of Ground Water Constituents Not Identified as Site-Related COCs
6-1	Toxicity Factors for Site Constituents of Concern (COCs)
6-2	Exposure Assumptions for Recreational Exposure to Sediment
6-3	Sediment: Comparison to MO-3 Direct Contact Standards
6-4	Sediment: Comparison to MO-3 Ground Water Protection Standards
6-5	Sediment: Comparison of SPLP Data to Leachate Standards Protective of Ground Water
6-6	Peat Zone Ground Water: Comparison to Class 3 RECAP Standards
6-7	40-Foot Zone Ground Water: Comparison to Default and Site-specific MO-3 Standards
6-8	Exposure Assumptions for Recreational Exposure to Ground Water
6-9	Surface Water: Comparison to MO-3 Standards
6-10	Exposure Assumptions for Recreational Exposure to Surface Water
6-11	Exposure Assumptions for Shellfish Ingestion
6-12	Crab Edible Tissue: Comparison to Tissue Screening Levels (TSLs)
6-13	Sensitivity Analysis: Comparison of Crab Edible Tissue Concentrations to TSLs at 60 g/day Ingestion Rate
6-14	Sensitivity Analysis: Comparison of Crab Hydrocarbon >C28 to C40 Range Concentrations to TSLs
6-1 5	Sensitivity Analysis: Comparison of Forage Fish Tissue Concentrations to TSLs
6-16	Cumulative Hazard Index Calculations
6-17	Cumulative Risk Calculations
6-18	Summary of TPH Mixture Concentrations and Locations that Exceed RECAP Screening Standards

List of Figures

1-1	Site Location
1-2	Site Features
1-3	Sed-15 Pit Remediation Area
2-1	Geologic Cross Section Locations
2-2	Geologic Cross Section (W-E)
2-3	Geologic Cross Section (S-N)
2-4	Water Well Locations
2-5	US Army Corps of Engineers Surface Water Monitoring Locations
2-6	USACoE - S10 Green's Canal Chloride Trend Chart
2-7	USACoE - S9 Green's Canal Chloride Trend Chart
2-8	USACoE - S3 Schooner Bayou Control Structure (east) Chloride Trend Chart
2-9	USACoE - S2 Schooner Bayou Control Structure (west) Chloride Trend Chart
3-1	Sediment Sample Locations (Site-Wide)
3-2	Sediment Sample Locations (Quadrant 1)
3-3	Sediment Sample Locations (Quadrant 2)
3-4	Sediment Sample Locations (Quadrant 3)
3-5	Sediment Sample Locations (Quadrant 4)
3-6	Ground Water Sample Locations
3-7	Surface Water Sample Locations
3-8	Crab and Fish Sample Locations
3-9	Locations of Hydrocarbon Fraction Analyses in Sediment
4-1	Conceptual Site Model
5-1	Sediment Constituent Concentrations Above Non-Industrial Direct Contact
	Screening Standards
5-2	Sediment Constituent Concentrations Above Ground Water Protection Screening Standards
5 - 3	Peat Zone - Barium Concentrations
5-4	Peat Zone - Strontium Concentrations
5-5	Peat Zone - Petroleum Hydrocarbon Concentrations
5-6	Peat Zone - Chlorides Concentrations
5 - 7	40-Foot Zone - Barium Concentrations
5-8	40-Foot Zone - Strontium Concentrations
5-9	40-Foot Zone - Benzene Concentrations
5-10	40-Foot Zone - Chlorides Concentrations
5 - 11	70-Foot Zone - Chlorides Concentrations
5 -12	90-Foot Zone - Chlorides Concentrations
5 -13	Upper Sand of Chicot Aquifer - Chlorides Concentrations
5-14	Preliminary AOIs for Peat Zone Ground Water - Screening Level
5 - 15	Preliminary AOIs for 40-Foot Zone Ground Water - Screening Level
6-1	Photograph of Tank Battery A and Boring Location WL-3 Area
6 - 2	Sediment Locations and Concentrations Above Final MO-3 RECAP Standards
6-3	40-Foot Zone Ground Water AOIs Exceeding Default GW2 RECAP Standards

EXECUTIVE SUMMARY

On behalf of Union Oil Company of California (UNOCAL), this report provides a summary of the corrective action, site characterization, and risk evaluation completed at the East White Lake study area on Vermilion Parish School Board Property. The report is being provided as a component of the site remediation plan that was developed pursuant to LSA-R.S. 30:29 to evaluate and/or remediate "environmental damage" related to oilfield operations on the East White Lake site.

The property, located within a frequently inundated marsh adjacent to White Lake, is used for oil and gas exploration and production activities and for recreational activities such as fishing and hunting. The property is accessed solely by boat from Schooner Bayou and includes a series of oilfield access canals that branch to the south of Schooner Bayou. Extensive investigations of the East White Lake study area were conducted from 2006 through 2015 by Michael Pisani and Associates, Inc. (MP&A), ICON Environmental Services (ICON), and others as part of a litigation matter. The investigations included the collection and analysis of sediment, ground water, surface water, and biota (crabs and fish) from the property and vicinity. The purpose of the investigations was to evaluate the extent of potentially affected media associated with historical exploration and production operations at the site. An assessment of potential risk for constituents and concentrations reported in all media was performed in accordance with the Louisiana Department of Environmental Quality's (LDEQ's) Risk Evaluation/Corrective Action Program (RECAP) guidance document dated October 20, 2003. The assessment was performed under RECAP Management Option 3 (MO-3) guidance because MO-3 addresses all media investigated and is applicable to recreational land use of this site.

A conceptual site model and exposure pathway analysis were developed to identify potentially complete exposure pathways to be evaluated in accordance with RECAP MO-3. Current and future uses of the property were identified as industrial and recreational. Therefore, in addition to a default industrial scenario, site-specific exposure scenarios representative of Reasonable Maximum Exposure for recreational receptors were used in the development of MO-3 RECAP Standards. The scenarios were developed based upon a combination of site-specific information and LDEQ and EPA sources, consistent with the requirements of the RECAP regulation. The evaluation of the default industrial scenario meets the requirement of RECAP to ensure that properties remain suitable for commerce and industrial use.

Constituents of concern were initially identified through Screening Option analysis for sediment and ground water and were further evaluated under MO-3. RECAP does not provide relevant screening values for surface water or biota, and these media were evaluated fully under MO-3. Recommendations for site management are provided based upon results of the comprehensive MO-3 risk evaluation in accordance with RECAP.

SEDIMENT EVALUATION

Over 300 sediment samples (including all splits) were collected from approximately 100 boring locations. Data representative of current conditions, following remediation completed at a former pit area, were used in the quantitative assessment. The constituents in sediment that warranted further evaluation beyond screening included barium, lead, mercury, 2-methylnaphthalebne and hydrocarbon fractions. Based upon MO-3 evaluation, two sample locations are identified as exceeding the limiting RECAP Standards for hydrocarbon constituents in sediment: WL-3 and WL-4. For the remaining samples collected across the site from approximately 100 boring locations, maximum reported concentrations in sediment are less than RECAP Standards for industrial land use, recreational use, and for protection of ground water. The comprehensive assessment included evaluation of direct contact with near surface sediments, including those located at the base of canals, and evaluation of ground water protection for sediment at all depths (surface and subsurface).

One hydrocarbon fraction in sample WL-3 (0-2'), collected within the active Tank Battery A operational area, exceeded a recreational contact standard and was below the industrial contact standard. Concentrations reported in samples collected deeper in this location were less than the direct contact standards. The sediment samples collected at WL-3 (0-2') and WL-4 in the 4-11' and 11-12.5' intervals below ground surface (bgs) exceeded a total hydrocarbon fraction concentration of 10,000 mg/kg, which is identified in RECAP as an aesthetic standard and not a health-based standard. WL-4 is located within a former pit feature in an area that is no longer in active E&P operations (former Tank Battery B area). Samples collected deeper in the WL-3 and WL-4 locations were less than the aesthetic limit. Figure 6-2 identifies these sample locations with reported hydrocarbon fraction concentrations greater than RECAP Standards.

A corrective action plan to address the former pit, where sample location WL-4 was collected, is being provided by MP&A to the LDNR in the site remediation plan (MP&A, 2015a). The proposed action includes lateral delineation, excavation, confirmation sampling, and backfilling with clean sediments. The scope of this action will address the exceedance of RECAP Standards at WL-4. Should the ongoing operations be discontinued in the Tank Battery A area where sample WL-3 was collected, and the area made available for recreational use, the need for corrective action (and potential scope of remediation) should be addressed at that time.

GROUND WATER EVALUATION

The water well survey for the site identified no registered water supply wells beyond the site boundary within a mile of the site. Although no wells were registered on the site when the investigations began, based upon field survey information, four unregistered wells were identified on the Vermilion Parish School Board property and subsequently registered. Two wells are completed into the fresh water of the Chicot Aquifer over 400 feet deep, one private camp well north of Schooner Bayou and the oilfield central facility well south of Schooner Bayou. Two private camp wells are completed in the 40-Foot Zone north of Schooner Bayou and are used for non-potable purposes such as washing boats and flushing toilets. The water in these 40-Foot Zone wells is not palatable for drinking due to natural iron, manganese, and salt content.

The ground water zones sampled and evaluated under RECAP included a shallow Peat Zone (within upper 20 feet bgs), 40-Foot Zone, 70-Foot Zone, 90-Foot Zone, and Upper Sand of the Chicot Aquifer (at greater than 400 feet bgs). Impact above natural levels or Screening Standards by the site-related constituents chlorides, barium, strontium and/or benzene was identified in the Peat Zone and 40-Foot Zone. Limited impact by chlorides (only) was identified in the 70-Foot Zone; therefore vertical delineation of site constituents was confirmed by concentrations below Screening Standards in deeper zones.

Compliance Concentrations (i.e., maximum concentrations) of all site-related constituents were below Class 3 ground water RECAP Standard (GW3NDW) for the Peat Zone, demonstrating concentrations are protective of potential surface water receptors.

For the 40-Foot Zone, Compliance Concentrations of site-related constituents were below site-specific recreational use standards, considering the current and potential future use of ground water for non-potable purposes in a camp water supply well. Using default Class 2 (GW2) health-based standards that are based on assumed use of ground water as a primary drinking water supply (with no dilution assumed), three AOIs were identified for the COCs benzene (present in one AOI) and barium (present in all three AOIs). Additionally, chlorides exceeded the natural (background) levels in the same AOIs, and chlorides naturally exceed the aesthetic standard for drinking water. Figure 6-3 identifies the AOIs relative to default GW2 standards.

There is currently no exposure to ground water within the default AOIs, and there is no human health risk associated with the concentrations reported in the ground water samples. The exceedances of default health-based standards (benzene and barium) are reasonably delineated and no threat is identified for the non-potable supply wells that are completed in this zone (i.e., the Hebert well and abandoned Crouch well north of the AOIs and Schooner Bayou). The estimated flow direction of the 40-Foot Zone is to the west/southwest, and will be confirmed through additional monitoring proposed by MP&A. The 40-Foot Zone ground water is not a desirable drinking water source under natural conditions based on the iron, manganese and salt (chlorides) levels well above secondary drinking water standards that result in objectionable taste, color, and possibly odor.

No exceedances of health-based RECAP Standards were identified for site COCs in deeper ground water zones. Within the 70-Foot Zone, chlorides appear elevated beneath the 40-Foot Zone AOIs, and the concentrations demonstrate attenuation is occurring between the 40-Foot and 70-Foot Zones. No impact by site COCs is identified in the 90-Foot Zone or Upper Sand of the Chicot Aquifer. The Upper Sand of the Chicot Aquifer is the first naturally fresh zone of ground water beneath the site, generally expected to meet the SMCL for chlorides. Chlorides were confirmed to be below the SMCL in samples collected from this zone at the site.

SURFACE WATER EVALUATION

Surface water samples were collected from 24 locations across the study area. The maximum reported concentrations of all constituents detected in surface water samples, collected from the oilfield access canals and from locations outside of the canals along Schooner Bayou and White Lake, were less than standards developed using RECAP default methods for surface water designated NDW in the Surface Water Quality regulations. The maximum reported concentrations were also less than site-specific recreational RECAP Standards calculated in addition to the default RECAP methods. The results indicate concentrations are protective of surface water users, including the full range of primary contact and secondary contact (fishing and ingestion of fish) recreational activities.

Chlorides are not a concern for adverse effects to human health in recreational surface waters. In general, the chlorides concentrations in Schooner Bayou were higher than those in the oilfield access canals. This is consistent with the US Army Corps of Engineers monitoring of Schooner Bayou, which demonstrates tidal influence from the saltier water of Vermilion Bay.

The direct measurements of surface water conditions further confirm that the Peat Zone ground water, which was evaluated using default RECAP models, is protective of adjacent surface waters.

BIOTA (CRAB TISSUE) EVALUATION

Crabs and forage fish were collected from 13 locations within the oilfield access canals and 10 locations along Schooner Bayou and White Lake. In total, 307 crabs were collected, composited at each location separately, and analyzed for edible tissue concentrations to support human health evaluation. The biota tissue collection and analyses were performed using scientifically valid procedures consistent with Louisiana guidelines. The sampling provided representative data for edible tissues, appropriate for comparison to the screening levels (called TSLs) identified in the Louisiana guidelines. The guidelines were developed jointly by the LDHH, LDEQ, LDWF, and LDAF to determine the need for consumption advisories regarding health risks to the public who fishes recreationally and routinely at a specific water body. The mean and maximum concentrations of constituents reported in crab meat and hepatopancreas samples (i.e., edible tissue) collected within the oilfield access canals and at reference locations in Schooner Bayou and White Lake were less than TSLs

developed for public health protection. The comparison to TSLs indicated concentrations are below protective levels and no human health concern is identified.

The sensitivity of the conclusions to a change in intake assumptions was examined. In particular, an increase in ingestion rate was evaluated to understand the potential effects of consumption at a rate greater than the default specified for the general Louisiana population. No change in the conclusions resulted from an increased ingestion rate selected based on relevant studies for Gulf Coast consumers. The results of the sensitivity analyses support a high level of confidence in the conclusion that reported concentrations are protective of human health, even assuming crabs are harvested solely from the study area and consumed at the expected (general population) or higher ingestion rates.

The LDHH provided an independent review of the sampling and risk assessment results, which were provided to LDHH in a prior report (ERM, 2014). In LDHH's report of March 13, 2015, the LDHH confirmed that the crab tissue samples were collected and analyzed in accordance with the Louisiana advisory Protocol and that concentrations in crab were below levels of health concern. Additionally, the LDHH reported their own collection and analysis of edible crab tissues from the East White Lake area. Based on its independent collection of crabs during November 2010 and analyses of arsenic and barium, LDHH concluded the results are protective of health and do not support the need for a consumption advisory due to concentrations in crab tissue.

RECOMMENDATIONS FOR SITE MANAGEMENT

Based on the results of the RECAP evaluation, concentrations remaining in sediment and ground water are protective of human health under current land and ground water use conditions. It is recommended that the boring locations that demonstrated exceedances of aesthetic standards for hydrocarbons be addressed to comply with RECAP requirements for total petroleum hydrocarbons. For location WL-3, located at the active Tank Battery A, it is reasonable to defer corrective action until the lines are no longer active, as no health risk is identified for the current conditions and industrial use of the area. No other corrective action for sediment is warranted for human health protection.

For the 40-Foot Zone ground water, it is recommended that the reviewing agencies consider the risk level associated with actual and hypothetical ground water use as one of multiple factors in identifying the most appropriate response plan for the site, in accordance with the RECAP regulation. Additional factors in determining the need for and scope of corrective action include site-specific characteristics, a balance of actual and potential risk, confidence in site characterization and exposure scenarios, weight of scientific evidence for exposure and toxicity, background constituent levels, and the technical and economic feasibility of remediation. This RECAP evaluation report provides the risk estimates required for agency review as well as information regarding confidence/evidence related to exposure scenarios and toxicity. The corrective action plan provided separately by MP&A addresses the factors related to

technical and economic feasibility for agency consideration in adoption of an appropriate corrective action plan.

In accordance with RECAP, if required by the reviewing agencies, a conveyance notice is applicable to address assumed future ground water use in AOIs where concentrations in the 40-Foot Zone exceed health-based drinking water standards without application of a DAF.

No exceedance of health-based RECAP Standards is identified for site COCs in additional ground water zones, and therefore no corrective action is warranted for the zones. No further evaluation or corrective action is warranted for surface water or for protection of human consumption of fish and shellfish in the study area.

1.0 INTRODUCTION

This *Site Investigation and RECAP Report* provides an evaluation of site characterization data available for property owned by the Vermilion Parish School Board and referred to as the East White Lake study area (or "the site") in this report. The evaluation was performed in accordance with Louisiana's Risk Evaluation/Corrective Action Program (RECAP) under Management Option 3 (MO-3) and is being provided as a component of the site remediation plan for the property. This report is appended to the remediation plan that was developed pursuant to LSA-R.S. 30:29 to evaluate and/or remediate "environmental damage" related to oilfield operations on the East White Lake site.

The remediation plan prepared on behalf of Union Oil Company of California (UNOCAL) by Michael Pisani & Associates, Inc. (MP&A) provides the site investigation report, including details of the data collection and laboratory analyses. Descriptions of site setting, geology and hydrogeology are provided in detail in the MP&A remediation plan. For efficiency of agency review, the investigation methods and site characterization results are not repeated in full in this report, but are summarized as relevant to the risk evaluation presented herein. The scope of this RECAP report is to provide a quantitative human health risk evaluation conducted utilizing the methods and guidance of the statespecific risk-based corrective action program. An ecological evaluation checklist is also provided in accordance with RECAP, and ecological evaluation beyond the checklist is provided in a separate ecological risk evaluation (Rodgers, 2015) also appended to the remediation plan. A baseline human health risk evaluation, prepared by Gradient in accordance with EPA guidance, is also appended to the remediation plan and provides a supporting assessment to this RECAP evaluation.

The study area is located just east of White Lake in Vermilion Parish, Louisiana, within the East White Lake Oil and Gas Field. A site location map is provided as Figure 1-1. Sediment, ground water, surface water, and biota tissue sampling was conducted on the property between 2006 and 2015 by ICON Environmental Services Inc. (ICON), MP&A, and others as part of a litigation matter. This submittal is intended to identify risk-based corrective action requirements based upon the results of investigation of environmental media completed at the site by all parties. The MP&A, ICON, and biota sampling analytical results were used to conduct the evaluation under RECAP considering current and potential future land use.

In summary, this report includes the following information:

- A summary of corrective actions completed at the site to date;
- Current site characterization (i.e., site setting and use, geology and hydrogeology, etc.) based on results of the site investigations;
- A conceptual site model and exposure assessment;
- A summary and discussion of the constituents in sediment and ground water that exceed RECAP Screening Standards and warrant further Management Option evaluation;

- Presentation of the detailed, site-specific MO-3 RECAP evaluation for sediment, ground water, surface water, and biota tissue; and
- Identification of media and areas that warrant action to address exceedances of RECAP Standards.

A summary of the RECAP Forms is provided in Appendix A, with indication of where the form or equivalent information is provided in this report or the companion remediation plan.

1.1 PROJECT BACKGROUND

1.1.1 Site Operational History

The property consists of approximately 1200 acres within 0.5 miles east of White Lake, and includes a series of oilfield access canals that branch from a main bayou, Schooner Bayou. Oil and gas exploration and production activities (E&P) began on the property in 1939. A total of approximately 91 wells have been permitted on the property, and several wells are currently active. Of the active wells, three are now salt water injection wells. Current production consists of both oil and gas. Support facilities for the operations include a central facility with offices and an associated tank battery (Tank Battery A). Historical support facilities included an additional tank battery (Tank Battery B), which has been decommissioned. These site features are identified in Figure 1-2.

Historical operations may have included management of produced water through discharge to canals in the early history of the field, and the use of production pits. No open pits remain at the site today, and the site characterization presented in this report includes characterization of areas identified by investigators as pit (or potential pit) locations.

There were a very large number of flow lines that crossed the property above and below grade. Many of the inactive lines have been removed as discussed in Section 1.1.3 below.

1.1.2 Investigation History

The following summary provides a description of the general scope and timeline of investigation activities completed at the site. A more detailed description of the sampling methodologies and laboratory analytical methods is provided in Section 3.

Beginning in 2006, ICON completed an initial investigation including installation of over 30 borings within the oilfield access canals of the East White Lake study area. Samples were collected at the base of canals below the water column and from canal banks. ICON then completed over 20 additional borings in the marsh areas between the canals. Samples were collected for laboratory chemical analysis from multiple depth intervals, and all samples are collectively referred to as sediment samples because the site is frequently inundated and the moisture content in samples was higher than typical soil values, regardless of location within the canals or marshland between canals.

The collection of split samples began in 2010, when investigators on behalf of UNOCAL (MP&A) were notified of ICON's sampling plans and when MP&A initiated their own sampling at the site (with ICON generally present to split samples). The generation of split samples, with analyses provided by separate labs, provides a robust data set with a large number of samples. In 2010, ICON completed over 30 additional borings and sediment sampling within the access canals. MP&A completed borings and sediment sampling in target areas to confirm or further delineate areas of impact identified or alleged based on the earlier ICON sampling results, and to collect data specific to RECAP requirements for detailed risk evaluation (e.g., hydrocarbon fraction data, leachate data). Over 35 additional borings were completed by MP&A in 2010 for further definition of constituent occurrence and distribution.

Samples were collected in 2014 by MP&A as part of the remediation planning and implementation in the Sed-15 pit area. In January 2015, the most recent sediment sampling was completed by ICON, and split by MP&A, in eight boring locations completed on canal banks and at the active Tank Battery A facility.

Similar to the sediment investigation, the ground water investigation was initiated in 2006 when ICON completed eight monitor wells in the shallowest ground water zones at the site, specifically the Peat Zone and 40-Foot Zone. In addition, a sample was collected in 2006 from the existing facility water supply well completed at a depth of over 450 feet. The collection of split samples began in 2010 for ground water. In 2010, ICON installed and sampled three additional monitor wells in the 40-Foot Zone, and sampled three existing water supply wells completed in the 40-Foot Zone and Upper Sand of the Chicot Aquifer at camps located north of Schooner Bayou (two active and one abandoned). MP&A completed a confirmation and delineation investigation that included installation and sampling of three monitor wells and 25 temporary sampling points in zones at approximately 40 feet, 70 feet, and 90 feet below ground surface (bgs), plus resampling of the deep (over 450 feet) facility water supply well. In 2014, resampling was performed at two locations in the 40-Foot Zone, one monitor well and one camp well, and in January 2015 the most recent ground water sampling was completed in one new monitor well completed in the shallow Peat Zone.

MP&A collected over 20 surface water samples in the access canals, Schooner Bayou, and White Lake during 2010 and 2014, with ICON collecting split samples.

Omega EnviroSolutions, Inc. (OES) collected 22 blue crabs from the oilfield access canals in October 2010, and analyzed homogenized whole body samples. To provide further assessment and address deficiencies in the OES data collection for human health evaluation purposes, MP&A in coordination with Dr. John Rodgers of Clemson University, collected over 300 crabs from the site and provided separate analyses of edible tissues and remaining crab parts such as the shell.

Samples from all media were analyzed for the following constituents, in general, with the analytes for individual samples dependent upon the phase of investigation and purpose of the specific sample collection: metals, chlorides and

other salt indicator parameters; volatile organic constituents including benzene, toluene, ethylbenzene, xylenes (BTEX); polycyclic aromatic hydrocarbons (PAHs); total petroleum hydrocarbons (TPH) and fractions in RECAP-specified carbon ranges; and polychlorinated biphenyls (PCBs). The analytes include those specified in RECAP Appendix D for assessment of sites potentially impacted from crude oil sources.

The full body of data collected by both investigators was reviewed for this RECAP evaluation, and usability of the data for quantitative risk assessment was determined. Following the data quality review (see Section 3), data identified as representative of site conditions from both investigators were used in the quantitative RECAP assessment. Figures showing sample locations are provided in Section 3. A listing of samples that were collected and included in the RECAP evaluation is provided in Section 5.

1.1.3 Corrective Actions Completed

Peak Energy, L.L.C. in conjunction with UNOCAL completed a site remediation program during September 2010 through June 2011 to remove abandoned or obsolete oilfield structures, equipment, pilings, and flow lines. The work included the following elements:

- Removal of Tank Battery B vessels, platform, pilings and associated lines.
- Removal of flow lines from three canal crossings (six to eight lines per crossing were cut and capped on the backside of spoil banks). Flow lines were removed from the canals, cut into manageable sizes, and transported off site for recycle or disposal.
- Removal of above-ground flow lines from marsh areas. Flow lines were cut and loaded onto a barge for off-site disposal and recycle.
- Removal of unused piles in canals, by pulling the entire pile or cutting and removing to ten feet below mudline. The removed piles were recycled or disposed offsite.
- Removal of an unused barge and compressor, which were removed, scrapped, and disposed offsite.

Documentation for the activities was provided to LDNR in a separate report (MP&A, 2015b).

MP&A completed remediation of a former pit in the Tank Battery B area during October and November 2014. The location is referred to in project documents as the Sed-15 pit area, in reference to a sediment sample location (Sed-15) that fell within the former pit area and contained elevated hydrocarbon concentrations (above 10,000 mg/kg total hydrocarbon fractions). The remediation area is identified in Figure 1-2 along with other site features. In addition, Figure 1-3 provides a detailed view of the remediation area, including sample locations that guided the extent of remediation outlined on the figure. The remediation consisted of a Statewide Order 29-B compliant closure and included the following activities:

- Obtained a Coastal Use Permit from the LDNR Office of Coastal Management and a Wetlands Permit from the U.S. Army Corps of Engineers (USCOE).
- Excavated the upper approximately two feet of clean topsoil and stockpiled onsite for use as surface fill after pit closure.
- The extent of remediation was defined by the delineation samples that were collected in several phases of investigation prior to the remediation, in the locations shown on Figure 1-3. Sample locations within the final excavation area shown on Figure 1-3 were removed and disposed. The delineation data collected outside of and beneath the removal area are included in this RECAP evaluation, as they represent current conditions.
- Performed confirmation sampling at the bottom and sidewalls of the excavation, and analyzed for Oil & Grease. Analytical results of the confirmation samples and analysis of the overburden that was reused in backfill are presented in Tables 1-1 and 1-2.
- Backfilled the excavation with a clayey soil from an offsite borrow area to within approximately 2-3 feet of the original land surface. The clean overburden was returned to the upper 2-3 feet of the excavation area to provide an organic-rich surface for the area.
- Seeded and fertilized the area for surface restoration.

The remediation was documented in a report provided by MP&A to LDNR (MP&A, 2015b).

1.2 REGULATORY CONSIDERATIONS

The RECAP regulation provides appropriate and state-specific technical guidance for risk evaluation of the media investigated at the East White Lake site, and is broadly applicable to both industrial facilities and non-industrial properties. The First Amended Memorandum of Understanding Between LDNR Office of Conservation and LDEQ¹ (February 25, 2011) identifies that remediation plans submitted to LDNR addressing sediment and surface water will be subject to LDEQ review, therefore the assessment of these media was performed in accordance with LDEQ's RECAP regulation and associated guidance.

Management Option 3 is the applicable option of RECAP, as the lower tiers of RECAP do not address media assessed for the East White Lake site including sediment, surface water, and biota tissue. For these environmental media, RECAP requires the use of MO-3 and the development of a site-specific risk evaluation (Section 2.12.6). MO-3 is also the RECAP option that provides for the development of site-specific RECAP Standards using exposure data for settings and land uses that differ from the standard industrial and residential uses, such as recreational, which is applicable to the East White Lake site.

¹ First Amended Memorandum of Understanding Between LDNR Office of Conservation and LDEQ Regarding Approval of RECAP Groundwater Evaluation and Remediation Plans at Oilfield Sites, February 25, 2011

2.0 SITE CHARACTERIZATION

The physical features of the site are presented in this section and include surface features, geology, and hydrogeology as interpreted from the results of site investigation.

2.1 SITE SETTING

The East White Lake study area, as shown in Figure 1-1, is located in a frequently inundated natural marsh environment. Access to the property is achieved by boat via Schooner Bayou which runs east to west near the northern tip of the property. The closest boat launch is Hebert's Boat Launch located at the intersection of Schooner Bayou and LA Highway 82 just south of the bridge crossing the Intracoastal Waterway. There is no access road to the property; access is via surface water by boat.

The subject property and surrounding area are used primarily for oil and gas E&P activity and recreational fishing and hunting (primarily duck and deer). The site marsh environment supports an abundant and diverse ecological population. The system of canals and ditches that were constructed for E&P purposes provide the benefit of access and opportunity for fishing and hunting to the local population. The current property uses are consistent with historical property uses and based upon information from the current operator on site (Peak Energy, L.L.C.); industrial operations are anticipated to continue on the property for the foreseeable future.

2.2 GEOLOGY AND HYDROGEOLOGY

The geology at the site is comprised of thick multi-layered sequences of unconsolidated sediments that alternate between clay, silt, sand, and gravel (in deeper layers). Three major units are identified in the site area by the USGS: a surficial confining unit with sand, the Upper Sand of the Chicot Aquifer system at approximately 400 feet bgs, and Lower Sand of the Chicot Aquifer system at approximately 600 feet bgs. The sands and ground water contained in the surficial confining unit are identified by USGS as naturally salty within the upper 290 feet bgs. A substantial clay separates the shallow sands from the freshwaters of the Chicot Aquifer system.

The upper approximately 100 feet of soil/sediment beneath the property was sampled and classified through completion of continuously logged boreholes by MP&A and through geotechnical laboratory analysis. Boring logs and geotechnical reports are provided separately by MP&A (MP&A, 2015a), and geologic cross sections prepared by MP&A are provided in Figures 2-1 through 2-3. Continuous clays within the surficial confining unit were encountered from approximately 11 feet to 35 feet bgs. A peat layer was encountered in some locations within the upper 13 feet. The peat layer consists of wood fragments and other decayed natural organic materials. It is highly organic, naturally porous, and saturated (called Peat Zone herein). Clay is present beneath the Peat Zone.

A shallow sand layer was encountered at a depth beginning approximately 40 to 45 feet bgs. This fine sand layer is sandwiched between clay layers and the fine sand ranges in thickness from less than 5 feet to 25 feet in thickness. This sand layer is water-bearing and referred to as the 40-Foot Zone in this assessment. An underlying clay was encountered in all MP&A boreholes beneath the fine sand. Sands beneath the clay layer were water-bearing, and deeper ground water was investigated/sampled in depth intervals of approximately 72-83 feet and 97-100 feet bgs. While these intervals are not identified as separate ground water zones, for ease of discussion in this report, the sample intervals are referred to as the 70-Foot Zone and 90-Foot Zone in this evaluation.

The sands within the upper confining unit are considered to have some hydraulic communication, with intervening clay layers providing attenuation of the vertical movement of water and constituents. These zones are separated from the underlying Chicot Aquifer system by a greater than 100-foot thick clay aquitard with sand lenses, and this separation is demonstrated through the difference in natural salinity identified by the USGS studies and publications for the region.

2.3 WATER WELL SURVEY

A water well survey was completed using the LDNR database for a one-mile radius around the site in accordance with RECAP requirements, and the survey results are included in Appendix B. Six monitor wells have been completed and registered on site as part of this ongoing study. Although no wells were registered when the site investigations began, based upon field survey information, four unregistered wells were located and subsequently registered. A water supply well associated with the E&P central facility is completed to approximately 460 feet bgs. Facility personnel reported that the well water is used for non-potable purposes and the facility uses bottled water for drinking. This is the only extraction and use of groundwater occurring on the property to the south of Schooner Bayou.

Three private camp supply wells are located north of Schooner Bayou on Vermilion Parish School Board property. The Hebert well and Crouch well are completed in the 40-Foot Zone and only the Hebert well is functional. The wells in the 40-Foot Zone are reported to be used for non-potable purposes only. The Guidry well is an active well completed to approximately 519 feet bgs in the Upper Sand of the Chicot Aquifer, and no details on use of this well are available, but based on completion in the freshwater zone, use for drinking is assumed possible. The water well locations are shown in Figure 2-4.

2.4 GROUND WATER CLASSIFICATION AND CHARACTERISTICS

Site investigations included sampling of monitor wells, hydropunch points, and water supply wells completed in the Peat Zone, 40-Foot Zone, 70-Foot Zone, 90-Foot Zone, and Upper Sand of the Chicot Aquifer. The following discussion presents the ground water classification for the zones investigated based upon the criteria identified in RECAP.

2.4.1 Peat Zone

Based upon information provided by ICON and MP&A and gathered through well development and sampling, the Peat Zone provides less than 800 gallons per day sustainable yield from a well. An aquifer yield test was not provided by either investigator and classification is based upon field observations. The natural total dissolved solids (TDS) concentration is in the range between 1000 mg/L and 10,000 mg/L based upon sampling of Peat Zone wells at the far southern end of the Study area, outside of any suspected site-related impact (locations AB-2, AB-3). This range is consistent with expected communication between ground water and naturally brackish surface water in the canals at the site. Based upon estimated yield and measured TDS, the zone is identified as a Class 3A ground water resource under RECAP definition. The classification is supported by the water well survey which confirms no use of ground water in the Peat Zone. Ground water flow direction within the Peat Zone has not been determined, but is expected to be highly variable and influenced by surface features such as canals and tidal fluctuation.

2.4.2 40-Foot Zone

Based upon yield testing data provided by ICON and MP&A, the 40-Foot Zone is estimated to provide greater than 800 gallons per day sustainable yield from a well. Slug testing performed by ICON provided sufficient data for analysis in one well, MW-3R. An average hydraulic conductivity of 5.91 x 10-4 cm/sec was estimated, providing a potential yield of approximately 2700 gallons per day (MP&A, 2015a). Based upon potential yield and the measured TDS greater than 1000 mg/L, the zone is identified as a Class 2 ground water resource under RECAP definition. The USGS and other publications for the region confirm the conclusion of naturally elevated TDS in ground water to a depth of 290 feet bgs (Louisiana Geological Survey, 1961). Ground water flow direction within the 40-Foot Zone is estimated to be to the west/southwest, and will be confirmed through additional monitoring proposed by MP&A (MP&A, 2015a).

As identified in the field survey of water wells, the 40-Foot Zone is used for non-potable water supply at private camps north of Schooner Bayou. Water uses include boat washing, fish cleaning, and sanitary uses (flushing toilets). The water is not palatable due to salt, iron, and manganese content, but is useful for recreational purposes. The zone is Class 2A per RECAP definition based upon the presence of a water supply well used for a purpose other than public water supply.

2.4.3 70-100 Foot Interval (called 70-Foot Zone and 90-Foot Zone)

As noted in Section 2.2, the terms 70-Foot Zone and 90-Foot Zone do not refer to distinct ground water zones, but the terms are used for ease of discussion in the risk assessment based on the sampling intervals. The potential ground water yield in these intervals (sampled through hydropunch grab samples) was not evaluated in detail at the site. As a conservative approach, the ground water yield at 70 to 100 feet was assumed to be sufficient for potential water supply (i.e., greater than 800 gallons per day sustainable yield). The zone is not

currently used as a ground water resource within a mile of the site based on the water well search. Based on natural TDS concentrations greater than 1000 mg/L and the assumed yield greater than 800 gallons per day, the ground water was considered a Class 2C resource under RECAP definition (Louisiana Geological Survey, 1961). In addition to documentation in the regional publications, the natural TDS for the 70-100 foot interval above 1000 mg/L was confirmed through sampling of well MW-4D at the far southern end of the study area, outside of any suspected site-related impact. A flow direction has not been identified based on the absence of permanent monitor wells in the 70-100 foot interval.

2.4.4 Upper Sand of the Chicot Aquifer

Based upon the documented use of the Upper Sand of the Chicot Aquifer, this zone was considered Class 1 for RECAP evaluation. This zone is the first fresh water zone beneath the property as documented in regional publications.

2.5 SURFACE WATER CHARACTERISTICS

Construction of Schooner Bayou in 1911 by the US Army Corps of Engineers opened the waterway to intracoastal boat traffic from Vermilion Bay to White Lake and beyond. Schooner Bayou is approximately 17 feet deep, and the access canals typically approximately 8 feet deep. Opening of Schooner Bayou has facilitated water communication between Vermilion Bay, White Lake, and the Mermentau River and exchange of both freshwater and saltwater throughout Schooner Bayou and the study area. The entire area has also been inundated by hurricane storm surges historically, which periodically contributes additional saltwater to this naturally brackish system. Because the construction of Schooner Bayou removed a portion of the clay within the upper confining unit overlying the shallow sand layers, increased surface water communication with the underlying shallow sand layers can occur (MP&A, 2015a).

The Louisiana surface water stream segment number for White Lake and the study area is Mermentau River Basin Subsegment 050703. The LDEQdesignated uses of this subsegment are primary and secondary contact recreation, fish and wildlife propagation, and agriculture (LAC 33:IX.1123). Criteria for chlorides, sulfates, and TDS are provided in the Surface Water Quality regulations for this subsegment, however the most recent LDEQ Water Quality Inventory: Integrated Report (2014) identifies this subsegment as not attaining the standards for these parameters due to natural tidal conditions. The report indicates that modification of the standards is needed to address tidal influence and has not yet been completed. The natural chlorides levels in the study area have been documented by the US Army Corps of Engineers monitoring of Schooner Bayou between the site and Vermilion Bay. The monitoring results are provided in Figures 2-5 through 2-9. Natural chlorides levels range up to between 3000 and 4000 mg/L near the East White Lake study area. No other "impairment" of the designated surface water uses, beyond the natural tidal condition, has been identified for this subsegment.

3.0 SITE INVESTIGATION SUMMARY

As briefly summarized in section 1.1.2, multiple phases of investigation were performed during the period of 2006 to 2015. Additional detail regarding site investigation methods and chemical analytical results is provided in this section, and is further supported by the separate Feasible Plan for Evaluation/Remediation prepared by MP&A (2015a). This section provides the following information:

- Description of the ICON investigation methods, based upon ICON litigation reports and as provided by MP&A based upon their oversight of the ICON field events.
- Summary of the MP&A investigation methods; additional detailed description of the field and laboratory methods is provided by MP&A in their report.
- Tabulated chemical analytical data for sediment, ground water, surface water, and biota including both ICON and MP&A results as available.
- Laboratory data quality review and recommendations for data usability in the RECAP evaluation.

Sample locations are identified in the following figures:

Figure 3-1:	Sediment Sample Locations (Site-Wide)
Figure 3-2:	Sediment Sample Locations (Quadrant 1)
Figure 3-3:	Sediment Sample Locations (Quadrant 2)
Figure 3-4:	Sediment Sample Locations (Quadrant 3)
Figure 3-5:	Sediment Sample Locations (Quadrant 4)
Figure 3-6:	Ground Water Sample Locations
Figure 3-7:	Surface Water Sample Locations
Figure 3-8:	Crab and Fish Sample Locations

3.1 ICON INVESTIGATION

The following summary of investigation methods is provided based upon the reports prepared during litigation by ICON.

3.1.1 Sediment

Sediment samples collected from the base of canals and areas of marsh that were inundated during 2006 (SS1 through SS15, AB-1 through AB-4, AB-13 through AB-15) were collected using a 2-inch diameter PVC pipe that was pushed to refusal into the basal sediment. Upon reaching the total depth, the top of the PVC pipe was capped to create a suction to retain the sample, and the pipe was withdrawn. The sample was extruded onto plastic sheeting and described by a geologist or engineer. A portion of the core was placed in a ziplock bag and the headspace was measured with an organic vapor meter (OVM). For sediment samples collected at the base of canals and in inundated marsh in 2010 (Sed1 through Sed33), a Russian Peat borer sampling tool was used. The tool provides

a 2-foot long core sample, and was advanced to the desired depth in the closed position, then rotated to collect a half-cylinder core sample at multiple spots around a single location. The core samples were described by a geologist, and then homogenized in a 5-gallon bucket prior to sample collection.

Canal bank samples (B2 through B19) collected in August 2006 were collected using a Vibra-core sampler with thin-walled aluminum barrels or tubes. Cores were described by a geologist prior to sample selection based upon field screening or visual cues.

Samples from marshland at "AB" borings were collected by pushing a split-spoon core barrel ahead of a mud-rotary wash boring. The mud-rotary wash borings used surface water for drilling. The barrel was pushed to two feet deeper than the base of the mud rotary boring to collect a sample. Core samples were removed from the barrel and described by a geologist, and samples were selected by ICON for laboratory analysis.

Samples collected on canal banks and in the Tank Battery A area in January 2015 (WL-1 through WL-8) were collected using a hand auger or Vibra-core sampling barrel, although the vibrator engine was not needed to facilitate sample collection. Sediment samples were placed in laboratory provided sample jars and submitted to a LELAP-certified laboratory for analysis.

3.1.2 *Ground Water*

Monitoring wells installed prior to 2015 by ICON were installed in boreholes drilled using a mud-rotary wash rig with surface water drilling fluid. Wells were either 2-inch (AB-1 and AB-2) or ¾-inch diameter wells installed with 10-foot screen, filter sand, and a bentonite seal placed above the filter sand. Well WL-6, installed in the Peat Zone in 2015, was installed in a hand-augered bore hole, with a 5-foot screen. Wells were developed and sampled once field parameters stabilized. Samples were placed in laboratory provided sample jars and submitted to a LELAP-certified laboratory for analysis.

3.1.3 Laboratory Analysis

Samples were submitted by ICON to Sherry Laboratory for analysis. Split samples (beginning in 2010) were submitted by MP&A to Gulf Coast Analytical Laboratory, Baton Rouge, Louisiana (GCAL) and Sherry Laboratory (for some samples with a focus on salt and 29-B parameters). The laboratories are LELAP certified in accordance with LDEQ guidance.

Sediment and ground water samples collected by ICON and split by MP&A were analyzed for one or more of the following constituents, depending upon location, by the following methods:

- Metals [SW-846 6010B, 7010 (As), and 7470/7471 (Hg)],
- Benzene, toluene, ethylbenzene, xylenes (BTEX, SW-846 8260),
- Polycyclic aromatic hydrocarbons (PAHs, SW-846 8270C, 8310),
- Total petroleum hydrocarbons (TPH, SW-846 8015)

- Petroleum hydrocarbon fractions (TX 1005/1006 modified for RECAP carbon ranges),
- Polychlorinated biphenyls (PCBs, SW-846 8082), and
- Chlorides (SW-846 9251, SM 4500 CL E).

Some samples were also analyzed by both investigators for additional salt indicators. The laboratories provided a standard Quality Assurance/Quality Control (QA/QC) package to support data quality review in accordance with RECAP Section 2.5.

3.2 MP&A INVESTIGATION

Based upon review of the data from the ICON sampling events, MP&A conducted additional investigation work to supplement the initial data. The objectives of additional investigation were to complete delineation in select locations, confirm previous detections, establish site specific stratigraphy and characterize the deep soil physical properties, and gather additional data for a complete RECAP evaluation. The following sections generally summarize the investigation methods.

3.2.1 Sediment

Sediment samples were collected in the study area by MP&A using three collection methods: 1) Vibra-core, 2) modified Coliwasa sampler, and 3) Geoprobe for the more soil-like areas (marsh between canals, deep borings). The sampling method for each location was selected based on required analysis, depth of water, location, and target sampling interval. Within canals, sediment samples were collected from boats anchored or positioned at the desired location.

Vibra-Core Sediment Sampling. Vibra-core sampling included the use of dedicated aluminum tubes approximately 3 inches in diameter and a weighted, gas powered vibrating clamp. The length of tube was determined based on depth of water and sampling interval required. Sampling tubes were advanced vertically using the motorized vibrating head. Once the desired depth was reached, the tube was extracted. The tube was cut open and observations were recorded for the core (e.g., texture, color, consistency, odor, sheens). Samples were then collected from target intervals. In many borings, the target interval was selected based on visual or PID indications of potential impact. Samples were placed in laboratory provided sample jars and submitted to a LELAP-certified laboratory for analysis.

Modified Coliwasa sediment sampling. Dedicated, disposable Coliwasa tube samplers made of polyethylene tubing approximately one inch in diameter and 3-feet long and equipped with a syringe were used. This method was determined to be appropriate for soft, shallow subaqueous sediments (6 inches), and the samples were collected from a boat. The boat was anchored to minimize drift and maintain the desired position. The depth of water was measured with a graduated pole, and the Modified Coliwasa samplers were advanced into the sediment and extruded on a table covered with aluminum foil. Multiple pushes were made to obtain the required volume necessary for analysis. Samples were

composited from the top 6-inches that were collected within a $1' \times 1'$ area. Samples were placed in laboratory provided sample jars and submitted to a LELAP-certified laboratory for analysis.

Geoprobe Sampling. Samples were collected from the more elevated areas of the site and from deeper borings by Vibra-core sampling (described above) and hydraulic, dual tube direct-push technology (e.g., Geoprobe). Samples were collected in wetland areas and in deeper borings beneath the sediment in canal bottoms utilizing a Geoprobe rig operating off a liftboat and a Marsh Master. New, clean, dedicated acetate liners were used to collect samples. The liner and tubing was advanced to the desired sampling interval, then extracted. The tube was cut open and observations were recorded for the core. Samples were collected from target intervals and/or intervals selected based upon field screening methods. Samples were placed in laboratory provided sample jars and submitted to a LELAP-certified laboratory for analysis.

3.2.2 Ground Water

Ground water samples were collected by MP&A from three types of installations: temporary discrete sampling points, newly installed monitoring wells, and existing water supply wells.

- Depth-discrete, grab ground water samples were collected from multiple depths using a retractable 4-foot-long well screen pushed with a hydraulic Geoprobe rig operating off of a liftboat (referred to as hydropunch method).
- Monitoring wells were installed in boreholes advanced using a Geoprobe rig operating off a liftboat. Each monitoring well was constructed of ¾-or 1-inch diameter PVC casing and 10-foot long screen (0.01' slot). A piece of four-inch diameter protective PVC casing with a slip cap was placed over each monitoring well. Well construction details are provided by MP&A in the Feasible Plan for Evaluation/Remediation (MP&A, 2015a).
- Existing water wells were sampled using the pump, lines, faucets, and all plumbing present at the time of sampling.

Samples were collected from the retractable well screens and monitoring wells with a peristaltic pump and disposable tubing. Following development (as applicable), low flow sampling protocols were followed including the measurement of field parameters. Samples were collected in laboratory provided sample jars and submitted to a LELAP-certified laboratory for analysis.

3.2.3 Surface Water

Surface water samples were collected from the approximate middle of the water column within oilfield access canals, Schooner Bayou, and White Lake. At each sample location, the boat was anchored to minimize drift and maintain the desired position. The depth of water, in feet, was measured with a graduated pole. A peristaltic pump and tubing were used to collect the surface water samples. The tubing intake was positioned and secured on a graduated pole at the midpoint of the water column. The pump was run to clear the tubing of any water that may have entered on the descent prior to sample collection. Water

chemistry measurements (e.g., dissolved oxygen, conductivity, turbidity) were collected using cleaned, calibrated hand held instruments and recorded in log books. Samples were collected in laboratory provided sample jars with as little agitation or disturbance as possible. Samples were submitted to a LELAP-certified laboratory for analysis.

3.2.4 Laboratory Analysis

Samples were submitted by MP&A to GCAL and Sherry Laboratory for analysis. Split samples were submitted to Sherry Laboratory by ICON. Sediment, ground water, and surface water samples were analyzed for select parameters (and utilizing the methods) identified in Section 3.1.3. The laboratory provided a standard QA/QC package to support data quality review in accordance with RECAP Section 2.5.

3.3 CRAB AND FISH TISSUE STUDY

Twenty two blue crabs were collected by OES on behalf of Vermilion Parish School Board from eight locations within the oilfield access canals at the site in October 2010 and were analyzed for select constituents including metals and petroleum hydrocarbon mixtures (expressed as TPH). In response to deficiencies of the OES assessment for use in human health evaluation (e.g., whole body crab analysis), and in response to OES conclusions asserting potential human health hazards from crab consumption, investigators on behalf of UNOCAL prepared a sampling and analysis plan for collection and analysis of tissue from blue crabs and forage fish in the East White Lake study area. The Quality Assurance Project Plan/Sampling Analysis and Assessment Plan for Crab and Forage Fish Tissue at the East White Lake Oilfield (the "Plan") was developed in accordance with applicable EPA and Louisiana agency guidance to support evaluation of potential risk to human health and ecological receptors. The Plan was provided to the Louisiana Department of Environmental Quality (LDEQ), Louisiana Department of Health and Hospitals (LDHH), Louisiana Department of Natural Resources (LDNR), and Louisiana Department of Wildlife and Fisheries (LDWF) for review, and is included as Appendix C to this report. The Plan included well defined project objectives and measurement quality objectives and incorporated appropriate Quality Assurance procedures as recommended in the Protocol for Issuing Public Health Advisories for Chemical Contaminants in Recreationally Caught Fish and Shellfish ("Louisiana Protocol", LDHH et al., 2012), both for sampling and laboratory analysis of tissues. The objective of data collection and analysis, as identified in the Plan, was to obtain valid data that would support comparison of analyte concentrations in crab and fish tissue with appropriate risk-based standards for human health and ecological risk assessment. The crabs were collected and analyzed using methods appropriate for human health evaluation. Forage fish were collected and analyzed using methods specifically to support evaluation of ecological risk.

The sampling and analysis plan was implemented December 13, 2010 through January 10, 2011 by a field sampling team including MP&A personnel and Dr. John Rodgers of Clemson University. A detailed report of the field methods and activities, prepared by the field team members, is included in Appendix D, and

was previously provided to LDEQ, LDHH, LDNR, and LDWF for review. Deviations from the work plan included the following:

- Two additional sampling locations were added while in the field based upon availability of additional traps, T-01A in the access canals and TR-03A in Schooner Bayou.
- After measuring and weighing shad fish from three sample locations, the
 decision was made to shift to estimating total volume of fish collected at
 each sample location (in lieu of individual fish measurements).
- Sample locations in White Lake were moved (but remained in White Lake) based upon rough water conditions.

The field event resulted in collection of 307 crabs at thirteen site locations in the access canals (T-01 through T-12 plus T-01A), six locations along Schooner Bayou (TR-01 through TR-05 plus TR-03A), and four locations in White Lake (TR-06 through TR-09). The locations outside of the access canals were called reference locations and were labeled "TR" for "tissue reference". Forage fish were collected at twelve of the site locations and nine of the reference locations. Crabs were collected using baited traps, and fish were collected with cast nets or trawl nets in accordance with a Scientific Collecting Permit issued by the LDWF. Additional details of the collection effort, including equipment description, dates of trap placement and collection, number and gender of crabs collected per date and location, and measurements of the crabs collected are provided in the Crab and Fish Collection Report in Appendix D. Field Forms completed to document the sampling, photographs of the sampling program, and field-measured water chemistry parameters are provided in the collection report.

In addition, crabs were purchased from commercial seafood markets to serve as reference samples, including markets in Baton Rouge, Lake Charles, New Orleans, Des Allemands, Biloxi, and Houston. The market names and addresses are identified in the Crab and Fish Collection Report. The crabs and fish were delivered on ice to Columbia Analytical Services, Inc. (CAS) for dissection and analysis of metals. Tissue samples were provided by CAS to Pace Laboratories for analysis of hydrocarbons. The tissue samples were analyzed for hydrocarbons, barium, inorganic and total arsenic, methylmercury and total mercury. The analytes were selected for analysis to be responsive to the specific assertion by OES that these constituents were elevated in the whole crab analyses in the OES report of November 2, 2010.

Consistent with Louisiana regulatory agency Protocol (LDHH *et al.*, 2012), crab meat and hepatopancreas (an organ commonly referred to as "crab fat") were analyzed separately in composite samples collected during the field study because these tissues comprise the edible tissues for human consumption. The exoskeleton (shell) and other soft tissues were analyzed to support ecological evaluation. Tissues collected from crabs in a single sample location were composited to provide sufficient volume for laboratory analysis, and to support screening analysis as recommended in the Louisiana Protocol.

3.4 CHEMICAL ANALYTICAL RESULTS

Chemical analytical results are summarized in tables in Appendix E. Results for split samples are provided side-by side, where available. Tabulated analytical data include the following:

- Sediment (Table E-1)
- Peat Zone Ground Water (Table E-2)
- 40-Foot Zone Ground Water (Table E-3)
- 70-Foot Zone Ground Water (Table E-4)
- 90-Foot Zone Ground Water (Table E-5)
- Upper Sand of Chicot Aquifer Ground Water (Table E-6)
- Surface Water Data (Table E-7)
- Crab Edible Tissues (Table E-8)
- Forage Fish (Table E-9)

To reduce duplication in submittals, the laboratory reports for ICON and MP&A data are not appended to this report but are incorporated by reference (ICON, 2010a, b, c; ICON, 2015; MP&A, 2015a).

3.5 DATA QUALITY EVALUATION/ DATA USABILITY REVIEW

A data quality review and data usability evaluation were performed for the data collected from all environmental media. The evaluation included review of features such as analytical and field methods, laboratory performance (e.g., Quality Assurance/Quality Control, QA/QC, samples and indicators), sample quantitation limits, and split sample results. In accordance with RECAP Section 2.5, the review was focused on the identification of representative (definitive) data appropriate for use in quantitative risk assessment.

Third party data validation was performed by Quality Assurance Associates, Inc. (QAA) for some of the data, and the reports provided by QAA are included in Appendix F. Review was completed by ERM for the remaining data, and results of the review are summarized below.

For the great majority of analytical results, no major deficiencies were noted that warranted rejection of the data for inclusion in the RECAP evaluation. Based on the detailed data quality review, the chemical analytical results are considered appropriately representative and useable for site characterization and quantitative risk evaluation with exceptions or qualification/limitations identified below.

3.5.1 Sediment, Ground Water, and Surface Water

<u>Analytical Methods.</u> The analyses of site samples were generally performed using RECAP-recommended analytical methods at LELAP-certified labs, and available laboratory reports indicated laboratory QA/QC was performed in accordance with SW-846 method requirements with exceptions noted in the discussion below. The following discussion also identifies limitations (e.g.,

interferences) affecting the analytical results and observations regarding comparability of results (split samples) from two separate laboratories.

The use of the 29-B sample preparation method for metals analysis of sediment samples differs from the routine SW-846 preparation method by the addition of a pulverizing step before extraction and subsequent analysis of the extract for metals. This pulverizing step is not representative of exposure conditions in the natural environment. The 29-B preparation method was used by Sherry Laboratory (also called Element Laboratory) for the ICON sediment samples, while the MP&A sediment samples typically included the routine SW-846 preparation method. While this difference in sample preparation is recognized and may contribute to differences in split metals results, the subsequent analysis of extract is comparable, and data from both investigators were considered usable for the risk assessment to make best use of the data available. However, for the following samples collected in August 2006, analyses by routine SW-846 preparation method were also provided by ICON, and were used in the risk assessment in lieu of the 29-B prep method results for the same location and sample interval, because the routine SW-846 prep method is more representative for risk assessment:

Sample ID:	Depth:	Sample ID:	Depth:
B2 Rerun	6-8'	B10	4-7.5'
B2 Rerun	10-10.5′	B12 Rerun	3.5-5'
B3 Rerun	9-12'	B13 Rerun	3-5'
B4 Rerun	0-1'	B13 Rerun	7.5-9.5'
B4 Rerun	3-5'	B15 Rerun	4-6'
B5 Rerun	8-10'	B17 Rerun	3-6'
B8 Rerun	5.5-7'	B17 Rerun	10.5-12'
B9 Rerun	0-0.5'	B19 Rerun	6.5-9.5'
B9 Rerun	8-9'		

• ICON investigation results provided only Total Petroleum Hydrocarbon (TPH) mixture analyses expressed as TPH-GRO, TPH-DRO, and TPH-ORO. For sampling events in which MP&A was present to split samples (i.e., events beginning in 2010) and for the investigations initiated by MP&A, the majority of samples analyzed for TPH mixtures by ICON were also analyzed by fractionation methods in accordance with RECAP Appendix D. Appendix D identifies:

If TPH fractionation data and TPH mixture data have both been collected at an AOI and the two data sets yield different conclusions concerning management of the AOI, then management decisions shall be based on the fractionation data since the fractionation method yields more specific information regarding the TPH constituents present and thus more accurately characterizes site conditions.

For the sediment data, two features of the fraction data set were examined to confirm that risk evaluation performed using the available fraction data provides an appropriate representation of site risk even though fraction data are not available at every sample location: general spatial coverage and concentration range represented.

- (1) Fraction data were collected from locations throughout the study area, with increased focus during delineation events on areas where elevated TPH mixture concentrations had been reported. Figure 3-9 shows the study area, locations that were sampled and analyzed for TPH mixtures only, and those that were sampled and analyzed for hydrocarbon fractions.
- (2) In accordance with RECAP requirements, fractions were collected and are available for the highest hydrocarbon mixture results, including the 10 highest mixture results (total TPH-DRO plus TPH-ORO). Further, fractions are available for 18 out of the 20 highest mixture results, and 26 out of the 30 highest. Overall, TPH mixtures were analyzed in 240 sediment samples and fractions were analyzed in approximately 90 samples². TPH mixtures were detected in 136 samples, and fractions were analyzed in 52 of the 136 samples with detected TPH mixtures. The upper end of the range of hydrocarbon mixture results is well represented by the fraction data set, therefore conclusions regarding the risk associated with hydrocarbon impact at the site can and should be based on the fraction analysis results in accordance with RECAP Appendix D.

In summary, the primary RECAP analysis and conclusions presented in this report for risk associated with hydrocarbons in sediment in the East White Lake study area are based upon the risk assessment completed using the fraction data. This is consistent with RECAP Appendix D and supporting guidance. Information about the assessment of hydrocarbon mixture data, specifically where fractions were unavailable, is provided for complete information, but does not provide a sound basis for remediation decisions to address health risk.

- For ground water, hydrocarbon fraction data are available for all samples in which TPH mixtures were reported as detected, with the exception of Peat Zone monitor wells completed and sampled by ICON in 2006 with no split samples (and therefore no fraction data) available. The RECAP evaluation for petroleum hydrocarbons in ground water is therefore based upon the fraction results with the exception of the Peat Zone, which is based on both.
- Split results for four mercury delineation samples in sediment differed significantly as follows:

² Sample counts include all sediment data collected, inclusive of Sed-15 area.

Sample ID (depth):	Sherry:	GCAL:
	(mg/kg-wet)	(mg/kg-wet)
SS8 (2-4')	0.18	10.1
SED6 (0-2')	5.03	0.43
Hg-MPA-07 (0.5-2')	8.77	0.18
Hg-MPA-09 (0-0.5')	3.44	0.04

The remaining split results for mercury were reasonably similar. The QA/QC for both analyses indicate the data are representative, and the splits agree that mercury is present. To address the difference in reported concentrations, the average of the split results was considered representative of exposure conditions for the location and was used in the quantitative risk assessment.

- Split sample results for arsenic in ground water are notably variable, i.e., detection by one laboratory above the reporting limit of 0.01 mg/L is routinely not confirmed by the second laboratory. Based on review of these variable results with GCAL laboratory, it is suspected that the arsenic results are affected by interference that is introduced by high dissolved solids (high salt levels) in the ground water. High dissolved solids are a known potential interference with the detection of metals by Inductively Coupled Plasma (ICP, Method 6010), which was used as the detection method for ground water analysis by both labs. This potential interference, combined with the fact that arsenic may be present naturally at values very close to the detection limit, may contribute to the poor agreement between split laboratory results. Based upon all available information, confidence in the quantitation of arsenic in ground water samples is low. It is noted that arsenic does not demonstrate the same pattern of occurrence as the other primary oilfield indicator constituents chlorides and barium, as further discussed in Section 5.
- The selenium results for split ground water samples for this site show 100% disagreement between the two separate laboratories regarding the presence of selenium: Sherry Laboratory routinely shows detection of selenium above the reporting limit (and Screening Standard). Selenium was not detected above the reporting limit in any sample analyzed by GCAL laboratory. Selenium detections in ground water were therefore not confirmed.
- Based upon low level detections of mercury in method blanks associated with the batch for some MP&A surface water samples, detections at less than 5 times the blank level were qualified as U in accordance with EPA (EPA, 2010) and RECAP data validation guidelines (see Table E-7).

<u>Sampling Methods/Representative Samples.</u> A requirement of the data usability review is to identify results that are representative of field conditions and true concentrations. The following observations were identified and informed the selection of data for use in the quantitative risk evaluation:

- Hydropunch sampling technology was used to collect ground water samples for delineation in the 40-Foot Zone, 70-Foot Zone, and 90-Foot Zone. This sampling methodology provides a discrete interval (grab) sample without construction of a well, and therefore allows for rapid collection of a large number of samples. The nature of the sampling methodology, without typical well development or purging, results in higher turbidity (suspended solids) as noted in the field turbidity values for the hydropunch samples, which include HP-1-T through HP-10-T, HP-1-I through HP-10-I, MW-1C, MW-4D, MW-5D, MW-6S, MW-6D, and SB-1-MW-D. Field turbidity in the samples ranged from 27.5 to over 3500 NTU, with 23 of the 25 locations having turbidity greater than 40 NTU. Based on the field turbidity results and field team visual observations, both investigators provided filtered analyses for metals in the hydropunch samples to provide results representative of ground water constituent levels (and not suspended solids). The analysis of filtered metals for the turbid samples is consistent with guidance of RECAP Appendix B Section B2.5.4 (Saar, 1997). The dissolved metals results are used in the quantitative analysis for samples collected with hydropunch methodology.
- Samples from two monitor wells, SB-2-MW and SB-3-MW, were also turbid (following purging) with field turbidity levels elevated above the target sample quality value of NTU< 40, and investigators requested dissolved analyses recognizing the elevated turbidity. The dissolved metals results for these samples were included in the quantitative risk assessment. Although three additional monitor wells had elevated field turbidity levels (AB1, AB3, and AB5), dissolved metals were not analyzed so the unfiltered sample results were used in the risk assessment.
- The following wells were sampled during more than one sampling event over the investigation history, and the most recent sample results were used in the quantitative assessment to represent current conditions (RECAP Section 2.5):
 - SB-1-MW sampled May 7, 2010, June 8, 2010, and April 21, 2014;
 - Facility well (also called WW-1 and AWW1) sampled April 3, 1995 (for chlorides and TDS only), November 11, 2006, and May 25, 2010; and
 - Hebert water well sampled September 1, 2010 and April 21, 2014.
- As noted previously, samples collected within the Tank Battery B
 remediation area (within the Sed-15 pit remediation area) were excluded
 from the risk assessment because they no longer represent site conditions.
 Samples excluded from quantitative analysis due to remediation include
 the following:
 - SED15 (0-2' and 2-4') collected on February 26, 2010;
 - SED-15 (0-0.5') and a field duplicate (SED-115) collected on May 6, 2010;
 - MPA-Sed 15 (0-2') collected on June 8, 2010; and
 - SP-MPA-05 (0-5' and 7-9') collected on October 6, 2010.
- Samples collected at locations Sed-1, Sed-2, and Sed-3 by ICON in February 2010 were collected off site to the east of the Vermilion Parish School Board property and were excluded from the risk evaluation.

<u>Laboratory Performance Indicators:</u> QA/QC samples collected included field duplicates, field blanks, laboratory-prepared method blanks, matrix spikes, and laboratory control samples. Results of QA/QC samples were reviewed and the following observations are noted.

- The Data Validation and Usability Review report prepared by QAA July 2, 2010 for sediment, surface water, and ground water samples collected by MP&A through June of 2010 is provided in full in Appendix F-1. The review concluded that there were no significant QC deficiencies, and all data were therefore considered "... technically valid and acceptable for risk assessment purposes." Some sample results were qualified with "J" qualifiers due to minor QC deviations documented in the report. Results with the J-qualifier are considered an estimated value, and are to be used in the quantitative assessment per LDEQ and EPA guidance for risk assessment. Reporting limits were identified to be below RECAP Screening Standards, and blank samples indicated no significant contamination was introduced during transport or in the laboratory.
- A data quality and usability review was conducted for sediment and ground water samples collected by ICON through June 2010, and was documented in the review summary (matrix) provided in Appendix F-2. Some sample results were qualified with "J" qualifiers due to minor QC deviations documented in the summary, and the J-qualified results are used in the quantitative assessment per LDEQ and EPA guidance for risk assessment. A single major QC issue was identified (0% recovery for MS/MSD for mercury in three ground water samples), which resulted in rejecting non-detect mercury ground water results for the following ICON samples: MW-1, MW-2, and MW-3. Valid split results are available from MP&A for these samples. All other reported sample data are considered usable for risk evaluation in accordance with RECAP. Reporting limits were identified to be below RECAP Screening Standards with the exception of PCBs for samples SED 6(0-2') and SED 8 (0-2'), for which dilution was required to eliminate interference from non-target background. No constituents were detected in method blanks or trip blanks, indicating no contamination was introduced during transport or in the laboratory.
- For analytical data collected following June 2010 by MP&A and ICON, the data quality review conducted by ERM identified no significant deficiencies in performance indicators that warranted rejection of analytical data.

<u>Sample Quantitation Limits.</u> Sample quantitation limits were evaluated relative to RECAP screening and final MO-3 standards, in accordance with RECAP Section 2.5. Quantitation limits were below RECAP Screening Standards with few exceptions. Observations regarding quantitation or reporting limits are identified below.

• For sediment, as noted above, the reporting limit exceeded RECAP Screening Standards in the ICON analyses of PCBs (reported in dry weight) in SED 6(0-2') and SED 8 (0-2'), for which dilution was required

to eliminate interference from non-target background. MP&A reported the analyses of individual Arochlors for splits of these same samples in wet weight, with non-detect results at lower reporting limits, with a maximum of 0.2 mg/kg. This reporting limit is lower than the limit reported by ICON, slightly above the non-industrial Screening Standard of 0.11 mg/kg, but well below the industrial Screening Standard of 0.9 mg/kg. This reporting limit is well below an MO-3 value that would be developed for industrial or recreational land use.

- Reporting limits for PCB analyses (Arochlors) provided by ICON (with no split results) in a separate event were above Screening Standards as reported in dry weight by the lab (SED-8, SED-9, SED-11, SED-13, SED-15, SED-19, SED-24, SED-26, SED-31 all in the 0-0.5' interval). All of the results were non-detect, and the reporting limits in wet weight are below Screening Standards with the exception of SED-9, SED-11, and SED-19. For these samples, the reporting limit is 0.4 mg/kg, which is slightly above the non-industrial Screening Standard of 0.11 mg/kg, but below the industrial Screening Standard of 0.9 mg/kg. PCBs were detected in only 1 of 14 samples analyzed for PCBs, and no significant deficiency in risk characterization is identified.
- Reporting limits for the aliphatic >C8-C10 range were elevated above
 Screening Standards for samples WL-3 (0-2') and WL-4 (4-11'). Dilution
 of these samples was performed due to hydrocarbon concentrations
 present in the longer chain ranges, and these locations have been
 identified for further action based on concentrations in the higher ranges.
- Reporting limits for metals in sediment were below Screening Standards.
 With the exceptions noted above, reporting limits for organic constituents (reported in wet weight) were below Screening Standards.
- For ground water, reporting limits were below Screening Standards with the exception of Peat Zone sample WL-6, for which the reporting limits provided by MP&A (GCAL laboratory) exceeded the Screening Standards for arsenic, cadmium, and lead. The reporting limits for the split of this same sample, collected and reported by ICON, were below Screening Standards for each of these constituents.
- For the media lacking RECAP Screening Standards (surface water, biota tissue), reporting limits were below the limiting MO-3 RECAP Standards.

No significant deficiencies in site characterization or risk characterization were identified based upon sample quantitation limits.

<u>Use of Representative Split Sample Results:</u> Where valid split results were available based on results of this QA/QC review, the average of detected concentrations in the split results for sediment and ground water are identified in the data summary tables and used in the risk evaluation as most representative of the concentration at a location. Where a single valid result (with no split) is available, the result is used in the risk evaluation. For the few instances of one detection and one non-detect in splits for sediment, the detected value was used. For ground water, in which few constituents are detected overall and for which detected concentrations are frequently very close to the detection limit, detections were averaged with the full detection limit of the non-detect result, which conservatively assumes the constituent is present at a value equal to the reporting limit.

3.5.2 Biota Tissue

The data quality review for biota tissues was performed by QAA, a data validation firm with experience in assessing this matrix. The use of an experienced validation specialist was considered important as analysis of this matrix is less routine and more complex than analysis of soil and water. The full report prepared by QAA is provided in Appendix F-3.

The laboratories selected to perform the tissue analyses were selected based upon their experience specifically in analysis of biota tissues. Columbia Analytical Services, Inc (CAS) in Kelso Washington provided metals analyses, and Pace Analytical Services, Inc. (Pace) in Green Bay, Wisconsin provided the hydrocarbon analyses.

Samples were collected, processed, and analyzed according to scientifically valid, standardized procedures. The detailed QC performed in the field is documented in the *Crab and Fish Collection Report* (for field methods), and the QA/QC performed in the laboratory is documented in the laboratory reports and QAA report. The conclusions of the data quality review by QAA included the following:

- Four requested analyses could not be performed due to insufficient sample volume:
 - EWL-T-05-F-COMPOSITE_BLUEGILL was not analyzed at Pace for TPH or Lipid Content.
 - A whole body crab composite was not analyzed at Pace for hydrocarbons or Lipid Content for EWL-T-09-C.
 - EWL-TR-01-C-HEPATOPANCREAS was not analyzed at Pace for hydrocarbons or Lipid Content.
 - A whole body crab composite was not analyzed at Pace for hydrocarbons or Lipid Content for EWL-TR-06-C.
- Crabs collected from site location T-12 were received at the laboratory above target temperature and were discarded (not analyzed) per Quality Control requirement. Additional crabs, held at proper temperature, were available for analysis from this location.
- The method blanks prepared using a tuna matrix, as well as laboratory experience with biota tissue, confirmed that naturally occurring lipids in biota tissue are detected and quantified as "hydrocarbon" within the carbon range evaluated in this study. The laboratory provided analytical results in the carbon range of C8 to C40, and identified the occurrence of significant biota lipid contribution to the hydrocarbon concentration above C28, in the >C28 to C40 carbon range. The lipid material that dominates this carbon range is a natural part of biological tissue and is quantified as "TPH" because the analytical method does not distinguish biological organic material from petroleum organic material. Based upon the laboratory's recommendation, the organic material in the >C28 to C40 range was not assessed as petroleum hydrocarbon in the primary evaluation due to the identification of this material by the laboratory as

largely or entirely biological lipids. To the extent that hydrocarbons were also present in this range, however, the concentrations reported in this range were evaluated in a sensitivity analysis provided with the MO-3 assessment.

- The method blank analyses confirmed that there are also smaller natural lipid peaks expected to occur within the C8 to C28 range that has been quantified as potential petroleum hydrocarbon. Therefore the concentrations reported as petroleum hydrocarbons and included in the risk assessment for the C8 to C28 range are potentially biased high because they include non-petroleum natural tissue organics.
- Laboratory control spike recoveries were within target range for inorganics, and within expected range for hydrocarbons in a tissue matrix per laboratory experience, which is generally lower than typical values for a soil or water matrix. Surrogate recoveries for hydrocarbon analysis were also within the expected surrogate recovery range for tissue, with the exception of three samples.
- Of over 130 tissue analyses, surrogate recovery of o-Terphenyl was below the data rejection limit for the following three samples (all reported as non-detect), indicating it is not possible to determine the presence or absence of hydrocarbon detected in these samples:

- EWL-T-01A-C-MEAT C8-C16, C16-C28

EWL TR-04-FISH C8-C16EWL TR-09-FISH C8-C16

The results were rejected (i.e., R-qualified) and not used in the risk evaluation.

The fish and crab tissue data meet the requirements for definitive data as defined by LDEQ and are considered representative and usable for the purposes of quantitative risk evaluation with the exception of the three samples noted above.

4.0 CONCEPTUAL SITE MODEL AND EXPOSURE ASSESSMENT

A conceptual site model (CSM) was developed in accordance with RECAP requirements based on the available data and is presented is this section to support the human health risk evaluation under MO-3 of RECAP. A conceptual model is a tool used in risk assessment to describe relationships between chemicals and potentially exposed human receptor populations, defining the relationships between the identified sources of chemicals, the mechanisms by which the chemicals might be transported in the environment, and the means by which the receptors could come in contact with the chemicals. The CSM presented in Figure 4-1 illustrates actual and potential exposure pathways for the site. An exposure pathway is formed by the occurrence of the following components: a source of constituents; an environmental medium and transport mechanism (i.e., migration pathway); a point of exposure; a route of exposure; and a receptor population. When all five components are present, the exposure pathway is termed a complete exposure pathway. Components of the CSM are identified as follows:

- Constituent sources are identified based on site history and site
 investigation results. Source media include currently affected media that
 may result in the transfer of constituents to another medium.
- **Migration pathways** for the constituents of concern consider, where applicable, volatilization, fugitive dust generation/deposition, surface runoff, episodic overland flow, leaching, ground water seepage to surface water, and biota uptake.
- Exposure points and potential exposure points are identified by determining if and where the known and potential receptors may come in contact with an exposure medium.
- Routes of exposure and potential routes of exposure are identified based on the anticipated receptor activities at the exposure points.
- **Receptors** and potential receptors are identified based on current and reasonably anticipated future land use at the site.

The CSM was developed following the guidance of Section 2.7 of RECAP and confirms that the default RECAP Standards (RS) used for screening purposes are appropriate and conservative for the actual exposure conditions. Further, the CSM provides the basis for site-specific human health assessment under MO-3. The following sections provide an explanation of the CSM.

The analogous site model and exposure assessment for ecological receptors are addressed in a separate detailed ecological risk evaluation.

4.1 SOURCE MEDIA

Sources of constituents identified in environmental media at the site include the historic oil and gas E&P activities. Historic sources potentially included former pit features, releases from flow lines, discharges of produced water to canals prior to regulation of the discharge, and accidental release during hydrocarbon storage and waste management. The inorganic constituents and salt components

(e.g., chlorides) that were detected and evaluated in this assessment are also present naturally. Studies have also demonstrated that atmospheric deposition from additional natural (e.g., fires) and industrial emission sources contribute to the levels of some constituents in sediment and surface water; mercury is a notable example of this (LDEQ, 2001). The long history of boat traffic through the study area also provides a source of petroleum hydrocarbons to surface water and sediment unrelated to oil and gas production.

Affected sediment is considered a potential source medium that may result in the transfer of constituents to ground water, surface water, or biota. Affected ground water is considered a potential source medium that may result in the transfer of constituents to deeper ground water zones or surface water.

4.2 MIGRATION PATHWAYS

Constituent migration pathways that are potentially relevant to the source media at the site include:

- Leaching/percolation of constituents from sediment to shallow ground water;
- Surface runoff transporting constituents from the surface sediment to surface water;
- Fugitive dust generation from surface sediment to ambient air;
- Volatilization of constituents from ground water or sediment to ambient air; and
- Lateral movement of constituents in ground water to surface water/sediment.

The potential pathways are described in more detail below, including an explanation of those identified as incomplete migration pathways at the site.

Leaching of constituents from sediment to shallow ground water is presumed to be a complete migration pathway at the site. This pathway is quantitatively evaluated using default RECAP Standards protective of ground water and site-specific leachate testing. The impact of surface runoff and overland flow to a receiving water body is evaluated by direct assessment of samples collected from surface water and biota harvested from surface water within the study area.

There is limited potential for dust generation in this wetland/marsh setting. A large proportion of the sediment samples were collected from canal bottoms and banks with high moisture content. The samples collected between canals from marshland are also high in moisture content. The samples collected from the former Tank Battery B area and the active Tank Battery A area were generally the most elevated at the site, and the surface in these areas is largely vegetated. Because of the limited potential for significant dust generation, the optional particulate emission factors relevant to dusty sites were not warranted in the RECAP Standard development. The volatile constituents BTEX were non-detect in the samples collected from sediment, therefore, vapor emissions of these constituents from sediment are not a concern for receptors at the site. The more

volatile hydrocarbon fractions were also generally absent, however, the sediment-to-ambient air pathway is included in default algorithm for sediment contact evaluation. There are no enclosed structures (i.e., slab on grade construction) in the study area, and any future construction will include construction on piers due to the nature of the surface sediment. Quantitative evaluation of the enclosed structure pathways (Soiles and GWes) is therefore not warranted.

The shallow Peat Zone is identified as Class 3 ground water with potential for discharge to adjacent surface water, and is evaluated quantitatively in accordance with RECAP for the surface water uses designated for Subsegment 050703: primary and secondary contact recreation, fish and wildlife propagation, and agriculture (LAC 33:IX.1123).

The potential for migration of constituents vertically from the shallow ground water to the deeper zones of ground water is addressed through direct evaluation of the deeper zones, including sampling completed at depths of approximately 40-50 feet, 70-80 feet, 90-100 feet, and over 400 feet bgs. Given the time that the site has been in operation (over 70 years), it is reasonable to assume that current conditions are reflective of hydraulic communication between the zones.

The limited impact by site-related constituents in the 70-Foot Zone, and absence of site-related constituents in the 90-Foot Zone and Upper Chicot Aquifer, demonstrate that vertical movement of constituents from the shallower ground water zones is mitigated/attenuated within the confining unit. The confining unit is separated from the fresh water Chicot Aquifer system by a substantial clay aquitard, and constituent migration to the Chicot Aquifer is an incomplete pathway.

4.3 EXPOSURE POINTS

Exposure media include sediment, surface water, ground water and biota under current conditions.

Sediment was evaluated as a direct contact exposure point, regardless of location on canal banks, within marshland between canals, or subaqueous in canals. In fact, contact is far less likely to occur routinely (or at all) for subaqueous sediment (e.g., beneath 8 feet of water in canals). Surface water in the canals was evaluated as a direct contact exposure point.

The Peat Zone ground water is not used for any purpose on site or in the vicinity of the site. For this Class 3 zone, surface water that receives ground water discharge is identified as the potential exposure point.

Because the 40-Foot Zone (Class 2) is used for non-potable purposes in the vicinity of the study area on Vermilion Parish School Board Property, the hypothetical future point of exposure is assumed to be throughout the site. Under current conditions, there is no exposure point within the Areas of Investigation (AOIs) identified in this zone.

The ground water zone sampled at approximately 70 and 90 feet bgs was assumed to be Class 2, with hypothetical future points of exposure assumed to be throughout the site. Under current conditions, there is no exposure point within the ground water intervals referred to as 70-Foot Zone and 90-Foot Zone on site or within a mile of the site.

For the Upper Sand of the Chicot Aquifer, defined as a Class 1 zone, the potential point of exposure is assumed to be throughout the site. Under current conditions, two water supply wells are completed in this zone, one within the study area and one north of the study area (north of Schooner Bayou on Vermilion Parish School Board Property).

The biota sampled and analyzed using methods representative for human health exposure evaluation (i.e., blue crabs) were evaluated as a direct exposure point for human ingestion.

4.4 ROUTES OF EXPOSURE

Exposure routes are ways that constituents of concern enter the body. The potential exposure routes associated with the exposure media at the site (i.e., sediment, ground water, surface water, and biota) are ingestion, dermal contact, and inhalation of volatiles released to ambient air.

<u>Sediment:</u> For sediment, dermal contact and incidental ingestion are the potential routes of exposure. Inhalation of constituents released to the breathing zone is assumed to occur, however, the high moisture content of the sediment and general absence of volatile constituents reduces the potential for release to the breathing zone. As a practical matter, sediment located at the bottom of the canals is not available for contact, particularly routine contact that is assumed as part of this risk evaluation. The only practical means by which this exposure would occur is excavation of material and placement at the ground surface. This hypothetical scenario is addressed in this risk assessment.

<u>Ground water:</u> For Class 3 ground water in the Peat Zone, assumed exposure routes at the receiving water body include fish ingestion, dermal contact, and incidental ingestion during primary contact activity.

For the 40-Foot Zone (Class 2), private camp site wells completed in the zone are reported by camp users to be used only for non-potable purposes such as boat washing, fish cleaning, and flushing toilets. The water is not palatable due to salt, iron, and manganese content, but is useful for recreational purposes. It is not useful for many household purposes (e.g., washing clothes, etc.) due to the iron and manganese content that results in discolored water and staining. Under current and expected future conditions, dermal exposure would occur during recreational camp site use as wash water. For complete information, the potential for inhalation of constituents released through indoor water use (e.g., during showering) was also considered for this analysis. In accordance with RECAP, a default Class 2 evaluation is also provided for complete information, and the assumed exposure route for default assessment is daily water ingestion during residential use of the ground water (e.g., through a domestic water supply well). In accordance with RECAP, the default assessment is protective of

additional residential exposure routes, including dermal and inhalation (if applicable) exposure.

For the 70-Foot and 90-Foot Zones sampled within the Chicot Aquifer Confining Unit, there is no exposure under current conditions, as no wells are completed in these zones in the study area or within a mile of the site. The zones were assumed to be Class 2 for purposes of this risk evaluation, and the assumed exposure route for default assessment is daily water ingestion, dermal exposure, and inhalation during residential use of the ground water (e.g., through a domestic water supply well).

Wells completed within the Upper Sand of the Chicot Aquifer (Class 1) include the facility well within the study area and the Guidry camp well north of Schooner Bayou. Facility personnel identified that the facility well is used for non-potable purposes as wash water, with drinking water supplied by bottled water. The exposure route for the facility well is therefore dermal contact. It is assumed the Guidry camp well water is available for ingestion as well as non-potable purposes. In accordance with RECAP, a default Class 1 evaluation is provided for this zone, and the assumed exposure route for default assessment is daily water ingestion, dermal exposure, and inhalation during residential or industrial use of the ground water.

<u>Surface water:</u> Surface water contact includes dermal exposure and incidental ingestion during recreational activities. Facility personnel identified that recreational activities such as swimming and water skiing are not prevalent in the canals of the study area and are more applicable to White Lake west of the study area. However, fishing and hunting activities may result in incidental contact with the surface water. Inhalation is not a complete pathway for surface water; volatile constituents are not expected to persist and were not analyzed by either investigator in surface water.

<u>Biota:</u> Ingestion of seafood harvested from the site provides a potential exposure route for biota.

4.5 RECEPTORS

Current and potential future receptors that may come in contact with site media include workers involved in E&P activities, recreational and commercial fisherman, and other recreational users of the property. Recreational uses in addition to fishing include birding and hunting, primarily for duck and deer. There are no sensitive receptors such as schools, hospitals, or nursing homes within a 500-foot radius of the site. Commercial facilities associated with the E&P activities are located within the study area, and some workers are present in a 7-day-on and 7-day-off (or similar) rotation. Camps are located on Vermilion Parish School Board property north of Schooner Bayou, and are visited for recreation. The camps are not full time residences, and currently support occasional recreational activity. The site has been used in the same manner for over 75 years, and based upon the remote location accessible by boat, future use of the property can be expected to remain the same, providing recreational opportunities as well as continued E&P (commercial/industrial) activity.

4.6 SUMMARY OF EXPOSURE PATHWAY ANALYSIS

Based on the analysis of potential exposure pathways for the site, the human exposure scenarios that are quantitatively evaluated under MO-3 for current and future conditions in accordance with RECAP include:

- Industrial worker exposure to sediment (Sedi): exposure pathways include ingestion, dermal contact, and inhalation of volatiles released to the breathing zone.
- Recreational exposure to sediment (Sedr): exposure pathways include ingestion, dermal contact, and inhalation of volatiles released to the breathing zone.
- Sediment-to-ground water protection (SedGW3NDW): transfer of constituents to the upper water bearing zone is evaluated, considering subsequent migration of constituents to surface water.
- Class 3 ground water, Peat Zone: ground water discharge to surface water, with recreational use of surface water assumed to include primary contact, fishing, and fish ingestion (GW3NDW).
- Class 2 ground water, 40-Foot Zone (GW2): hypothetical domestic use of ground water is assumed to occur within the study area, including ingestion, dermal contact, and inhalation of volatiles released to the breathing zone. Because use of the ground water for this purpose is not occurring and is unlikely due to poor natural water quality, use of the zone for non-potable purposes (dermal contact, inhalation of volatiles released during indoor non-potable use) was also evaluated based on information available regarding actual use of ground water at camp sites.
- Class 2 ground water, 70-Foot and 90-Foot Zones (GW2): hypothetical domestic use of ground water is assumed to occur within the study area, including ingestion, dermal contact, and inhalation of volatiles released to the breathing zone.
- Upper Sand of the Chicot Aquifer (GW1): domestic use of ground water is assumed to occur within the study area, including ingestion, dermal contact, and inhalation of volatiles released to the breathing zone.
- Recreational exposure to surface water: exposure pathways include dermal contact, incidental ingestion, and biota ingestion.
- Recreational exposure to seafood (crabs) harvested from the site: exposure pathway includes ingestion of shellfish.

The exposure scenarios, including specific exposure assumptions, are defined in Section 6 (in the MO-3 assessment) to address the pathways identified above. The scenarios address both the industrial and non-industrial uses of the property, consistent with the definitions of Section 2.9 (Land Use) of RECAP. Consistent with Section 2.9.1, the industrial land use of the East White Lake site falls under North American Industry Classification System (NAICS) major group code 211 for Oil and Gas Mining. The recreational use would be described as non-industrial, consistent with RECAP Section 2.9.2. As identified in this section of RECAP, non-industrial land use is represented by a residential scenario under

the lower tiers of RECAP because these tiers do not provide guidance for assessment beyond default industrial and residential exposures to soil. The site-specific recreational use is addressed under MO-3, which is in fact required to address impacts and exposure to sediment. This requirement for MO-3 evaluation of sediment recognizes that the settings and locations of sediment impact typically differ from the setting assumed in defining the default residential and industrial exposure scenarios in RECAP. As a result, the potential for exposure and the exposure patterns (e.g., frequency, duration) differ from routine soil exposures quantified in RECAP, and warrant examination on a site-specific basis.

LDEQ guidance in support of RECAP has identified that sediment RECAP Standards are to be developed under MO-3 based on the type of concern associated with the constituents present in the sediment, and has identified the following considerations.³

- If recreational exposure to sediment is a concern, then RECAP Standards based on ingestion and dermal contact with sediment should be developed.
- The equations for the soil RECAP Standards are recommended with input parameters appropriate to the sediment setting. Soil default parameters are recommended in the absence of sediment parameters such as ingestion rate.
- If the concern is the bioaccumulation of chemicals by biota (and fish ingestion pathway) then this pathway shall be evaluated.
- If another cross-media transfer is the concern (e.g., release to ground water), then this transport pathway should be addressed to establish a sediment RECAP Standard.

Based upon the pathways identified for the East White Lake site and the LDEQ guidance for sediment evaluation, all of these considerations are addressed in the quantitative MO-3 assessment provided in Section 6.

³ Frequently Asked Questions (2012), provided by LDEQ in support of RECAP.

5.0 RECAP EVALUATION METHODS AND RESULTS: SELECTION OF COCS FOR SEDIMENT AND GROUND WATER

The tiered RECAP framework for evaluating risk to human health and the environment consists of a Screening Option (SO) and three Management Options (MO-1, MO-2, and MO-3), with increasing site specificity in higher tiers. As discussed in prior sections, MO-3 is applicable to the East White Lake site to address all media investigated as well as to address the recreational land and water use.

For sediment and ground water, SO standards were used to select constituents of concern (COCs) warranting further evaluation under MO-3. The SO standards are not applicable as final standards, but provide a conservative (protective) method for identifying constituents/concentrations which warrant no further evaluation and those which warrant more site-specific evaluation. For surface water and biota, no directly applicable screening methods are provided in RECAP, and these media are evaluated under MO-3 without a screening step.

The SO standards were also used as a preliminary screen to identify the distribution of COCs in sediment and ground water, i.e., the locations and delineation of COC concentrations warranting further assessment.

5.1 SCREENING FOR SELECTION OF CONSTITUENTS OF CONCERN (COCs)

The RECAP Screening Standards (SS) were taken from RECAP Table 1 (October 20, 2003), if available, or developed in accordance with RECAP Appendix H. Using the data identified as representative (definitive) data in Section 3.5, and recognizing the availability of split sample results for a large number of sample locations, the average of split results (where available) was identified as the most representative concentration for a sample location and was used in the risk assessment. The full detection limit was used in the average for non-detect results. The side by side analytical results and averages for sediment split samples are provided in Appendix E, Table E-1. The side by side analytical results and averages for ground water split samples are provided in Appendix E, Tables E-2 through E-6.

In summary, the sediment data used in this risk assessment include over 300 samples from approximately 100 locations, with multiple depths per location. The ground water data include samples as follow:

- Eight (8) Peat Zone locations (monitor wells);
- Twenty (20) 40-Foot Zone locations (6 monitor wells, 2 water wells, 12 hydropunch points);
- Thirteen (13) 70-Foot Zone locations (hydropunch points);
- One (1) 90-Foot Zone location (hydropunch point); and
- Two (2) Upper Sand of the Chicot Aquifer locations (water wells).

5.1.1 Sediment

The SO standards provided in RECAP for soil are an appropriate screening tool for identifying sediment COCs because use of soil algorithms (with modification of exposure parameters) is recommended by LDEQ for sediment evaluation. The default scenarios use exposure assumptions that likely overestimate the routine sediment exposure and therefore provide a conservative screen to identify constituents of potential concern.⁴ The maximum constituent concentrations reported in surface samples were compared to the industrial (Soil_{SSi}) and non-industrial (Soil_{SSni}) soil direct contact SS, and the maximum constituent concentrations reported in samples collected from all depths were also compared to ground water protection SS (Soil_{SSGW}). The comparisons are provided in Tables 5-1 and 5-2. Based upon the requirement identified in Section 2.8.2.1 of RECAP and guidance provided specifically for sediment evaluation, the results were expressed appropriately in wet weight for comparison to direct contact standards (Table 5-1) and dry weight for comparison to ground water protection standards (Table 5-2).⁵

The surface interval is not defined in RECAP for sediment. For soil, the surface interval is defined as the upper 15 feet "...based on the fact that future intrusive soil activities at the site may result in deeper soils being brought to the surface." (see RECAP definition of Surface Soil in Section 2.1.) For subaqueous sediment and sediment in this wetland/marsh environment, the potential for development and disturbance is limited relative to soil in an industrial or residential setting. The sediment interval available for direct contact is assumed to be within the upper three feet, consistent with the RECAP provision for surface soil which indicates "Based on site-specific conditions, the Department may require, or the Submitter may request to divide the surface soil into two intervals: (1) ground surface to 3 feet bgs; and (2) 3 feet bgs to depth of impact." This approach was used for sediment at the East White Lake site recognizing the reduced likelihood of disturbance. The samples most representative of surface sediment in the 0 to 3 feet interval were therefore identified and included in the direct contact evaluation. The sediment data included in the direct contact evaluation are identified in Table 5-3.

 $^{^4}$ No adjustment of the Q/C from 0.5 acre was needed because volatile constituents are not detected in the sediment.

⁵ RECAP identifies: "Typically, exposure concentrations (and the risk-based SS and RS) are based on a wet-weight concentration whereas source concentrations (and environmental fate and transport SS and RS) are based on a dry-weight concentration... For soils with a high moisture content (such as sediment), the wet-weight and dry-weight concentrations may differ significantly, therefore, the reported concentration should be adjusted to account for the percent moisture prior to calculation of the AOIC for comparison with an environmental fate and transport SS or RS." For this reason, direct contact and ground water protection evaluations are provided separately instead of identifying a single limiting SS.

Table 5-4 identifies the sediment data included in the screening evaluation for ground water protection. This screening evaluation was inclusive of all samples at all depths identified as representative in the data quality review (Section 3.5). Table 5-2 provides the comparison of maximum concentrations to the Soil_{SSGW}. Inorganic constituents that exceeded the SS for ground water protection (barium, lead, mercury) were further evaluated using site-specific leachate data available for samples with maximum reported concentrations (i.e., Synthetic Precipitation Leaching Procedure, SPLP data). This site-specific ground water protection demonstration is allowed under all options of RECAP (per RECAP Appendix H), and the detailed SPLP evaluation is provided in the MO-3 assessment.

Based upon the screening evaluation using maximum concentrations, the following COCs were identified in sediment for further evaluation under MO-3 of RECAP:

Sediment Direct Contact- Industrial	Sediment Direct Contact - Non-industrial	Sediment Ground Water Protection
None	Barium	Barium
	Mercury	Lead
	Aliphatic >C10-C12	Mercury
	Aliphatic >C12-C16	2-Methylnaphthalene
	Aliphatic >C16-C35	Aliphatic >C16-C35
	Aromatic >C12-C16	Aromatic >C8-C10
	Aromatic >C16-C21	Aromatic >C10-C12
	Aromatic >C21-C35	Aromatic >C12-C16
		Aromatic >C16-C21

The maximum reported constituent concentrations in site sediment were less than screening levels for industrial direct contact, indicating concentrations in sediment at the East White Lake site are protective for potential worker contact. For the hydrocarbon fractions and two metals above non-industrial (residential) direct contact SO standards, the locations and concentrations reported above the SS are shown in Figure 5-1. Figure 5-2 identifies the locations and concentrations reported above SO ground water protection standards. For the locations with no concentrations posted in the figures, constituent concentrations were below SS. Table 5-5 provides a comprehensive summary of the constituents, concentrations, and sample locations identified in the figures, i.e., the RECAP SS exceedances. The COCs and concentrations exceeding the SS are further evaluated under MO-3 using more applicable exposure assumptions.

The supplemental examination of TPH mixture results, for locations where fraction analyses were unavailable, is provided in the uncertainty analysis. As discussed in Section 3.5.1, the hydrocarbon fractions are identified as COCs and provide the primary evaluation under RECAP.

The screening evaluation was inclusive of all detected constituents except for salt (chlorides measured in sediment), which is a non-traditional parameter per RECAP (with no screening value) that is addressed under MO-3.

5.1.2 *Ground Water*

For each of the ground water zones sampled at the East White Lake site, maximum concentrations reported in ground water were compared to the ground water SS (GW_{SS}). Table 5-6 identifies the ground water data included in the screening evaluation for ground water protection. The screening evaluation was inclusive of all detected constituents except for essential nutrients (e.g., calcium, potassium) that do not warrant risk evaluation.⁶ The comparison to GW_{SS} is provided in Table 5-7. The site-related COCs identified for further assessment are discussed below.

<u>Peat Zone.</u> Constituents that exceeded SS in the Peat Zone samples and are identified as site-related COCs for further GW3NDW evaluation include barium, strontium, TPH-DRO and TPH-ORO. Additionally, because chlorides are elevated naturally in this environment, a SS has not been identified and chlorides are carried forward and addressed as a non-traditional parameter under MO-3. As discussed in Section 3.5.1, hydrocarbon fraction data are available for only one of the eight Peat Zone sample locations, therefore TPH mixtures for the remaining samples are further assessed for completeness.

<u>40-Foot Zone</u>. Constituents that exceeded SS in the 40-Foot Zone samples and are identified as site-related COCs for further GW2 evaluation include barium, strontium, and benzene. As for the Peat Zone, chlorides are carried forward and addressed as a non-traditional parameter under MO-3.

<u>70-Foot Zone.</u> No site-related COCs are identified above SS in the 70-Foot Zone, assumed to be GW2 for purposes of this risk evaluation. Chlorides are carried forward and addressed as a non-traditional parameter under MO-3.

<u>90-Foot Zone.</u> No site-related COCs are identified above SS in the 90-Foot Zone, assumed to be GW2 for purposes of this risk evaluation. Chlorides detected in this zone are within expected natural range (MP&A, 2015a), and no impact to the 90-Foot Zone is identified. This zone was sampled below the area exhibiting maximum COC concentrations in shallower intervals. No further assessment of this zone beyond screening is warranted.

<u>Upper Sand of Chicot Aquifer.</u> The ground water quality in the Upper Sand of the Chicot Aquifer does not exhibit impacts as a result of vertical migration of COCs, and does not exhibit any RECAP SS exceedances with the exception of naturally elevated iron and manganese. Chlorides in this zone are less than the SMCL of 250 mg/L, which provides an appropriate screening value for the fresh water Class 1 Zone. No further assessment of this zone beyond screening is warranted.

-

⁶ An essential nutrient is a chemical required for normal body functioning that must be obtained from a dietary source. USEPA (1989) identifies that chemicals that are essential human nutrients, toxic only at very high doses, need not be considered further in quantitative risk assessment. Examples provided by EPA include calcium, iron, magnesium, potassium, and sodium.

Table 5-8 provides a summary of the constituents that exceeded RECAP SS in at least one sample and were not identified as COCs warranting further evaluation because they are naturally occurring and available data do not indicate they are present as a result of site operations. The detailed rationale is provided in Table 5-8.

The distribution of site-related COCs is shown in the following figures by zone. Exceedances of SS are identified in the figures, where applicable. In addition, the distribution of chlorides is identified for each ground water zone sampled.

Figure 5-3	Peat Zone - Barium Concentrations	
Figure 5-4	Peat Zone – Strontium Concentrations	
Figure 5-5	Peat Zone - Petroleum Hydrocarbon Concentrations	
Figure 5-6	Peat Zone - Chlorides Concentrations	
Figure 5-7	40-Foot Zone – Barium Concentrations	
Figure 5-8	40-Foot Zone – Strontium Concentrations	
Figure 5-9	40-Foot Zone - Benzene Concentrations	
Figure 5-10	40-Foot Zone - Chlorides Concentrations	
Figure 5-11	70-Foot Zone - Chlorides Concentrations	
Figure 5-12	90-Foot Zone - Chlorides Concentrations	
Figure 5-13	Upper Sand of Chicot Aquifer - Chlorides Concentrations	

The point by point comparison to RECAP SS is provided with the comprehensive summary of ground water data provided in tables of Appendix E.

5.2 DELINEATION AND IDENTIFICATION OF AREAS OF INVESTIGATION (AOIs)

5.2.1 Sediment

RECAP Section 2.6.1.5 identifies that the AOI for sediment shall be identified relative to analytical quantitation (detection) limits or LDEQ-approved background concentration limits. This provision is based upon the absence of RECAP-defined screening standards specific to sediment. Based upon this guidance, and the detection of COCs (e.g., barium) in all samples collected at the site, the AOI for sediment includes the full East White Lake study area. This represents a reasonable exposure area for the site because recreational activities, evaluated under MO-3 for a 30 year duration, are not limited to a single area of the site but are more likely to include receptors traversing the site for boating, fishing, or hunting purposes over the assumed period of many years.

To address the RECAP objective of achieving lateral and vertical delineation of impact at the site, the industrial SS provides a reasonable delineation standard for sediment because industrial use is applicable to the site. While the non-industrial standard was used to select COCs for site-specific assessment in the most conservative manner, the default residential scenario has no applicability to the site sediment. Comparison to the industrial SS indicates that sediment is delineated to below these levels laterally and vertically (all reported concentrations are below industrial direct contact SS). Additionally, sediment is delineated to below the recreational standards developed in Section 6, the MO-3 assessment.

Relative to ground water protection, because the uppermost water-bearing zone at the site is Class 3, the most appropriate delineation standards are the Class 3 ground water protection standards which are identified in Section 6 (Tables 6-4 and 6-5). The sediment concentrations are delineated to below Class 3 ground water protection standards (without a dilution-attenuation factor applied), consistent with RECAP Section 2.6.1.2, provision (3). No AOI is identified above the MO-3 ground water protection standards.

5.2.2 Ground Water

For ground water, preliminary AOIs are identified relative to the risk-based RECAP SS for the site-related COCs. AOIs for further evaluation are identified for the Peat Zone and 40-Foot Zone in Figures 5-14 and 5-15, and the final AOIs for these zones are identified relative to the final MO-3 ground water standards in Section 6. No AOIs are present above risk-based SS for site-related COCs in the ground water zones investigated deeper than the 40-Foot Zone.

To address the RECAP objective of achieving lateral and vertical delineation of impact at the site, the SS provide a reasonable delineation standard for Class 1 and 2 ground water zones. Figures 5-7 through 5-9 for the 40-Foot Zone demonstrate that site-related COCs are delineated laterally to below risk-based SS with the exception of barium in HP-08 on the eastern property boundary. Concentrations were vertically delineated at the 70-Foot Zone, where concentrations of site-related COCs were reported below RECAP SS. While no applicable SS is available for chlorides, the chlorides concentrations appear delineated vertically at the 90-Foot Zone, where the reported concentration falls within expected natural (background) range.

For the Class 3 ground water of the Peat Zone, the most appropriate delineation standards are the Class 3 ground water standards which are identified in Section 6 (Table 6-6). The Peat Zone ground water concentrations are delineated to below Class 3 ground water standards (without a dilution-attenuation factor applied), consistent with RECAP Section 2.6.1.2, provision (3).

6.0 RECAP EVALUATION METHODS AND RESULTS: MANAGEMENT OPTION 3 FOR ALL MEDIA

MO-3 of RECAP is applicable to all environmental media that have been sampled at the East White Lake study area. This section provides an assessment for sediment, ground water, surface water, and biota. The assessment addresses the receptors and exposure pathways identified in Section 4.6 based on the CSM and exposure pathway analysis. The MO-3 evaluation is presented as follows:

Section 6.1: Land Use and Exposure Assumptions

Section 6.2: Sediment Evaluation
Section 6.3: Ground Water Evaluation
Section 6.4: Surface Water Evaluation

Section 6.5: Biota (Crab Tissue) Evaluation

Section 6.6: Cumulative Risk Section 6.7: Uncertainty Analysis

Section 7 addresses the RECAP requirement for ecological evaluation.

The components of MO-3 assessment for any environmental medium include Hazard Identification, Exposure Assessment, Toxicity Assessment and Risk Characterization. The components are addressed in this RECAP assessment as follows:

Hazard Identification: The Hazard Identification step refers to the selection of site-related COCs for quantitative risk assessment. Because relevant, conservative screening standards are available in RECAP for soil and ground water, selection of COCs in site sediment and ground water was performed and summarized in Section 5. Further assessment of the site COCs for these media is provided in Sections 6.2 and 6.3. For the remaining media, no screening standards are available in RECAP and the full assessment of detected constituents is provided under MO-3.

Exposure Assessment: The exposure assessment was provided in Section 4. Additionally, the specific intake assumptions for each receptor and exposure medium are identified in tables in this section along with rationale/references.

Toxicity Assessment: In accordance with RECAP, under MO-3, current toxicity values were identified using the EPA's recommended hierarchy of sources and using LDEQ-specific guidance for hydrocarbons. Toxicity factors include Reference Doses or Reference Concentrations for noncarcinogens, and Cancer Slope Factors or Unit Risk Factors for carcinogenic constituents. The current toxicity factors for the COCs warranting MO-3 evaluation in any medium are documented in Table 6-1 and were used in the MO-3 evaluation. For several constituents, the toxicity factors are updates to the factors provided in RECAP 2003.

Risk Characterization: Risk characterization is the integration of intake assumptions and toxicity factors to estimate carcinogenic risk and noncarcinogenic hazard levels. To develop RECAP Standards, the intake assumptions, toxicity factors, and LDEQ-defined target risk levels are combined

to solve for a concentration that is protective for receptors that experience the assumed exposures.

6.1 LAND USE AND EXPOSURE ASSUMPTIONS

The current and future uses of the property include industrial and recreational use as discussed in the CSM. Section 6.3 of RECAP (*Exposure Assessment for Management Option 3*) identifies that site-specific exposure assumptions representative of a Reasonable Maximum Exposure⁷ (RME) scenario for the identified receptor activity patterns shall be used in the development of MO-3 RS. The RME scenarios specific to each medium are identified in the subsequent sections, with supporting information.

RECAP Section 6.3 further clarifies the following: "The Submitter shall ensure that the property remains suitable for commerce and, at a minimum, suitable for industrial use." The industrial exposure scenario is evaluated herein and complies with this requirement of RECAP.

The identification of RME scenarios for recreational use, specific to the East White Lake site setting, as the basis for remediation standards is also consistent with the statute that required LDEQ to develop "Minimum remediation standards", i.e., the statute that initiated the development of the RECAP regulation. The statute identifies specifically (La. R.S. 30:2272.1):

The remediation standards shall be developed to ensure that the potential for harm to public health and safety and to the environment is minimized to acceptable levels, taking into consideration the location, the surroundings, the intended use of the property, the potential exposure to the discharge, and the surrounding ambient conditions, whether naturally occurring or man-made.

The Statute further states the following requirements for setting remediation standards:

- B. In developing minimum remediation standards the department shall:
 - (1) Base the standards on generally accepted and peer reviewed scientific evidence or methodologies to the extent practical.
 - (2) Base the standards upon reasonable assumptions of exposure scenarios as to amounts of contaminants to which humans or other receptors will be exposed, when and where those exposures will occur, and the amount of that exposure.
 - (3) Avoid the use of redundant conservative assumptions. The department shall avoid to the maximum extent reasonable the use of redundant conservative assumptions by the use of parameters that provide an adequate margin of safety and which avoid the use of unrealistic conservative exposure parameters and which guidelines make use of the guidance and regulations for exposure assessment developed by the United

39

⁷ RME is defined by USEPA (1989) as "the highest exposure that is reasonably expected to occur at a site."

States Environmental Protection Agency pursuant to the "Comprehensive Environmental Response, Compensation, and Liability Act of 1980", 42 U.S.C. 9601 et seq. and other statutory authorities as applicable.

(4) Where feasible, establish the remediation standards as numeric or narrative standards setting forth acceptable levels or concentrations for particular contaminants.

Accordingly, the exposure scenarios identified as RME in this assessment were developed based upon a combination of site-specific information and LDEQ and EPA sources. This method and the resulting scenarios comply with the intent clearly expressed in the Statute and with the requirements of the RECAP regulation under MO-3.

6.2 MO-3 SEDIMENT EVALUATION

Direct Contact: For the constituents that were identified as COCs in sediment, warranting further evaluation beyond non-industrial screening, sediment RECAP Standards (RS) were developed using the algorithms provided in Appendix H of RECAP for direct contact, with updated toxicity factors, and modifying exposure assumptions as appropriate for sediment exposure. Exposure assumptions are identified for an adult and child recreational scenario in Table 6-2, with references/rationale for the selected exposure assumptions. It is assumed that the receptors will visit the site every single weekend (104 days each year) for a duration equal to RECAP's default residential value of 30 years, i.e., assuming they reside in the area and frequent the same location for recreation. Dermal contact, sediment ingestion, and inhalation of volatiles are assumed to occur on every visit. As a conservative assessment, no modification to these exposure assumptions was made for subaqueous sediment, sampled at the base of canals that is not available for routine contact. LDEQ-provided spreadsheets were used to calculate the adult (Sedr Adult) and child (Sedr Child) recreational RS for each COC. Default chemical and physical properties provided in RECAP for the COCs were used. The Sedr values were adjusted to account for additive effects to the same target organ or system, using the additivity divisor approach of RECAP Appendix G. The final RS for the adult and child receptors are identified in Table 6-3, and the supporting RECAP calculation spreadsheets are provided in Appendix G. In the same table, the industrial RS is also identified for each constituent (calculated with updated toxicity factors), to address additivity for the COCs and to allow comparison to the recreational standards for identification of the limiting RS.

The maximum reported sediment concentrations are identified in Table 6-3 as the Area of Investigation Concentrations (AOICs), and are compared to the limiting sediment RS. It is important to note that in the assessment of human exposure, and therefore risk, the average concentration is more representative than any single sample location of the chemical concentration that would be contacted at a site over time because an individual can be expected to move throughout the area rather than remain stationary at a single sampling location. As an individual moves across an area that has a constituent present in the sediment at various concentrations, the spatially averaged constituent concentration across the area is most representative of the true exposure that occurs over time (EPA,

1989; EPA, 2002a; LDEQ RECAP, 2003). In accordance with RECAP, the 95% UCL on the mean can be used as the AOIC for soil or sediment within an AOI, however the step of calculating the mean and UCLs was not needed for this assessment because maximum reported concentrations demonstrate that reported concentrations are less than the RS and protective of recreational receptors, with a single exception. As discussed in Section 5.2.1, the AOI defined for site sediment in accordance with RECAP includes the East White Lake study area, and the maximum constituent concentrations across the entire investigation area are demonstrated to comply with the limiting risk-based RS except for a single hydrocarbon fraction at a single sample location, WL-3 (0-2').

Aromatics >C21-C35 hydrocarbons detected at WL-3 in the surface interval exceed the recreational contact standard for the child, and are below the standards for industrial or recreational adult contact. The sample collected in a deeper interval in this location (at 4-6′ bgs) provides vertical delineation as the reported concentrations were below all sediment RS in the deeper sample. The WL-3 (0-2′) sample was collected in the active industrial area at Tank Battery A, and the area is generally not attractive or available for recreational activities (see photograph of the Tank Battery and support area in Figure 6-1). However, the analysis is provided for consideration of potential future land use.

The comparison of site data to direct contact standards indicates conditions are protective of site workers, considering maximum reported concentrations in sediment. Conditions are protective of recreational receptors with the exception of a single location within the active Tank Battery A operational area. Figure 6-2 identifies the location of the WL-3 (0-2') sample.

Aesthetic Standard: While sediment is not subject to the same MO-1 requirements as soil, the upper bound limit of 10,000 mg/kg total fractions was considered in the sediment evaluation. This limit is an aesthetic standard and not a health-based standard; the health-based standards are those identified in Table 6-3. The aesthetic standard is identified as a potential indicator of objectionable characteristics such as odor or oily materials. Sediment samples collected in two locations exceeded a total hydrocarbon fraction concentration of 10,000 mg/kg: WL-3 (0-2'), and WL-4 in the 4-11' and 11-12.5' bgs intervals. Samples collected deeper in both locations were less than aesthetic limits as well as below the direct contact standards for industrial and recreational receptors. Figure 6-2 identifies the sample locations with reported hydrocarbon fraction concentrations greater than 10,000 mg/kg.

As noted above, the WL-3 (0-2') sample was collected in the active industrial area at Tank Battery A. Boring WL-4 was located within a former pit feature near the former Tank Battery B location. This area is no longer in active E&P service. Sample location WL-5 was also collected within the same former pit feature and contained detectable hydrocarbon concentrations (but below RECAP Standards) in the same depth interval. A corrective action plan to address the former pit from which WL-4 was collected is being provided by MP&A to LDNR in the site remediation plan (MP&A, 2015a). The proposed action includes lateral delineation, excavation, and backfilling with clean sediments, similar to the remedial action taken at the Sed-15 pit area.

The maximum sediment concentrations both including and excluding the results for WL-3 (0-2') and WL-4 (4-11' and 11-12.5') are summarized in Table 6-3.

Ground Water Protection: Further evaluation of COCs that exceeded ground water protection SS is based on the GW3NDW ground water classification of the uppermost water bearing zone (the Peat Zone) because the exceedances of default ground water protection SS occurred in sediments above and within the Peat Zone (the upper 12 or 13 feet of the sediment column). No exceedances of ground water protection SS were identified in sediment samples collected beneath the Peat Zone. The standards protective of GW3NDW classification were calculated for the hydrocarbon constituents (fractions, one PAH) in accordance with RECAP Appendix H (Section H.2.1.4.2) using current toxicity factors and are summarized in Table 6-4. Supporting RECAP calculation spreadsheets are provided in Appendix G. No dilution attenuation factor (DF3) was applied in developing the protective RS because the DF3 was not required to demonstrate compliance; maximum concentrations were below the standards without considering lateral dilution and attenuation. For inorganic COCs (barium, lead, mercury), site-specific leachate data (SPLP data) were collected, with a focus on addressing the maximum reported sediment concentrations in accordance with RECAP Appendix H, Section H.2.1.4.2. Table 6-5 provides a summary of the available leachate data and comparison to leachate standards developed in accordance with RECAP. Again, no dilution attenuation factor (DF3) was applied in developing the RS because the DF3 was not required to demonstrate compliance; maximum concentrations were below the leachate SS without considering lateral dilution and attenuation.

Based upon comparison to ground water protection standards, the residual COC concentrations in sediment are estimated to be protective of the uppermost water-bearing zone. These results are, in fact, consistent with the conclusions of the direct evaluation of Peat Zone ground water data and the direct evaluation of surface water data for the water bodies assumed to receive ground water discharge.

<u>Chlorides in Sediment:</u> Chlorides are considered a non-traditional parameter under RECAP, and LDEQ has issued guidance in the RECAP FAQs focused on evaluation of chlorides in soil and ground water. For soil (and similarly sediment), the protection of aesthetics (i.e., support of the growth of wild vegetation) and ground water protection are the focus of evaluation. The health of vegetation is addressed in the ecological risk assessment, provided separately from this report (Rodgers, 2015). The assessment identified that the ecosystem is a healthy and functioning ecosystem, with abundant, diverse, and thriving vegetation and wildlife.

The soil-to-ground water protection pathway is not identified as a concern for shallow sediment above or within the Peat Zone (classified GW3NDW), given the naturally salty designation of potential receiving surface water. Leachate data were collected by ICON using the 29B Leachate Chlorides test, with all samples collected above and within the peat zone except for one. The single sample collected deeper was SB-1 (46.5′-47.5′), and the resulting leachate concentration of chlorides was 994 mg/L. This leachate concentration is below the leachate

screening level of 5000 mg/L and falls within the unimpacted reference range of chlorides for the 40 Foot Zone ground water (see discussion in Section 6.3).

6.3 MO-3 GROUND WATER EVALUATION

The MO-3 evaluation for ground water addresses the zones and site-related COCs identified through screening evaluation in Section 5. The assessment includes the following elements:

<u>Peat Zone.</u> Based upon the classification identified in accordance with RECAP, the Peat Zone is evaluated as Class 3 ground water (GW3). For Class 3 ground water, the appropriate objective is protection of the surface water body that could potentially receive discharge from the ground water zone. The RECAP methodology, outlined under MO-1 in RECAP, was therefore used to evaluate concentrations in the Peat Zone assuming discharge to the canals, which are located within the Mermentau River Basin in Subsegment 050703 (White Lake).

<u>40-Foot Zone.</u> Two elements of evaluation are provided for the 40-Foot Zone, which was identified as Class 2A (GW2) based upon potential yield, TDS, and the presence of wells in the vicinity of the study area. In accordance with RECAP requirements for ground water meeting the definition of GW2, a default domestic supply scenario that includes daily ingestion was evaluated. Based upon the documented use of this ground water zone and water quality that is not suitable for domestic use without treatment, the ongoing and more likely future use as a non-potable camp well (recreational) source was quantitatively evaluated using a RME scenario defined based upon available information about actual, current use.

70-Foot Zone. A single potential COC lacking an appropriate screening level, i.e., chlorides, is addressed as a non-traditional parameter under MO-3 for the 70-Foot Zone. This zone is evaluated as GW2 per RECAP in this risk evaluation.

The following observations are identified as applicable to all ground water zones, in accordance with RECAP definitions.

- The impacted ground water is in declining conditions. The likely
 historical sources, including possible releases of produced water to canals
 and waste management in former pits, have been discontinued.
 Therefore constituent mass is not increasing and the source(s) of releases
 have been mitigated.
- There is no evidence that NAPL is present in ground water at the site.

6.3.1 Peat Zone Ground Water Evaluation

The RECAP methodology identified in Appendix H was used to evaluate concentrations in the peat zone assuming discharge to the adjacent canals in the East White Lake study area (see Section H1.2.2.3). The LDEQ-designated uses of surface water at the site (Subsegment 050703, White Lake) include primary and secondary contact recreation, fish and wildlife propagation, and agriculture (LAC 33:IX.1123). Because the surface water is not identified as a drinking water

resource, GW3NDW is the appropriate ground water classification for the zone in accordance with RECAP.

The Point of Compliance (POC) for Class 3 ground water is a sampling location as near to the source as feasible. The POCs for this assessment were assumed to be the locations of maximum reported concentrations of each COC in the Peat Zone. The Point of Exposure (POE) is assumed to be the point of discharge to the nearest downgradient canal, in accordance with RECAP. Whether the exceedances of SS in the Peat Zone ground water are considered a single or multiple potential AOIs as outlined in Section 5.2.2, the evaluation of maximum concentration reported anywhere on site provides a conservative assessment addressing all detected concentrations.

The development of RS for the Peat Zone is presented in Table 6-6, along with comparison to the site concentrations. The GW3NDW values for the COCs were taken from Table 3 of RECAP or, if updated toxicity factors were available, calculated in accordance with RECAP Appendix H, Section H1.2.2.3 as required by RECAP MO-3. Supporting RECAP calculation spreadsheets are provided in Appendix G. Use of a dilution attenuation factor with the GW3NDW values is appropriate under the Management Options of RECAP, however, this step was unnecessary for the Peat Zone evaluation. The maximum reported concentration of each COC was identified as the exposure concentration, or Compliance Concentration, in accordance with RECAP Section 2.8.3, and the maximum concentrations are less than the RS without application of a DF3. This comparison demonstrates that the reported concentrations in the Peat Zone ground water comply with GW3NDW RECAP Standards and are protective of surface water and its users, assuming no attenuation or dilution occurs during migration or discharge to the surface water (which is not a realistic assumption).

For chlorides, the surface water quality standard identified in LAC 33:IX for the White Lake subsegment is 250 mg/L, however, the chlorides concentration is naturally elevated above this standard in surface water (as well as ground water) in this area. The natural chlorides documented by US Army Corps of Engineers monitoring of Schooner Bayou near the East White Lake study area include seasonal high values between 3000 and 4000 mg/L chlorides (see Section 2.5 and Figures 2-5 through 2-9). The LDEQ Water Quality Inventory: Integrated Report (2014) identifies this segment as not attaining the standard of 250 mg/L for chlorides due to natural conditions, and indicates that modification of the standard is needed due to the segment receiving tidal influence that was not accounted for when standards were initially identified. Based upon the permanence of Schooner Bayou and the tidal influence through Vermilion Bay (which is an estuarine water body), it is expected that the study area would be designated as estuarine, for which chlorides limits do not apply. Therefore, a surface water quality standard (and a GW3NDW standard) cannot be identified. Alternatively, surface water samples were collected throughout the East White Lake study area during site investigations, and a direct evaluation of the surface water data is provided as part of this MO-3 risk assessment.

6.3.2 40-Foot Zone Ground Water Evaluation

Default GW2 Assessment: The RECAP methodology identified in Appendix H, Section H1.2.2.2 was used to provide a default GW2 evaluation for the 40-Foot Zone, for which the assumed exposure scenario is domestic use of the water including ingestion of 2 L/day for 365 days per year with a duration of 30 years (i.e., use as a primary residential drinking water source). The POC for Class 2 ground water is a sampling location as near to the source as feasible, and for this assessment was assumed to be the location of maximum reported concentration for each COC in the preliminary AOIs identified for the 40-Foot Zone (Section 5.2.2). The POE for Class 2 ground water is generally defined as a location at the downgradient property boundary in the absence of an on-site exposure point. However, based upon the potential for installation of non-potable wells at various locations across the Vermilion Parish School Board property, and for complete information, it was assumed that a well may be completed and POE established anywhere on the property, and specifically within the AOIs. At present, as discussed in the CSM, there are no wells completed south of Schooner Bayou or in areas (AOIs) affected by site COCs within this zone. The evaluation of direct exposure to site COCs is hypothetical.

The development of GW2 RS is presented in Table 6-7, along with comparison to the site concentrations. The GW2 values for the metals and benzene were identified in Table 3 of RECAP. The value for strontium was developed in accordance with RECAP Appendix H (calculations are provided in Appendix G of this report). No dilution attenuation factor (DF2) was applied to address attenuation between the POC and hypothetical POE. The maximum reported concentrations of the COCs in each preliminary AOI were identified as Compliance Concentrations and compared to the RS. Two POC values are shown for the SB-1-MW AOI because the sampling locations are immediately adjacent, with MW-1 last sampled in 2010 and SB-1-MW sampled more recently in 2014. The concentrations above the GW2 RS, and the resulting estimated AOIs are identified in Figure 6-3. COCs reported above health-based RS include benzene in a single AOI (SB-1-MW/MW-1), and barium in two additional locations/AOIs (SB-3-MW/MW-3 and HP-08). While HP-08 is identified as a potential AOI for barium in Figure 6-3 for complete information, barium was detected marginally above the GW2 RS (2.17 mg/L vs. a standard of 2 mg/L) at this location in only one of three samples analyzed. Two additional split sample results for the same sampling event at this location (total barium analyses) did not identify barium above 2 mg/L. The AOIs are delineated to below GW2 standards laterally and vertically by surrounding hydropunch sampling results, with the exception of the HP-08 location, where sampling was not completed east of the location.

Although evaluated as a potential drinking water source based strictly on classification, it is recognized that the 40-Foot Zone ground water is not a desirable drinking water source under natural conditions. The natural concentrations of iron, manganese and salt (chlorides) are well above secondary drinking water standards and would require treatment to address objectionable taste, color, and possibly odor and to meet standards for use as drinking water.

The water supply wells at the perimeter of the East White Lake study area provide an indication of chlorides concentrations present in ground water unimpacted by site activities. Samples collected from water supply wells north of Schooner Bayou⁸ and from monitor well AB-1 south of the study area contained no indication of impact with site COCs and had reported chlorides concentrations ranging from 555 mg/L to 1600 mg/L (including all sample dates and split samples). The range of concentrations reported in these wells was considered a reference for the review of chlorides levels in the 40-Foot Zone. Based on comparison to this reference range, chlorides were identified as elevated in the AOIs at SB-1-MW/MW-1 and SB-3-MW/MW-3, along with the other site COCs. Chlorides also appear potentially elevated in the hydropunch sample location HP-02.

While this evaluation is provided in accordance with RECAP definitions for Class 2 ground water, it is important to note that there is currently no exposure to the ground water within the AOIs, and there is no human health risk associated with any concentrations reported in the ground water samples. There is clear delineation of the exceedances of health-based standards (benzene and barium) with the possible exception of HP-08 and no threat to the non-potable supply wells that are completed in this zone in the vicinity (i.e., the Hebert well and abandoned Crouch well north of the AOIs and Schooner Bayou). The estimated flow direction of the 40-Foot Zone is to the west/southwest.

<u>Site-Specific Scenario Evaluation:</u> Based on the site setting and low likelihood of ground water use that is consistent with the default assessment, the current use of ground water in the area was evaluated as the more likely potential future use (if any) of this zone. Future water wells are more likely to access the abundant, fresher supply of water available within the Chicot Aquifer, similar to the Guidry camp well and facility well. A site-specific evaluation that examines reasonable maximum beneficial use of the 40-Foot Zone was performed, based on information provided by water well users and other locals who frequent the study area for recreation.

Based on the exposure assessment provided in Section 4, exposure assumptions are identified for an adult and child recreational scenario in Table 6-8, with references/rationale for the selected exposure assumptions. Consistent with the scenario identified for recreational sediment exposure, it is assumed that the receptors will visit the site every single weekend (104 days each year) for a duration equal to RECAP's default residential duration of 30 years. Dermal contact with ground water used as wash water (e.g., for boats, traps, fish) is assumed to occur on every visit. The Risk Assessment Information System (RAIS) online Preliminary Remediation Goal (PRG) calculator, which provides the flexibility to address site-specific scenarios, was used to develop the adult and child recreational RS for exposure to ground water for each COC. The PRG calculator uses the most current EPA risk calculation methods and is recommended by LDEQ for use under MO-3. Default chemical and physical properties provided in the RAIS PRG calculator for the COCs and current toxicity factors were used as inputs to the calculator. The potential for additive effects to the same target organ or system was considered, and no adjustment to

⁸ P. Hebert well sampled in 2010 and 1014, A. Crouch well sampled in 2010

the standards was required. The final RS for the adult and child receptors are identified in Table 6-7, and the supporting calculations are provided in Appendix G. Recognizing that the inhalation of volatile constituents, such as benzene, during indoor water uses can sometimes provide a limiting standard, an additional calculation was performed to identify a RECAP Standard for a shower scenario for the volatile COC benzene. While indoor shower use has not been specifically identified for the existing camp wells, the scenario is provided for conservative assessment and complete information. This scenario also incorporates incidental ingestion, and the resulting RECAP Standard is included in Table 6-7.

The maximum reported concentrations of the COCs in each preliminary AOI were identified as Compliance Concentrations and compared to the limiting recreational RS, in accordance with RECAP. The concentrations are below the site-specific RS, indicating concentrations are protective of recreational ground water users assuming hypothetical placement of a camp supply well directly within the AOIs defined relative to GW2 default standards.

6.3.3 70-Foot Zone Ground Water Evaluation

Maximum reported constituent concentrations in the 70-Foot Zone were less than RECAP SS (Section 5.1.2), indicating concentrations of the site-related COCs are less than health-based standards. In the absence of a screening level, chlorides were retained for further evaluation. The zone was assumed to be Class 2 (GW2) for purposes of this MO-3 evaluation, although no wells are completed in the zone within a mile of the site. The chlorides distribution for this zone is shown in Figure 5-11, and shows the highest concentrations are in the monitor well locations completed beneath three shallow AOIs: SB-1D beneath SB-1-MW/MW-1; MW-5D beneath SB-3-MW/MW-3; and HP-MPA-02-I beneath HP-MPA-02-T. The concentrations in the 70-Foot Zone in these locations demonstrate attenuation between the 40-foot Zone and 70-Foot Zone (see Figures 5-10 and 5-11), with concentrations in the 70-Foot Zone less than two to three times the reference concentrations observed in unimpacted perimeter locations (MW-4D, MW-6D, HP-MPA-10-I).

As noted previously, the naturally elevated salt levels in ground water in this site location results in chlorides concentrations well above the SMCL of 250 mg/L. The natural (background) levels in the 70-Foot Zone appear to be two to three times the SMCL, the aesthetic benchmark for drinking water.

No impact to ground water deeper than 70 feet bgs has been identified at the East White Lake study area.

6.4 MO-3 SURFACE WATER EVALUATION

Site-specific RS were developed for surface water under MO-3 in accordance with RECAP Section 2.12.6. The bases for the MO-3 evaluation include the promulgated surface water quality standards for human health protection and related RECAP guidance. In addition, this assessment includes development of MO-3 RS protective of a site-specific recreational exposure scenario consistent with the exposure assessment provided in Section 4.

In accordance with RECAP, the surface water uses of primary contact recreation (swimming), secondary contact recreation (fishing and seafood ingestion), and fish and wildlife propagation are addressed in the development of the GW3NDW standard, with no dilution-attenuation factor applied. Therefore, health-protective standards for surface water consistent with RECAP guidance were developed in accordance with RECAP Appendix H, Section H1.2.2.3 items (1) and (2). The RECAP method includes the use of promulgated numeric criteria for human health protection from the Surface Water Quality regulations (LAC 33:IX.1113), if available. In the absence of promulgated criteria for a specific constituent, the RECAP method identifies appropriate risk-based standards assuming incidental water ingestion during swimming and ingestion of fish harvested from the water body. The surface water RS derived using this default RECAP method (using the LDEQ-provided spreadsheet) with current toxicity factors and bioconcentration factors are identified in Table 6-9. Supporting RECAP calculation spreadsheets are provided in Appendix G.

An additional site-specific evaluation was performed consistent with MO-3 of RECAP. A recreational exposure scenario was used to develop RS protective of direct human contact considering Reasonable Maximum Exposure to surface water during recreational fishing and hunting activities for an adult and a child receptor. Exposure assumptions are identified for an adult and child recreational scenario in Table 6-10, with references/rationale for the selected exposure assumptions. Consistent with the scenario identified for recreational sediment exposure, it is assumed that the receptors will visit the site every single weekend (104 days each year) for a duration equal to RECAP's default residential duration of 30 years. Water recreation activities including skiing and swimming do not generally occur on the property in the oilfield canals due to obstructions and limited canal sizes, but occur instead in the open areas of White Lake west of the study area. However, dermal contact with surface water was assumed to occur on every visit during fishing or hunting. The RAIS online PRG calculator, which provides the flexibility to address site-specific scenarios, was used to develop the adult and child recreational RS for exposure to surface water for each COC. Default chemical and physical properties provided in the RAIS PRG calculator for the COCs were used with current toxicity factors as inputs to the calculator. The potential for additive effects to the same target organ or system were addressed in the development of the standards. The final recreational RS for the adult and child receptors are identified in Table 6-9, and the supporting calculations are provided in Appendix G.

Surface water samples were collected from the oilfield access canals on the property as well as from some locations outside of the canals along Schooner Bayou and White Lake, for a total of 24 surface water sample locations (plus duplicates). Samples outside of the access canals were labeled as "Bkg" to distinguish them from samples within the oilfield canals, however, all data were included in the quantitative risk evaluation. The samples were analyzed for metals, hydrocarbon mixtures (TPH-DRO and TPH-ORO), and PAHs. The maximum reported concentrations of all constituents detected in surface water were identified as exposure concentrations and compared to the RECAP NDW RS and the site-specific recreational RS (Table 6-9). The maximum reported concentrations are below both RS, indicating concentrations are protective of

surface water users, including the full range of primary and secondary contact recreational activities.

The reported chlorides concentrations are not a concern for adverse effects to human health in surface water. In general, the chlorides concentrations in Schooner Bayou were higher than those in the oilfield access canals. This is consistent with the US Army Corps of Engineers monitoring of Schooner Bayou, which demonstrates tidal influence from the saltier water of Vermilion Bay.

6.5 MO-3 BIOTA (CRAB TISSUE) EVAUATION

Biota tissue samples collected and analyzed from the East White Lake site were evaluated under MO-3 in accordance with RECAP Sections 2.12.6 and 6.0. Based upon the recommendation of LDEQ, the human health evaluation was conducted in accordance with current state-specific guidance developed jointly by the Louisiana Departments of Environmental Quality, Health and Hospitals (LDHH), Wildlife and Fisheries (LDWF), and Agriculture and Forestry (LDAF):

- Protocol for Issuing Public Health Advisories for Chemical Contaminants in Recreationally Caught Fish and Shellfish ("Louisiana Protocol", LDHH et al., 2012)
- Tissue Screening Level Guidelines for Issuance of Public Health Advisories for Selected Contaminants and Supporting Documentation ("TSL Guidelines", LDEQ et al., 2012)

These guidance documents were completed following publication of RECAP in 2003 and provide current evaluation methods, which are not addressed in any detail in RECAP.

The elements of the biota evaluation for the East White Lake site include the site-specific assessment conducted in accordance with the guidance cited above (including sensitivity analyses of critical exposure assumptions) and a separate study of blue crab tissue concentrations completed by the LDHH. The LDHH completed their study following receipt of information provided by investigators on behalf of Plaintiffs and Defendants in the lawsuit of Vermilion Parish School Board vs. UNOCAL and others. For completeness, the LDHH study is provided as an attachment to this RECAP report.

6.5.1 Site-Specific Biota Assessment

As described in Section 3.5.2 and Appendix D, samples of blue crabs and forage fish were collected in the East White Lake study area and vicinity in accordance with applicable EPA and Louisiana agency guidance. The crab tissue data are suitable for use in the human health risk assessment, and the forage fish were collected and analyzed using methods (i.e., whole body analysis) specific to ecological risk evaluation. The ecological risk assessment is provided separately from this report (Rodgers, 2015).

The field event conducted in December 2010 through January 2011 resulted in collection of 307 crabs, providing composite samples appropriate for risk

evaluation at thirteen site locations and ten reference locations. The sample locations are identified in Figure 3-8, with reference locations collected in Schooner Bayou just north of the oilfield canals and in White Lake. In addition, crabs were purchased from commercial seafood markets to serve as reference samples, including markets in Baton Rouge, Lake Charles, New Orleans, Des Allemands, Biloxi, and Houston. The purpose of the samples identified as reference locations, in Schooner Bayou, White Lake, and from seafood markets, was to support an understanding of the occurrence of target analytes (and associated risk) in crabs collected near the study area but outside of the oilfield canals and also across the Gulf Coast region. The tissue samples were analyzed for hydrocarbons, barium, inorganic and total arsenic, methylmercury and total mercury. Analyses that distinguish inorganic from total arsenic and methylmercury from total mercury are important to providing a detailed, accurate human health evaluation given that potential toxicity differs for the various arsenic and mercury compounds. The analytical results for each location are summarized in Appendix E, Table E-8. The laboratory reports for biota samples are provided in Appendix L of this report.

The measured constituent concentrations in edible tissues of blue crabs were compared to Louisiana tissue screening levels (TSLs). The TSLs are a first step in determining whether a particular contaminant is present in edible species at such levels that a water body requires issuing an advisory regarding health risks to the public who fishes there recreationally. Additional steps beyond screening are triggered when the mean constituent levels in edible tissue samples from a water body exceed the TSL, and no further assessment is generally warranted for mean levels below the TSLs (Louisiana Protocol, LDHH et al., 2012). The TSLs therefore provide threshold concentrations that are identified as protective of human health, analogous to a RECAP Standard for sediment or ground water.

The TSL Guidelines provide a published TSL for methylmercury and guidance for calculation of TSLs for additional constituents. Using the recommended default algorithms and exposure factors, TSLs were calculated for inorganic arsenic, total barium, total mercury, and hydrocarbons. The default exposure assumptions provided in the TSL Guidelines are summarized in Table 6-11, and include an adult consuming 30 grams per day (g/day) of blue crab tissues harvested from the East White Lake area, for 365 days per year for 30 years. This equates to four eight-ounce meals per month for 30 years. The default consumption rate for hepatopancreas is 7.5 g/day, which equates to 2 ounces of hepatopancreas with the weekly crab meat meal. Intake factors are identified for an adult and a child receptor, and because the adult intake factors result in the more limiting TSLs, they are presented as the final TSLs in the TSL Guidelines and herein.9 The detailed TSL calculations for all constituents are provided in Appendix G. LDHH, the agency with primary responsibility for applying the TSLs and determining the need for public health advisories, has emphasized that the TSLs are developed to address a single species assuming harvest occurs consistently from the same recreational fishing area. Therefore, the TSLs developed in this risk evaluation are based upon the assumption that blue crabs

⁹ The default child consumption rate is 15 g/day edible tissue for 365 days per year, and no default rate is specified for hepatopancreas.

harvested specifically/solely from the East White Lake study area will be consistently consumed at the designated ingestion rate for a duration of 30 years.

Current toxicity factors provided by EPA and the LDEQ RECAP (for hydrocarbons) were used to develop the TSLs for constituents other than methylmercury (because the TSL for methylmercury is provided in the Guidelines based upon current factors). The calculations for TSL development are provided in Appendix G. For arsenic, toxicity factors are provided by EPA for inorganic arsenic, which is the potentially toxic component. No toxicity factors are recommended by EPA or LDEQ for total arsenic. In fish and shellfish in particular, a large number of studies have been conducted to understand arsenic occurrence and toxicity. Studies have shown that arsenic in the edible parts of fish and shellfish is predominantly present as the arsenic-containing organic compound arsenobetaine, commonly called fish arsenic. Arsenobetaine has been shown to be metabolically inert and nontoxic in multiple studies and is not generally considered a threat to human health. Inorganic arsenic, although a minor component of the total arsenic content of fish and shellfish when compared to arsenobetaine, is the potentially toxic component and the focus of fish tissue analysis and risk assessment (USEPA, 2000). The findings in the East White Lake study are consistent with widely conducted studies that show inorganic arsenic comprises a small proportion of total arsenic in edible tissues: site-specific values include less than 3% in meat and 5% in hepatopancreas (average of site and reference locations). In contrast to arsenic, the organic form of mercury, methylmercury, has the greater potential toxicity than inorganic (or total) mercury. Methylmercury comprises 52% of total mercury in crab meat and 55% in crab hepatopancreas in site-specific samples (average of site and reference locations).

For petroleum hydrocarbons, the toxicity factors provided in RECAP for relevant carbon ranges were used to develop TSLs. As noted in the data quality review in Section 3.5.2, the organic material in the following carbon ranges was quantified as petroleum hydrocarbons, acknowledging that there may be some contribution of natural biological lipids to these carbon ranges as well: C8-C16, and >C16-C28. The quantitation of hydrocarbons in separate ranges above and below C16 allows assignment of toxicity factors applicable to these discrete ranges, and best estimation of the site-specific risk considering the actual measured distribution of organic carbon material. Because the laboratory method does not distinguish aliphatic versus aromatic composition in the tissue, a conservative assumption was made that the compounds are 50% aromatic for the purpose of assigning toxicity factors. ¹⁰

51

 $^{^{10}}$ For reference, the large body of site sediment data (approximately 90 samples analyzed for fractions) indicate that detected hydrocarbons in sediment are comprised of over 90% aliphatic compounds, and less than 10% aromatic.

Crab meat and hepatopancreas (or crab fat), the edible tissues for human consumption, were analyzed separately in composite samples, consistent with Louisiana regulatory agency Protocol.¹¹ The concentrations reported in both crab meat and crab fat were compared to the TSLs, recognizing that some individuals in regional and local populations will consume both tissues. To support evaluation of the various consumption preferences, the reported concentrations were evaluated relative to the TSLs in three ways:

- a. Edible tissue concentration (ETC), assuming ingestion of a combination of meat and hepatopancreas, proportional to the quantity of each tissue present (i.e., approximately 80-85% meat and 15-20% hepatopancreas);
- b. Meat concentration, assuming an individual's consumption is comprised entirely of crab meat; and
- c. Hepatopancreas concentration, assuming ingestion in accordance with the recommended assumption specifically for hepatopancreas provided in the *Protocol for Issuing Public Health Advisories for Chemical Contaminants in Recreationally Caught Fish and Shellfish* (LDEQ et al., 2012).

For the first evaluation, the representative edible concentration for a given sample location was identified as follows assuming that consumption of crabs can include ingestion of a combination of meat (body muscle and claw meat) and hepatopancreas:

ETC = (meat concentration) (percent edible tissue comprised of meat) + (hepatopancreas concentration) (percent edible tissue comprised of hepatopancreas)

The meat generally comprised approximately 80 to 85% of the edible tissue, and hepatopancreas approximately 15 to 20% in crabs collected from the site, and the sample-specific percentages were used in the identification of ETCs. The evaluation of ETC concentrations relative to TSLs based upon the default ingestion assumptions recommended by the joint Louisiana agencies is considered the primary evaluation of human health risk because it is reasonable to assume that ingestion would include some amount of both tissues.

As specified in the TSL Guidelines, the mean concentration of each constituent in edible fish/shellfish tissue was compared to the constituent-specific TSL value. The mean tissue concentrations were calculated separately for the site, reference, and market sample locations and were compared to the TSLs for each constituent. The supporting guidance provided in the Louisiana Protocol indicates: "An arithmetic mean of contaminant concentration in wet weight is obtained for each species. The arithmetic mean contaminant concentration is

.

¹¹ "For example, edible tissue of crabs typically includes all leg and claw meat, back shell meat, and body cavity meat. The crab hepatopancreas (also known as crab fat, butter, mustard, tomally, and green gland) may be included for analysis as determined by the eating habits of the local population or subpopulations of concern. The crab hepatopancreas will be analyzed separately to enable the evaluation of health risks associated with consuming these tissues." (LDHH et al., 2012)

used to represent the exposure concentration for edible fish/shellfish and is used in the screening and advisory process." LDHH personnel further confirmed the use of the mean remains the applicable and current methodology (LDHH, 2015). The comparison of mean ETC, meat, and hepatopancreas concentrations to TSLs is provided in Table 6-12.

The mean ETC concentrations of all constituents analyzed are below their respective TSLs in site, reference, and market samples. Further, none of the ETC concentrations of any constituents in individual samples exceed the TSLs developed in accordance with applicable guidelines.

The comparison of meat concentrations directly to TSLs, assuming that crab ingestion may be comprised of crab meat only for some individuals, indicates that the mean concentrations of the metals and hydrocarbons are below their respective TSLs in site, reference, and market samples. Additionally, none of the reported constituent concentrations in meat for individual samples exceed the TSLs in reference samples, site samples, or market samples. It is noted that no detectable hydrocarbon in crab meat is identified at the study site; the reported concentrations for both the C8-C16 and >C16-C28 carbon ranges in crab meat were non-detect in all site samples and reference samples. Detectable hydrocarbon (>C16-C28 range) was reported in crab meat in three of six market samples.

The comparison of hepatopancreas concentrations directly to TSLs specific to hepatopancreas ingestion per the Louisiana Protocol (LDHH *et al.*, 2012) indicates that the mean concentrations of metals and hydrocarbons are below their respective TSLs in site, reference, and market samples. Additionally, none of the individual hepatopancreas constituent concentrations reported for individual samples exceed the TSLs.

The potential for additive effects of the noncarcinogenic constituents was evaluated, including all detected metals and TPH. In accordance with the TSL guidelines (LDEQ *et al.*, 2012), the total hazard index was calculated for each target organ/critical effect that is potentially affected by more than one constituent detected in crab tissue samples. Hazard Indices were calculated for ETC using average and maximum reported concentrations of TPH and metals (calculation provided in Table 6-12), and no potential human health concern is identified, i.e., Hazard Indices are less than 1. In addition, carcinogenic risk for the single carcinogen, inorganic arsenic, is within target risk range (LDEQ et al., 2012), as demonstrated by arsenic levels less than the TSL. The additive effects were also evaluated for consumption of meat and hepatopancreas, and no potential human health concern is identified.

Based upon the analyses conducted in accordance with the guidelines of the joint Louisiana agencies, no human health concern is identified. The total noncarcinogenic Hazard Indices and the carcinogenic risk for the constituents evaluated are within target risk range (LDEQ *et al.*, 2012), indicating no further evaluation or corrective action is warranted for human consumption of fish/shellfish in the study area.

6.5.2 Sensitivity Analyses

Shellfish Consumption Rate: The TSLs are based on default exposure assumptions identified by the Louisiana agencies as broadly applicable and protective. The consumption rate was selected by the LDHH as a conservative value for the general population (typical consumer) intake of a particular seafood species from the specific water body under study. It is noted the LDHH has identified that fish and shellfish consumption advisories issued to date, including those in coastal Louisiana and Vermilion Parish, have identified and utilized the default exposure assumptions as appropriate and protective.¹² The TSL Guidelines note that TSLs can be developed using site-specific exposure data if available, reliable, and validated. The recommended sources for site specific consumption rates include EPA guidance documents, local validated consumption surveys, and creel surveys (Protocol, LDEQ et al. 2012). No sitespecific studies of consumption habits for the East White Lake location were identified, however, directly relevant studies for coastal Louisiana consistent with the agency-recommended sources were identified and used to select a high end shellfish consumption rate to provide a sensitivity analysis. The most relevant studies and conclusions include the following:

US EPA, April 2014, Estimated Fish Consumption Rates for the U.S. Population and Selected Subpopulations (NHANES 2003-2010). This resource provides fish and shellfish consumption rates, for use by EPA in developing water quality criteria, based upon a very large body of survey data. The National Health and Nutrition Examination Survey (NHANES) is a long standing continuous survey of nutritional habits in the U.S. for which the data are compiled periodically. This study represents the most recent publication compiling fish consumption rates across the U.S. This publication is particularly relevant because it is a recognized, statistically robust, vetted survey that includes information for fish and shellfish separately and for the subpopulation identified as Gulf of Mexico Coastal residents. The survey of this subpopulation included coastal areas of Louisiana, Mississippi, Alabama, Florida, and Texas. The survey reports the following total shellfish consumption rates for the coastal population of adults 21 years and older, considering consumption from <u>all</u> seafood sources (i.e., recreational harvest and market purchases):

Total Shellfish Consumption

50 th Percentile	90 th Percentile	95 th Percentile	99 th Percentile
of Population	of Population	of Population	of Population
4.8 g/day	20.1 g/day	28.4 g/day	48.6 g/day

The results indicate that 5% of the population is estimated to consume more than 28.4 g/day, and only 1% of the population is estimated to consume more than 48.6 g/day of total shellfish (crabs, shrimp, oysters) from all sources. The reported values support the LDHH's selection of 30

¹² Personal communication with LDHH personnel, 2011 and 2014.

g/day consumption rate from a single recreational fishing area (e.g., solely from East White Lake) as conservative for general population consumption. The EPA has identified that protection of the general population is represented by the 90th percentile of a total "per capita" fish consumption distribution. EPA has identified the 99th percentile of a per capita fish consumption distribution as a reasonable estimate for subsistence consumption rate, where such populations are present (USEPA, 2013). No subsistence population has been identified in the site location.

• Lincoln et al., 2011, Fish Consumption and Mercury Exposure Among Louisiana Recreational Anglers. This resource was published by independent researchers who conducted a survey of over 500 Louisiana fishermen. The research protocol and survey instrument were reviewed and approved by the Harvard School of Public Health. Based upon survey responses, the following fish and shellfish consumption information was identified. The overall consumption of combined finfish and shellfish included 55 g/day or less for 98% of the population (percentage calculated from Table 1). This consumption was comprised of approximately 60% finfish and 40% shellfish, and approximately 64% of all meals came from recreational sources. Based upon this survey, therefore, the following total shellfish ingestion rate from recreational sources was estimated:

55 g/day x 40% shellfish x 64% recreational = **14 g/day Total Shellfish**

Crab consumption, specifically, was identified as comprising 10% of all meals, therefore a consumption rate specifically for recreationally caught crab is even lower at 3.5 g/day for 98% of the fishermen population. An examination of the consumption rate for the remaining 2% of the population indicates the following for total shellfish consumption:

129 g/day x 40% shellfish x 64% recreational = 33 g/day Total Shellfish

The consumption rate specifically for recreationally caught crab is estimated at 8.3 g/day for 2% of the fishermen population identified as the high end consumers. These consumption values reported by Lincoln et al. for Louisiana fishermen support the LDHH's selection of 30 g/day consumption rate from a single recreational fishing area (e.g., solely from East White Lake) as conservative for average and even high end consumption.

Based on the relevant studies, an increased ingestion rate for edible crab tissue of two times the agency-recommended default ingestion rate (i.e., $30 \times 2 = 60$ g/day) was considered highly conservative and was evaluated to test the sensitivity of the risk assessment conclusions to an increase in consumption rate.¹³ The rate of 60 g/day was used to develop alternate TSLs, and the ETC, meat and hepatopancreas concentrations were compared to the alternate TSLs. The detailed TSL calculations are provided in Appendix G. No change to the conclusions of the primary assessment is identified, considering this increased ingestion rate for ETC and separately for meat and hepatopancreas. That is, the mean concentrations of metals and hydrocarbons are below their respective TSLs for ETC, meat, and hepatopancreas in site, reference, and market samples (Table 6-13). In fact, concentrations of the constituents reported in individual samples (ETC, meat, and hepatopancreas) are below the alternate TSL developed assuming twice the agency-recommended ingestion rate. When additive effects are considered in accordance with the applicable guidelines, no potential human health concern is identified; Hazard Indices are less than 1 and estimated carcinogenic risk is within target risk range.

The sensitivity analysis provides increased confidence in the conclusion that reported concentrations are protective of human health assuming crabs are harvested solely from the study area and consumed at the expected and even higher ingestion rates.

Hydrocarbon Range: Because the laboratory identified that TPH reported in the carbon range above C28 reflects the natural organic matter (lipids) in biological tissue, with no distinguishable petroleum hydrocarbon in the chromatograms, the range of potential petroleum hydrocarbon recommended for use in risk evaluation was the full range up to C28. As a sensitivity analysis and to provide additional information, the concentrations in the >C28 to C40 range were examined relative to the TSLs for the higher range hydrocarbons (i.e., the TSL was compared to >C16 to C40 concentration in addition to the >C16 to C28 concentration addressed in the primary assessment) (Table 6-14). No change to the conclusions of the primary assessment is identified, considering the potential presence of petroleum hydrocarbon components in the >C28 range. That is, the mean concentrations of organic material in the >C16 to C40 range are below the TSLs for ETC, meat, and hepatopancreas in site, reference, and market samples. Additionally, the ETC, meat, and hepatopancreas concentrations of >C16 to C40 organics reported in individual samples are below the TSL developed assuming the agency-recommended default fish and shellfish consumption pattern. Further, the mean ETC, meat, and hepatopancreas concentrations of the constituents, as well as individual sample concentrations, are below the alternate TSL developed assuming twice the agency-recommended ingestion rate.

<u>Forage Fish:</u> Forage fish were collected and analyzed using methods which support evaluation of ecological risk: whole body samples of shad and blue gill were processed and analyzed according to scientifically valid, standard

¹³ Additional relevant studies which support this conclusion include Dellenbarger et al., 1993 (survey of 1100 households in Houma); LDWH, 2009 (Louisiana Recreational Fisherman survey report); Anderson and Rice, 1993 (survey of 400 New Orleans residents); Wilson et al., 2015 (survey of Vietnamese shrimping community in New Orleans East).

procedures. Based upon data quality review completed by QAA, the fish tissue data were confirmed to meet the requirements for representative, definitive data as defined by LDEQ with the exception of two hydrocarbon fraction results that were R-qualified in reference samples (Appendix E, Table E-9). While the fish tissue data do not generally represent species and sizes that are relevant for human consumption, bluegill are consumed by some populations, and ingestion can be evaluated by comparing the available fish tissue data to the TSLs. The mean fish tissue concentrations of metals and hydrocarbons (C8-C16 and >C16-C28 carbon ranges) are below their respective TSLs in site and reference samples (see comparison provided in Table 6-15). Additionally, none of the concentrations of any constituents in individual samples exceed the TSLs developed in accordance with the Louisiana guidelines. The mean fish tissue concentrations of the constituents, as well as individual sample concentrations, are also below the alternate TSL developed assuming twice the agency-recommended ingestion rate for fish or shellfish.

6.5.3 LDHH Crab Collection and Evaluation

The comprehensive results of the crab and forage fish sampling and analysis program, and the comparison of edible tissue results for crab to TSLs were previously reported to LDEQ, LDHH, LDNR, and LDWF in a report dated March 6, 2014 (ERM, 2014). The LDHH provided an independent review of the results in a report of March 13, 2015, and concurred with the conclusions, which have been presented (i.e., repeated) herein as part of this RECAP assessment for ease of agency review. The LDHH report of March 13, 2015 also provided a review of blue crab data collected in October 2010 on behalf of the Vermilion Parish School Board by Omega EnviroSolutions, Inc., OES, and the results of crab sampling and analyses performed by the LDHH in November 2010. The complete LDHH report is provided in Appendix H.

The LDHH report identified the following conclusions:

- OES sampling methodology, laboratory analysis and data evaluation are not consistent with the human health advisory development process.
 October 2010 OES data are inadequate to support a consumption advisory for the East White Lake sampling areas.
- The ERM-reported crab tissue samples were collected and analyzed in accordance with the Louisiana advisory Protocol. Reported constituent concentrations detected in crabs from the East White Lake areas of interest are below levels of health concern; no potential human health hazards are identified.
- The November 2010 LDHH crab tissue data were collected to further characterize edible crab portions from the areas of interest. Sampling was conducted by LDHH in accordance with the Louisiana advisory Protocol, and analyses were performed for total arsenic and barium. Mean concentrations were below respective TSLs. Although speciation methodology was not available at the time of laboratory analyses to quantify inorganic arsenic content, LDHH data do not support the need for a consumption advisory due to barium and arsenic concentrations in crab tissue.

6.5.4 LDEQ Mercury Monitoring Program - Biota Data Collection

As part of the Louisiana Mercury Program (also known as the Mercury Initiative) started by the LDEQ in 1994, the collection and analysis of fish tissues for mercury have been conducted by LDEQ in water bodies across the state. Initial sample collection was focused on problematic water bodies such as the Ouachita River, and the program was subsequently expanded to include sampling of all popular recreational fishing locations such as the White Lake area. Samples of various fish species were collected from the White Lake water segment near the East White Lake study area in 1998, 2003, 2004, and 2008. Fish species collected and analyzed included bowfin, drum, crappie, bass, and catfish. Composite samples were analyzed for total mercury, and the results were used by LDEQ and LDHH to examine the need for public health consumption advisories. The results are publicly available and are summarized in Appendix I.¹⁴ All individual sample results were less than or equal to the mercury TSL of 0.7 mg/kg, and all species average concentrations were less than the TSL. No consumption advisories have been issued for the White Lake study area based on the available data.

6.6 CUMULATIVE RISK

In accordance with Section 6.5 of RECAP, which addresses the application of MO-3 RECAP Standards, cumulative exposures were addressed in addition to comparison of the individual constituent levels to RECAP Standards. Additivity was appropriately addressed in the development of RECAP Standards for the individual media, including sediment, ground water, surface water, and crab tissue in accordance with RECAP and LDHH guidance. Exposure to multiple media has been addressed in two ways:

- Summation of the carcinogenic risks and noncarcinogenic hazards estimated as the ratio of site concentrations to final MO-3 RECAP Standards, and
- Through comprehensive baseline risk evaluation prepared by Dr.
 Barbara Beck of Gradient in accordance with EPA guidance (the
 "forward" calculation of risk completed in the baseline assessment
 readily supports a cumulative risk calculation).

<u>Summation of RECAP MO-3 Estimates.</u> The cumulative noncarcinogenic hazard was estimated by calculating the ratio of AOIC or Compliance Concentration to limiting MO-3 standard (prior to additivity adjustment) for each constituent in each exposure medium to provide Hazard Quotients, and then summing the Hazard Quotients for constituents (in all exposure media) affecting the same target organ/system. The resulting values are organ-specific Hazard Indices.

¹⁴ http://www.deq.louisiana.gov/portal/tabid/2733/Default.aspx

The calculation is provided in Table 6-16, and includes the following Reasonable Maximum Exposures: direct contact with sediment, recreational contact with wash water from wells completed in the 40-Foot Zone (dermal, shower inhalation), recreational contact with surface water, and ingestion of shellfish (crabs) harvested from the East White Lake study area. The estimated noncarcinogenic Hazard Indices (HIs) for organs/systems affected by more than one constituent and multiple media are as follows:

Target	
Organ/System	HI
Skin	0.02
Kidney	0.7
Immune System	0.1
Liver	0.3
Blood/Hematologic.	0.2
Bone	0.002
Body Weight	0.1
Neurological/CNS	0.2

The cumulative, multi-media HIs are less than the target value of 1. This evaluation demonstrates that when the most detailed HI approach is used for hazard estimation (instead of the simplified additive divisor approach), all reported concentrations including those at WL-3 are estimated to be protective of Reasonable Maximum Exposures, including both industrial and recreational.

The cumulative cancer risk was also estimated by calculating the ratio of AOIC or Compliance Concentrations to the limiting MO-3 standard for each carcinogenic constituent in each exposure medium, and multiplying by the target risk used for MO-3 development (Table 6-17). This provides a cancer risk estimate for each constituent, which was then summed to include all carcinogenic constituents across all exposure media. The resulting value is a cumulative carcinogenic risk estimate of $5x10^{-6}$, which falls within the target range identified in RECAP.

The conclusions regarding cumulative hazard and risk are consistent with the conclusions of the baseline risk assessment conducted by Gradient and summarized below. A risk calculation was not performed for the 40-Foot Zone hypothetical scenario of drinking or domestic use. The standards identified for this scenario (default GW2) are MCLs, and exceedance of the MCLs is presumed non-compliant for the assumed hypothetical scenario.

<u>Comprehensive Baseline Risk Evaluation, Gradient 2015.</u> Cumulative risk estimates were identified in the Gradient report using EPA risk assessment guidelines for the following site-specific exposures:

- Recreational contact with sediment (ingestion, dermal contact);
- Recreational contact with 40-Foot Zone ground water (dermal, inhalation of volatiles);
- Ground water ingestion from Upper Sand of Chicot Aquifer;
- Recreational contact with surface water (dermal); and
- Consumption of crabs.

For the adult recreational receptor, cumulative risk estimates were:

```
Risk = 7x10^{-6}
```

HI = 0.8 (maximum target organ-specific value)

For the child recreational receptor (11-16 years), cumulative risk estimates were:

```
Risk = 1x10^{-6}
```

HI = 0.8 (maximum target organ-specific value)

For the Industrial Worker, and assuming crab consumption as well, cumulative risk estimates were:

 $Risk = 8x10^{-6}$

HI = 0.9 (maximum target organ-specific value)

The total cumulative cancer risk estimates provided by Gradient for the East White Lake study area fall within the target risk range identified by LDEQ and EPA. The target organ-specific cumulative noncarcinogenic Hazard Indices for site-related hazards are less than the target of 1.

6.7 UNCERTAINTY ANALYSIS

Risk assessment inherently involves uncertainties due to the assumptions that must be made regarding complex chemical behavior in the environment and in biological systems, as well as assumptions regarding events that will occur in the future. Assumptions are made based on the best available information and regulatory agency guidance. Generally, these assumptions err on the side of conservatism with the objective of supporting decisions that are protective of human health. Risk assessments are not intended to determine actual risks to an individual receptor associated with exposure to COCs in the environment. Rather, risk assessment is a means of estimating the upper bound probability that an adverse health effect may occur in a receptor at some point in the future as a result of the nature and magnitude of exposure assumed in the assessment. Because there are multiple conservative assumptions used in the process, risk-based standards (i.e., the RECAP Standards) are lower than the threshold limit of adverse health effects.

This section discusses sources of uncertainty that have the greatest potential impact on this site-specific risk assessment, efforts to minimize uncertainties when possible, and how uncertainties may affect the risk characterization.

Site Characterization: The goal of a sampling program is to collect data which will represent the nature, extent, and magnitude of chemical constituents present in the media of concern. The amount of data collected in a sampling program and the placement of sample locations can affect the results of the exposure point concentration calculation when statistical inference is made about the entire affected area based upon the sample data. Many of the samples (e.g., sediment, biota) were collected in areas where waste management activities were believed to have occurred, and sample selection was biased towards locations and intervals that appeared to be most impacted based on visual, olfactory, and instrument reading cues. Potential exposure was estimated in this risk evaluation using maximum reported concentrations, as a simplifying and conservative approach. Statistical averaging was not performed for the primary evaluation presented in Sections 5 and 6, except for biota. For biota, both average and maximum concentrations were examined and demonstrated to comply with the risk-based standards. The combination of biased sampling and use of maximum reported concentrations to demonstrate compliance with RECAP Standards provides a high level of confidence in the conclusion that realistic exposure levels at the site are protective of health. The large number of samples available to characterize sediment and crabs, in particular, at the site also provides increased confidence in the conclusions regarding potential human health risk. Split sampling of sediment, surface water, and ground water provided increased opportunity to closely examine the representativeness of individual results.

The COCs identified as site-related are consistent with those expected for oil and gas E&P sites, including metals (barium and mercury) and hydrocarbon components. In a sediment environment that is naturally rich in organic material, distinguishing hydrocarbons from organic non-petroleum material is more challenging than in other environments. For this reason, the use of hydrocarbon fraction analyses is important and most representative for this site.

Hydrocarbon Mixture Risk Evaluation: As discussed in Section 3.5.1, hydrocarbon fraction analyses were used in the primary evaluation of risk for the site. The hydrocarbon mixture results (TPH-GRO, DRO, ORO) include naturally occurring organic matter and polar non-hydrocarbons (e.g., hydrocarbon degradation products) in addition to petroleum hydrocarbons in the reported concentrations (Lundegard and Sweeney, 2004; Zemo et al., 2103). In addition, the mixture results provide no specific information about the composition (e.g., aromatic, aliphatic) of the mixture, and therefore limited ability to assign an appropriate toxicity factor. The combination of uncertainties in compound identity, concentration, and toxicity standard results in a low level of confidence for making risk management decisions based on TPH-GRO, DRO, and ORO results. The utility of the fractionation approach is its ability to quantify tighter ranges as well as aliphatic and aromatic composition of all forms of petroleum products, whether fresh or weathered. This enables the risk assessor to assign appropriate toxicity factors to the site-specific composition of hydrocarbons.

In sediment, hydrocarbon fraction data were not available for all sediment sample locations where TPH mixtures were detected, but fractions were available for 52 of the 136 samples with detected TPH mixtures. Fraction analyses were focused on the upper end of the TPH mixture range, and are available for 26 of the 30 locations with highest mixture concentrations. Consistent with LDEQ implementation of RECAP, sampling and analysis of the highest TPH locations for fractions provides an appropriate, defensible basis for risk characterization at the site. The following information regarding risk evaluation for TPH mixtures where fraction data were unavailable is provided solely for supplemental and complete information.

Considering the reported TPH concentrations where fraction data were not collected, the maximum reported TPH concentrations in sediment were as follows:

Constituent	Max Concentration in 0-3 Foot Interval (mg/kg-wet)	Max Concentration All Depths (mg/kg-dry)
TPH-GRO	ND (50)	ND(70.6 to 177)
TPH-DRO	2550 Sed-120 (0-6")	14300 Sed-120 (0-6")
TPH-ORO	1450 Sed-120 (0-6")	8150 Sed-120 (0-6")

Reported concentrations exceeded the TPH-DRO industrial direct contact screening standard of 510 mg/kg in three locations, and non-industrial (residential) screening standard of 65 mg/kg in 24 locations in the surface sediment interval (Table 6-18 lists the samples exceeding screening standards, warranting further evaluation). Reported concentrations exceeded the TPH-ORO non-industrial (residential) screening standard of 180 mg/kg in 14 locations in the surface sediment interval (Table 6-18). MO-3 RECAP Standards were identified for TPH-DRO and TPH-ORO, for both industrial and recreational land use, as the lowest fraction standard within the DRO and ORO ranges identified in Table 6-3. When the sediment concentrations are compared to MO-3 RECAP Standards (Table 6-18), no reported TPH results exceeded the final industrial standards and a single location exceeded the limiting (child) recreational standards of 1100 mg/kg for TPH-DRO and 1150 mg/kg for TPH-ORO: sample Sed-120 (0-6"). This sample location is the same as Sed-30, and hydrocarbon fraction data are available for Sed-30 (0-2'): the fraction results were less than both industrial and recreational standards.

Reported concentrations exceeded the TPH-DRO SoilGW3NDW standard (protective for the shallow Peat Zone) of 6100 mg/kg in two sample locations: AB-13 (4-6') and Sed-120 (0-6"). All other TPH-DRO and ORO results were below their respective ground water protection standards, without application of a dilution-attenuation factor. Fraction data available for other samples with similar or higher TPH mixture concentrations demonstrated compliance with the SoilGW3NDW standards protective for the shallow Peat Zone, and the conclusions based upon the large body of fraction data provide the more site-specific analysis.

PAHs: PAHs are identified in RECAP Appendix D as indicator constituents for crude oil range petroleum hydrocarbons. PAHs were analyzed in a subset of surface water and sediment samples, and reported concentrations were below health-based standards as demonstrated in Sections 5 and 6. Sediment is the primary medium of focus for PAHs in this environment because of the hydrophilic nature of these compounds and the organic rich sediment. ICON selected 11 samples from 5 boring locations for PAH analysis during the initial sampling completed in 2006 (see Appendix E, Table E-1). Based upon results of ICON's initial sampling and analysis for TPH mixtures (specifically DRO and ORO), MP&A returned to sampling locations that represented a range of mixture results to collect additional samples and analyze for the PAH indicators. To support analysis in the interval relevant to ecological receptors as well as humans, samples were collected in the 0-6" interval and included locations of highest TPH results available. The range of TPH-DRO and ORO results that triggered the selection of the sample locations included in this sampling program are identified below.

Location	TPH-DRO (mg/kg- wet)	TPH-ORO (mg/kg- wet)
Sed-8	108	96.4
Sed-9	57.4	103
Sed-11	337	260
Sed-15	50300	21800
Sed-19	2350	798

Location	TPH-DRO (mg/kg-wet)	TPH-ORO (mg/kg- wet)
Sed-24	297	294
Sed-26	10900	4770
Sed-31	1480	668
Sed-120**	7700	4180

Values are ICON results for 0-2 ft bgs samples collected by ICON February 2010 ** Location Sed-30

The reported PAH concentrations are provided in Appendix E, Table E-1. The concentrations were evaluated through screening (Section 5) and MO-3 (Section 6) assessment, and maximum reported concentrations in sediment were less than RECAP Standards for industrial land use, recreational use, and for protection of ground water.

Exposure Scenarios: Assumptions that express Reasonable Maximum Exposure for an industrial worker and for a recreational visitor were used in this risk assessment. The industrial exposure scenario uses default assumptions and addresses contact with sediment 5 days per week for a duration of 25 years. This is a highly conservative scenario for sediment exposure. The recreational scenario includes a site visitation frequency that is consistent with available information regarding current use, and consistent with or higher than exposures assumed in recreational scenarios approved by LDEQ and EPA Region 6 for other relevant sites. To the extent that a greater frequency of visitation is possible, the Margin of Exposure (MOE) evaluation provided in the report of Dr. Barbara Beck demonstrates that greater exposure than has been assumed in the recreational exposure scenario is not estimated to result in significant human health risk (Gradient, 2015). The margin of safety is a factor of more than 10 to over a million when site chemical intake levels are compared to levels known to result in adverse effects in test species (see discussion below under Toxicity Assessment).

Exposure Concentrations: The inherent assumption in identifying a single concentration as the RECAP Standard is that an individual will experience intake in the same manner, containing the same chemical concentration, every day of the exposure scenario. Particularly in scenarios involving long-term exposure periods like the 25 year (industrial) and 30 year (recreational) durations assumed for this site, it is unrealistic to assume that the individual would be exposed uniformly to the maximum reported value.

Additionally, from scientific studies it is known that the concentration of a chemical that is measured in the environment is not entirely bioavailable (e.g., EPA has recognized reduced bioavailability of metals in soil and sediment, such as 0.6 availability for arsenic). Because RECAP identifies a default bioavailability factor of 100%, this conservative assumption was used for all COCs, for all media, in the RECAP assessment. This approach overestimates the exposure that occurs, particularly for sediment; as a result, the estimated RECAP Standards are lower than levels that would also be protective if bioavailability were considered.

Dry Weight Exposure Concentrations Compared to Direct Contact Standards:

RECAP provides specific guidance for use of wet weight data in comparison to direct contact standards. This method was confirmed by LDEQ for sediment risk evaluations previously submitted and approved under RECAP MO-3.¹⁵ EPA requires use of dry weight concentrations for evaluation of the direct contact pathway. For complete information, the direct contact evaluation was also performed using the dry weight results, and changing no other factors (see Table 5-3 for list of samples included). The results of the screening assessment indicate the maximum concentration of one additional metal (arsenic) exceeds the non-industrial (residential) screening standard and warrants further evaluation under MO-3 (see Appendix K, Table K-1 for screening results). All other COCs for MO-3 evaluation remain the same.

MO-3 RECAP Standards are identified for the constituents exceeding screening standards in Appendix K Table K-2, for both industrial and recreational land use, using the same scenarios identified previously for the wet weight assessment. The reported sediment concentrations (in dry weight) are compared to the limiting MO-3 RECAP Standards in Table K-2, and cumulative hazard is calculated using the target organ Hazard Index approach identified in Appendix G of RECAP.

Arsenic exceeds the MO-3 standard of 12 mg/kg in the following locations in dry weight units:

```
B2 (2-4') 13.8 mg/kg SS7 (1.4-2.5') 21.5 mg/kg
B19 (1-2.5') 15.4 mg/kg AB13 (0-3') 12.9 mg/kg
SS7 (0-1.4') 22 mg/kg AB-13 (0-3') 17.6 mg/kg (resample)
```

Further evaluation is therefore performed for arsenic to determine if the average concentration across the AOI differs from the state-specific background level of 12 mg/kg. The average concentration in the surface interval was calculated using the data within and between the oilfield access canals, south of Schooner

¹⁵ RECAP Management Option 3 Report Bayou Trepagnier Operable Unit 2, prepared by URS Corporation November 20, 2009 (Revision 2)

Bayou (excluding data collected from Schooner Bayou and White Lake) (calculation provided in Table K-3). The average arsenic concentration (6.4 mg/kg-dry) is less than 12 mg/kg, indicating concentrations are no different from the state-specific background level on average, and concentrations comply with the RECAP Standard in accordance with RECAP Section 2.13.

No exceedances of additional MO-3 standards are identified in Table K-2. Therefore, the dry weight assessment results in no additional areas for corrective action relative to the wet weight assessment.

Toxicity Assessment: Toxicity factors used in the risk assessment are primarily derived from laboratory animal studies that were extrapolated to allow for evaluation of human effects. Although animal study data are derived from rigorous scientific experiments, there are a number of uncertainties involved in the use of these data for human effects. These include treatment of benign tumors as malignant, use of the most sensitive species and sex, and high dose to low dose extrapolation. The toxicological models that are used in the derivation of reference doses and slope factors include application of factors to address the uncertainty and to reduce the likelihood that human risk will be underestimated. These factors are intended to err on the side of caution in identifying constituent levels that may be associated with potential human health effects.

Dr. Beck has provided an analysis of the Margin of Exposure (MOE), also referred to as the margin of protection, which compares estimated chemical intake at the site to doses identified in the underlying toxicity studies as resulting in observed adverse effects (Gradient, 2015). The larger the MOE, the safer the margin of protection for site concentrations. The MOE analysis demonstrates that plausible exposures at the site are not estimated to result in adverse health effects based upon the supporting toxicological studies. Alternatively, exposures beyond plausible scenarios would be required to reach intake levels equivalent to those identified as resulting in adverse effects in test species. This kind of analysis increases confidence in the conclusion that site concentrations are protective of potential human receptors under Reasonable Maximum Exposure assumptions.

A potential source of underestimation of risk is unquantified synergistic effects for multiple constituents, for which toxicological data are unavailable for risk evaluation. However, where applicable, potential additive effects have been addressed in this risk evaluation.

<u>Summary:</u> Although all risk assessments involve uncertainty, the risk assessment conducted for the East White Lake study area was prepared utilizing risk protocols that attempt to reduce uncertainty in as many areas as possible. As a matter of practice and policy, subjective decisions for assigning risk assessment factors generally included a choice on the conservative end of the range of potential values. Site-specific information was used where possible in combination with LDEQ and EPA guidance. The evaluation provided in this risk assessment reflects Reasonable Maximum Exposure to the best of the submitter's knowledge, and incorporates a reasonable degree of conservatism. As a result of the combination of conservative assumptions, risk assessments (and RECAP assessments) generally overestimate exposure and risk. EPA study has indicated

that the net result of compounded conservatism in risk evaluation is an estimation of risk that, in all likelihood, is one or more orders of magnitude higher than the actual risk. For this purpose, EPA emphasizes that it should be explicitly stated that the procedures used for cancer risk assessment represent a "plausible upper limit to the risk ... [and that] the true value of the risk is unknown and may be as low as zero" (EPA, 1989)." With this in mind, this risk assessment has attempted to utilize assumptions that will not underestimate risk yet will represent risk within the plausible range, such that the results are meaningful and assist in making informed risk-based decisions regarding use and management of the site.

7.0 ECOLOGICAL RISK EVALUATION

In accordance with guidance presented in Section 7.0 of RECAP (2003), an ecological screening checklist was completed to determine the need for ecological risk evaluation considering the site setting, physical features, and media affected with site-related constituents. The ecological checklist (RECAP Form 18) is provided in Appendix J.

The checklist screening results included a recommendation to complete further ecological evaluation based upon location of the site and detected constituents within a wetland area. The detailed assessment is presented in a separate report and included the following components, in general:

- Multiple site inspections and characterizations,
- Information from investigations conducted in 2010 to 2015 regarding the wildlife, vegetation, and sediments,
- Analysis of wetland functions and services provided by the site,
- Screening-Level Ecological Risk Assessment (SLERA),
- Site-specific Baseline Ecological Risk Assessment (BERA), and
- An intensive study of crabs and forage fish to measure potential bioaccumulation of elements from the site.

The ecological risk evaluation identified the following conclusions: the vegetation in the East White Lake study area is growing vigorously and does not exhibit any diagnostic symptoms of exposure or adverse effects due to oil and gas E&P activities. The property is providing significant wildlife habitat as would also be expected for wetlands in this area. There is evidence of healthy wildlife and game animals, and no evidence of adverse effects on wildlife from past or ongoing E&P activities. Based on observations and field sampling, ecological populations have not been adversely affected.

The structural components of this ecosystem (e.g. plants and animals) are abundant, diverse, and in good health. Services expected for property in this area (water storage, soil stabilization) are being provided. Wetlands in the East White Lake study area are providing valuable functions and services for both wildlife and people living in the vicinity.

The site-specific BERA quantitatively confirms that historical E&P activities on this site do not pose an unacceptable risk to wildlife. The various lines of evidence each independently demonstrate that no unacceptable risk exists on the property from an ecological perspective.

8.0 RECAP EVALUATION RESULTS AND RECOMMENDATIONS

A site-specific risk evaluation was performed under MO-3 of RECAP in order to fully address all media investigated at the East White Lake study area. Sediment, ground water, surface water, and biota tissue were sampled and analyzed for potential constituents of concern, and reported concentrations were compared to protective standards for human health developed in accordance with applicable guidance of RECAP and other LDEQ regulations, EPA guidance, and LDHH protocols.

Current and future uses of the property were identified as industrial and recreational based on the conceptual site model and exposure assessment. In addition to a default industrial scenario, site-specific exposure scenarios representative of Reasonable Maximum Exposure for recreational receptors were used in the development of MO-3 RS. The scenarios were developed based upon a combination of site-specific information and LDEQ and EPA sources, consistent with the requirements of the RECAP regulation. The evaluation of the default industrial scenario meets the requirement of RECAP to ensure that properties remain suitable for commerce and industrial use.

The results of the risk assessment and recommendations for further action are summarized below.

8.1 SEDIMENT EVALUATION

Two sample locations are identified as exceeding the limiting RECAP Standards for hydrocarbon constituents in sediment: WL-3 and WL-4. For the remaining samples collected across the site from over 100 boring locations, maximum reported concentrations in sediment are less than RS for industrial land use, recreational use, and for protection of ground water. The comprehensive assessment included evaluation of direct contact with near surface sediments, including those located at the base of canals, and evaluation of ground water protection for sediment at all depths (surface and subsurface).

One hydrocarbon fraction in sample WL-3 (0-2'), collected within the active Tank Battery A operational area, exceeded a recreational contact standard¹⁶ and was below the industrial contact standard. Concentrations reported in samples collected deeper in this location were less than the direct contact standards. The sediment samples collected at WL-3 (0-2') and WL-4 in the 4-11' and 11-12.5' bgs intervals exceeded a total hydrocarbon fraction concentration of 10,000 mg/kg, which is identified in RECAP as an aesthetic standard and not a health-based standard. WL-4 is located within a former pit feature in an area that is no longer in active E&P operations (former Tank Battery B area). Samples collected deeper in the WL-3 and WL-4 locations were less than the aesthetic limit. Figure 6-2 identifies these sample locations with reported hydrocarbon fraction concentrations greater than RECAP Standards.

A corrective action plan to address the former pit, where sample location WL-4 was collected, is being provided by MP&A to LDNR in the site remediation plan (MP&A, 2015a). The proposed action includes lateral delineation, excavation,

-

¹⁶ Standard developed using the simpler additive divisor approach.

confirmation sampling, and backfilling with clean sediments. The scope of this action will address the exceedance of RS at WL-4. Should ongoing operations be discontinued in the Tank Battery A area where sample WL-3 was collected, and the area made available for recreational use, the need for corrective action (and potential scope of remediation) should be addressed at that time. Under current site conditions and operations, hydrocarbon concentrations at the WL-3 location are protective of the industrial workers.

8.2 GROUND WATER EVALUATION

The ground water zones sampled and evaluated under RECAP included a shallow Peat Zone, 40-Foot Zone, 70-Foot Zone, 90-Foot Zone, and Upper Sand of the Chicot Aquifer (at greater than 400 feet bgs). Compliance Concentrations (i.e., maximum concentrations) of all AOIs/COCs were below Class 3 ground water RS (GW3NDW) for the Peat Zone, demonstrating concentrations are protective of potential surface water receptors.

For the 40-Foot Zone, Compliance Concentrations of site COCs were below site-specific recreational use standards, considering the current and potential future use of ground water for non-potable purposes in a camp water supply well. Using default Class 2 (GW2) health-based standards that are based on assumed use of ground water as a primary drinking water supply (with no dilution assumed), three AOIs were identified for the COCs benzene (present in one AOI) and barium (present in all three AOIs). Additionally, chlorides exceeded the natural (background) levels in the same AOIs, and chlorides naturally exceed the aesthetic standard for drinking water. Figure 6-3 identifies the AOIs relative to default GW2 standards.

There is currently no exposure to ground water within the default AOIs, and there is no human health risk associated with the concentrations reported in the ground water samples. The exceedances of default health-based standards (benzene and barium) are reasonably delineated and no threat is identified for the non-potable supply wells that are completed in this zone (i.e., the Hebert well and abandoned Crouch well north of the AOIs and Schooner Bayou). The estimated flow direction of the 40-Foot Zone is to the west/southwest, and will be confirmed through additional monitoring proposed by MP&A. The 40-Foot Zone ground water is not a desirable drinking water source under natural conditions based on the iron, manganese and salt (chlorides) levels well above secondary drinking water standards that result in objectionable taste, color, and possibly odor.

No exceedances of health-based RS are identified for site COCs in deeper ground water zones. Within the 70-Foot Zone, chlorides appear elevated beneath AOIs of the 40-Foot Zone, but the concentrations demonstrate attenuation relative to the 40-Foot Zone. No impact by site COCs is identified in the 90-Foot Zone or Upper Sand of the Chicot Aquifer. The Upper Sand of the Chicot Aquifer is the first naturally fresh zone of ground water beneath the site, generally expected to meet the SMCL for chlorides. Chlorides were confirmed to be below the SMCL in samples collected from this zone at the site.

8.3 SURFACE WATER EVALUATION

The maximum reported concentrations of all constituents detected in surface water samples, collected from the oilfield access canals and from locations outside of the canals along Schooner Bayou and White Lake, were less than standards developed using RECAP default methods for surface water designated NDW in the Surface Water Quality regulations. The maximum reported concentrations were also less than site-specific recreational RS calculated in addition to the default RECAP methods. The results indicate concentrations are protective of surface water users, including the full range of primary contact and secondary contact (fishing and ingestion of fish) recreational activities.

Chlorides are not a concern for adverse effects to human health in recreational surface waters. In general, the chlorides concentrations in Schooner Bayou were higher than those in the oilfield access canals. This is consistent with the US Army Corps of Engineers monitoring of Schooner Bayou, which demonstrates tidal influence from the saltier water of Vermilion Bay.

The conclusions of this surface water evaluation, using direct measurements of surface water conditions, confirm the conclusions for Peat Zone ground water which indicated that concentrations of COCs detected in the Peat Zone were estimated to be protective of adjacent surface waters based on the default RECAP models.

8.4 BIOTA (CRAB TISSUE) EVALUATION

The mean and maximum concentrations of constituents reported in crab meat and hepatopancreas samples collected within the oilfield access canals and reference locations along Schooner Bayou and White Lake were less than screening levels developed for public health protection in accordance with state-specific tissue screening level guidelines. The guidelines were developed jointly by the LDHH, LDEQ, LDWF, and LDAF to determine the need for consumption advisories regarding health risks to the public who fishes recreationally and routinely at a specific water body. The biota tissue collection and analyses were performed using scientifically valid procedures consistent with Louisiana guidelines and provided representative data for edible tissues, appropriate for comparison to the screening levels, called TSLs. The comparison to TSLs indicated concentrations are below protective levels and no human health concern is identified.

The sensitivity of the conclusions to a change in intake assumptions was examined. In particular, an increase in ingestion rate was evaluated to understand the potential effects of consumption at a rate greater than the default specified for the general Louisiana population. No change in the conclusions resulted from an increased ingestion rate consistent with relevant studies for Gulf Coast consumers. The results of the sensitivity analyses support a high level of confidence in the conclusion that reported concentrations are protective of human health, even assuming crabs are harvested solely from the study area and consumed at the expected (general population) or higher ingestion rates.

The LDHH provided an independent review of the sampling and risk assessment results, which were provided to LDHH in a prior report (ERM, 2014). In LDHH's report of March 13, 2015, the LDHH confirmed that the crab tissue samples were collected and analyzed in accordance with the Louisiana advisory Protocol and that concentrations in crab were below levels of health concern. Additionally, the LDHH reported its own collection and analysis of edible crab tissues from the East White Lake area. Based on collection of crabs during November 2010 and analyses of arsenic and barium, LDHH concluded the results are protective of health and do not support the need for a consumption advisory due to concentrations in crab tissue.

8.5 ECOLOGICAL EVALUATION

An ecological risk evaluation was performed and is presented separately from this RECAP report addressing protection of human health. The conclusions of the ecological risk assessment indicate that there is evidence of healthy wildlife and game animals in the East White Lake study area, and based on observations and field sampling, ecological populations have not been adversely affected.

The structural components of this ecosystem (e.g. plants and animals) are abundant, diverse, and in good health. Wetlands in the East White Lake study area are providing valuable functions and services for both wildlife and people living in the vicinity.

The site-specific BERA quantitatively confirms that historical E&P activities on this site do not pose an unacceptable risk to wildlife. The various lines of evidence each independently demonstrate that no unacceptable risk exists on the property from an ecological perspective.

8.6 SITE RANKING

A site ranking value was selected from the information provided in the LDEQ RECAP guidance and the *Standard Guide for Risk-Evaluation/Corrective Action at Petroleum Release Sites* (ASTM E 1739-95). The site ranking is intended to provide information on the urgency (or the limited urgency) of response action for protection of human health and the environment. A ranking value of 3 is appropriate considering the risk assessment results for sediment, ground water, surface water, and edible crab tissue (1=immediate threat; 4= no demonstrable threat).

The ranking of 3 is identified for the following reasons:

- A single shallow sediment sample contained a concentration above the recreational direct contact standard. The sample is located in an actively operating industrial area, and the concentration is below industrial standards.
- Exceedances of aesthetic standards for hydrocarbons in two boring locations do not pose a health risk. Corrective action has been proposed for the location that is outside of active E&P operations areas.
- Constituent concentrations above default, health-based RECAP Standards occur in ground water in the 40-Foot Zone. There is no use of ground

water within the AOIs and no threat of impact to the existing water well users north of the AOIs. Existing water use is for non-potable purposes at recreational camps, e.g., as wash water. It is likely that future use of this zone, if any, would be similar given natural conditions that make the water unpalatable. Concentrations within the AOIs are protective for such non-potable use.

- Constituent concentrations in surface water are less than water quality standards and RS protective of the full range of recreational uses as designated in the Louisiana Water Quality regulations.
- Constituent concentrations in edible crab tissues are below screening levels protective of human health.

8.7 RECOMMENDATIONS FOR SITE MANAGEMENT

Based on the results of the RECAP evaluation, concentrations remaining in sediment and ground water are protective of human health under current land and ground water use conditions. It is recommended that the boring locations that demonstrated exceedances of aesthetic standards for hydrocarbons be addressed to comply with RECAP requirements for total petroleum hydrocarbons. For location WL-3, located at the active Tank Battery A, it is reasonable to defer corrective action until the lines are no longer active, as no health risk is identified for the current industrial use of the area. No other corrective action for sediment is warranted for human health protection.

For the 40-Foot Zone ground water, it is recommended that the reviewing agencies consider the risk level associated with actual and hypothetical ground water use as one of multiple factors in identifying the most appropriate response plan for the site, in accordance with the RECAP regulation. Additional factors in determining the need for and scope of corrective action include site-specific characteristics, a balance of actual and potential risk, confidence in site characterization and exposure scenarios, weight of scientific evidence for exposure and toxicity, background constituent levels, and the technical and economic feasibility of remediation. This RECAP evaluation report provides the risk estimates required for agency review as well as information regarding confidence/evidence related to exposure scenarios and toxicity. The corrective action plan provided separately by MP&A addresses the factors related to technical and economic feasibility for agency consideration in adoption of an appropriate corrective action plan.

In accordance with RECAP, if required by the reviewing agencies, a conveyance notice is applicable to address assumed future ground water use in AOIs where concentrations in the 40-Foot Zone exceed health-based drinking water standards without application of a DAF.

No exceedance of health-based RECAP Standards is identified for site COCs in additional ground water zones, and therefore no corrective action is warranted for the zones. No further evaluation or corrective action is warranted for surface water or for protection of human consumption of fish and shellfish in the study area.

9.0 REFERENCES

American Petroleum Institute (API) (ASTM E1739-95) (2015). Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites.

Anderson, Ann and Janet C. Rice (1991). Survey of Fish and Shellfish Consumption by Residents of the Greater New Orleans Area. *Bulletin of Environmental Contamination and Toxicology*. 51:508-514

CDM (2002). Draft Final Human Health Risk Assessment for Calcasieu Estuary, Lake Charles, Louisiana. Prepared for EPA Region 6.

Dellenbarger, Lynn, Alvin Schupp, and Brian Kanjilal (1993). Seafood Consumption in Coastal Louisiana. Prepared by LSU Agricultural Center for LDEQ.

EPA (December 1989), Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual, Part A, EPA/540/1-89/002. http://www.epa.gov/oswer/riskassessment/ragsa/index.htm

EPA (December 1991), Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals), EPA/540/R-92/003. <u>December 1991</u>. http://www.epa.gov/oswer/riskassessment/ragsb/pdf/contents.pdf

EPA (2000). Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Vol. 2: Risk Assessment and Fish Consumption Limits, Third Ed.

EPA (2002a). Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites. OSWER 9285.6-10. http://www.epa.gov/oswer/riskassessment/pdf/ucl.pdf

EPA (2002b). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24. December 2002. http://www.epa.gov/superfund/health/conmedia/soil/pdfs/ssg_main.pd f

EPA (July 2004). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). EPA/540/R/99/005. July 2004. http://www.epa.gov/oswer/riskassessment/ragse/pdf/introduction.pdf

EPA (2005). Record of Decision Palmer Barge Line Superfund Site, Port Arthur, Jefferson County, Texas. US EPA Region 6. September 2005.

EPA (2008). Child-Specific Exposure Factors Handbook (Final Report). EPA/600/R-06/096F. http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=199243

EPA (2009). Provisional Peer-Reviewed Toxicity Values for Complex Mixtures of Aliphatic and Aromatic Hydrocarbons (CASRN Various), Superfund Health Risk Technical Support Center, National Center for Environmental Assessment, Office of Research and Development.

EPA (2010). USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review. USEPA-540-R-10-011.

EPA (2010a). ProUCL Version 4.1.00 Technical Guide (Draft) - Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. EPA/600/R-07/041. May 2010.

EPA (2011). Exposure Factors Handbook._EPA/600/R-090/52F. http://www.epa.gov/ncea/efh/pdfs/efh-complete.pdf

EPA (2013). Human Health Ambient water Quality Criteria and Fish Consumption Rates, Frequently Asked Questions. http://water.epa.gov/scitech/swguidance/standards/criteria/health/methodology/upload/hhfaqs.pdf

EPA (2014). Estimated Fish Consumption Rates for the U.S. Population and Selected Subpopulations (NHANES 2003-2010) Final Report. EPA-820-R-14-002.

EPA (2015). Integrated Risk Information System (IRIS), www.epa.gov/iris/

EPA. Secondary Drinking Water Regulations: Guidance for Nuisance Chemicals,

http://water.epa.gov/drink/contaminants/secondarystandards.cfm.

EPA (SW-846, current edition). EPA SW-846 Test Methods for Evaluating Solid Waste - Physical and Chemical Methods.

ERM (2011). Quality Assurance Project Plan/Sampling Analysis and Assessment Plan for Crab and Forage Fish Tissue at the East White Lake Oilfield, East White Lake Oilfield, Vermilion Parish School Board.

ERM (2014). Letter report from Angela Levert to LDEQ, LDHH, LDNR, LDWF, Transmittal of Crab and Forage Fish Tissue Sampling Results for Total Petroleum Hydrocarbons, East White Lake Oilfield, Vermilion Parish School Board. March 6, 2014.

ERM (2011 and 2014). Personal Communication with LDHH personnel (Shannon Soileau) by Angela Levert.

Gradient (2015). Report of Barbara D. Beck, Ph.D., Fellow ATS Concerning the East White Lake Site, Vermilion Louisiana. October 1, 2015.

ICON Environmental Services, LLC (2010a). VPSB v Louisiana Land et al East White Lake Field Vermilion Parish. Assessment Report East White Lake Field Vermilion Parish La. Prepared for Talbot Carmouche Marcello Law Firm, Gonzales Louisiana. March 2010.

ICON Environmental Services, LLC (2010b). VPSB v Louisiana Land et al. Feasibility Study and Remediation Estimate, East White Lake Field, Vermillion Parish, LA. Prepared for Talbot Carmouche Marcello Law Firm, Gonzales Louisiana. April 2010.

ICON Environmental Services, LLC (2010c). Supplemental Report and Transmission of Data, Vermilion Parish School Board, East White Lake Field, State of Louisiana and the Vermilion Parish School Board v Louisiana Land and Exploration, et al, Docket No. 82162, Div D, 15th JDC. November 2, 2010.

ICON Environmental Services, LLC (2015). Supplemental Report and Opinions, Vermilion Parish School Board, East White Lake Field, State of Louisiana and the Vermilion Parish School Board v Louisiana Land and Exploration, et al, Docket No. 82162, Div D, 15th JDC. January 15, 2015.

Lincoln, Rebecca A., James P. Shine, Edward J. Chesney, Donna J. Vorhees, Phillipe Grandjean, and David B. Senn (2011). Fish Consumption and Mercury Exposure Among Louisiana Recreational Anglers, *Environmental Health Perspectives*. Volume 119, No 2, February 2011. p 245ff.

Louisiana Department of Natural Resources (LDNR) (2011). First Amended Memorandum of Understanding Between LDNR Office of Conservation and LDEQ Regarding Approval of RECAP Groundwater Evaluation and Remediation Plans at Oilfield Sites, February 25, 2011

Louisiana Administrative Code (LAC) (Amended through May 2009), Title 33, Part IX – Water Quality, Chapter 11. http://www.deq.louisiana.gov/portal/LinkClick.aspx?fileticket=p6oRt%2bf S%2fRI%3d&tabid=1674

LDEQ (2001). 2000 Annual Mercury Report, Mercury Contaminant Levels in Louisiana Biota, Sediments, and Surface Waters 1994-2000. September 2001.

Louisiana Department of Environmental Quality (LDEQ) (2003), Risk Evaluation/Corrective Action Program (RECAP). LAC 33: I. Chapter 13. http://www.deq.louisiana.gov/portal/tabid/2930/Default.aspx

LDEQ (2012). RECAP Frequently Asked Questions (FAQ).

LDEQ; Louisiana, Dept. of Health and Hospitals (LDHH); Louisiana, Dept. of Wildlife and Fisheries (LDWF); Louisiana, Dept. of Agriculture and Forestry (LDAF) (2012). Tissue Screening Level Guidelines for Issuance of Public Health Advisories for Selected Contaminants and Supporting Documentation.

http://deq.louisiana.gov/portal/Portals/0/planning/Advisories/TSL%20and%20Documentation%20March%202012.pdf, 8p., April.

LDEQ (2014), Louisiana Water Quality Inventory: Integrated Report. http://www.deq.louisiana.gov/portal/DIVISIONS/WaterQualityAssessme https://www.deq.louisiana.gov/portal/DIVISIONS/WaterQualityAssessme https://www.deq.louisiana.gov/portal/DIVISIONS/WaterQualityIntegratedReport.asspx <a href="https://wwww.deq.louisiana.gov/portal/DIVISIONS/WaterQualityIntegrated

Louisiana Department of Natural Resources (LDNR), Louisiana Statewide Order 29-B. http://dnr.louisiana.gov/title43/43v19.pdf

<u>Louisiana Department of Wildlife and Fisheries for LDHH (2009).</u> Louisiana Recreational Fisherman and Health Survey Report. LDHH Award No 48629.

LDHH; LDEQ; Louisiana Dept. of Agriculture and Forestry (LDAF); Louisiana Dept. of Wildlife and Fisheries (LDWF) (2012). Protocol for Issuing Public Health Advisories for Chemical Contaminants in Recreationally Caught Fish and Shellfish. http://dhh.louisiana.gov/assets/oph/Center-EH/envepi/fishadvisory/Documents/LA Fish Protocol FINAL Feb 2012 updated links.pdf, 30p., May.

LDHH (2015). East White Lake Oil and Gas Field Seafood Sampling Evaluation Vermilion Parish, Louisiana. March 13, 2015.

Louisiana Geological Survey (1961). Synopsis of Geologic and Hydrogeologic Results. Geological Survey Professional Paper 424-1.

Lundegard, Paul D. and Robert E Sweeney (2004). Total Petroleum Hydocarbons in Groundwater – Evaluation of Nondissolved and Nonhydocarbon Fractions. *Environmental Forensics*. 5:2, 85-95.

Michael Pisani and Associates, MP&A (2015a). Feasible Plan for Evaluation/Remediation, Vermilion Parish School Board (VPSB) Property, Section 16 T15S, R01E, East White Lake Oilfield Vermilion Parish, Louisiana, State of Louisiana and the Vermilion Parish School Board v. Louisiana Land and Exploration, et al., Docket No. 82,162, Division "D" 15th Judicial District Court, Parish of Vermilion.

MP&A (2015b). Supplemental Data/Expert Report, Section 16 T15S, R01E East White Lake Oilfield, State of Louisiana and the Vermilion Parish School Board v. Louisiana Land and Exploration, et al., Docket No. 82,162, Division "D", 15th Judicial District Court, Parish of Vermilion. February 16, 2015.

Oak Ridge National Laboratory's Risk Assessment Information System (RAIS) Preliminary Remediation Goal (PRG) Calculator. Available on-line at http://rais.ornl.gov/cgi-bin/prg/PRG_search?select=chem.

Ratard, Raoult, Eric T. Baumgartner, and Louis Trachtman (1993). How to Interpret Fish Consumption Advisories. Journal of Louisiana State Medical Society, Volume 145, June, 1993.

Rodgers PhD, John H. (2015). Ecological Risk Assessment, Vermilion Parish School Board Property, East White Lake Oil and Gas Field, Vermilion Parish, La, October 1, 2015.

Saar, Robert (1997). Filtration of Ground Water Samples: A Review of Industry Practice. *Ground Water Monitoring Review*, Winter, 1997, pp. 56-62.

Total Petroleum Hydrocarbon Criteria Working Group Series (Potter, T. and K. Simmons) (1998). Volume 2 Composition of Petroleum Mixtures.

Total Petroleum Hydrocarbon Criteria Working Group Series (Gustafson, J.B., J.G. Tell, and D. Orem) (1997). Volume 3 Selection of Representative TPH Fractions Based on Fate and Transport Considerations.

URS Corporation (2009). RECAP Management Option 3 Report. Bayou Trepagnier Operable Unit 2. AI 44765.

US Army Corps of Engineers Monitoring of Schooner Bayou. Available Online at http://www2.mvn.usace.army.mil/ops/sms/verm.asp

U.S. Department of the Interior, U.S. Fish and Wildlife Service, and U.S. Department of Commerce, U.S. Census Bureau. (2013). National Survey of Fishing, Hunting, and Wildlife-Associated Recreation: Louisiana, FHW/11-LA(RV). Revised December 2013.

Wilson, Mark J. Scott Frickel, Daniel Nguyen, et al. (2015). A Targeted Health Risk Assessment Following the Deep Water Horizon Oil Spill: Polycyclic Aromatic Hydrocarbon Exposure in Vietnamese-American Shrimp Consumers. *Environmental Health Perspectives*. Volume 123, Issue 2, February 2015.

Zemo, Dawn A., Kirk T. O'Reilly, Rachel Mohler, Asheesh K. Tiwary, Renae I. Magaw, and Karen Synowiec (2013). Nature and Estimated Human Toxicity of Polar Metabolite Mixtures in Groundwater Quantified as TPH/DRO at Biodegrading Fuel release Sites. *Groundwater Monitoring & Remediation*. Volume 33, Issue 4, 44-56.

Tables

Project No. 0116008 UNOCAL Vermilion Parish, Louisiana

Environmental Resources Management Southwest, Inc.

3838 North Causeway Boulevard, Suite 3000 Metairie, Louisiana 70002 (504) 831-6700

TABLE 1-1

CONFIRMATION SAMPLE RESULTS FOR SED-15 AREA PIT CLOSURE

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Sample ID	Sample Date	Oil & Grease (%)
Canal Bottom Comp	11/24/2014	0.62
Topsoil N Comp	11/24/2014	0.48
Topsoil S Comp	11/24/2014	0.31
NE Area Comp	12/1/2014	0.26
S Bottom Comp	11/22/2014	< 0.05
S Wall Comp	11/22/2014	0.22
N Bottom Comp	11/21/2014	< 0.05
E Wall Comp	11/20/2014	0.51

Notes:

Sediment samples collected by MP&A.

TABLE 1-2

OVERBURDEN/BACKFILL SOURCE SAMPLES SED-15 AREA PIT CLOSURE

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Sample ID			Backfill 1	Backfill 2	Backfill3
Sample Date			11/20/2014	11/20/2014	11/20/2014
Sampled By	$Soil_{SSni}$	$Soil_{SSGW}$	MP&A	MP&A	MP&A
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Metals (mg/kg)					
Arsenic	12	100	3.29	4.84	6.42
Barium	550	2000	154	65.4	115
Barium, total true	-	-	196	165	545
Cadmium	3.9	20	ND (0.26)	ND (0.25)	ND (0.27)
Chromium	12000	100	9.65	8.85	10.3
Lead	400	100	7.68	10	9.44
Mercury	2.3	4	ND (0.10)	ND (0.10)	ND (0.10)
Selenium	39	20	ND (1.04)	ND (1.01)	ND (1.06)
Silver	39	100	ND (0.26)	ND (0.25)	ND (0.27)
Zinc	2300	2800	28.6	27.8	25.3
Hydrocarbons (mg/kg, except O&G)					
Oil & Grease (%)	-	-	ND (0.05)	ND (0.05)	ND (0.05)
Salt					
Electrical Conductivity (mmhos/cm)	-	-	0.16	0.1	0.41
ESP (%)	-	-	1.5	1.7	1
SAR	-	-	1.49	1.94	1.53
Soluble Calcium (meq/L)	-	-	ND (1.00)	ND (1.00)	1.83
Soluble Magnesium (meq/L)	-	-	ND (1.00)	ND (1.00)	1.23
Soluble Sodium (meq/L)	-	-	ND (1.00)	ND (1.00)	1.9
Other					
CEC (meq/100g)	-	-	16.1	16.1	21.9
Percent Moisture (%)	-	-	16.0	16.6	19.2
pH (S.U.)	-	-	6.82	6.73	7.23

Notes:

ND (##) - Not detected, detection limit in parentheses

SEDIMENT (0-3 FT) COMPARISON TO RECAP DIRECT CONTACT SCREENING STANDARDS

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Constituents (a)	Soil _{SSni} (b)	Soil _{SSi} (c)	Maximum (0-3') (d)	Location of Maximum
	(mg/kg)	(mg/kg)	(mg/kg-wet)	Concentration
Metals				
Arsenic	12	12	8.23	SS7 (1.4-2.5')
Barium	550	14,000	5170	SS7 (1.4-2.5')
Cadmium	3.9	100	2.2	WL-3 (0-2')
Chromium	12000	310,000	17.8	SS11 (0-2.5')
Lead	400	1,400	88.3	WL-3 (0-2')
Mercury	2.3	61	4.47	Hg-MPA-07 (0.5-2')
Selenium	39	1,000	0.60	SED24 (0-2')
Strontium (e)	4700	120,000	129	SS7 (1.4-2.5')
Zinc	2300	61,000	1260	WL-3 (0-2')
Volatile Organic Compounds (VOCs)				
Benzene	1.5	3.1	ND (0.04)	-
Ethylbenzene	160	230	ND (0.25)	-
Toluene	68	470	ND (0.25)	-
Xylenes	18	120	ND (0.75)	-
Semi-Volatile Organic Compounds (SVOC	s)			
Benzo(b)fluoranthene	0.62	2.9	0.019	SED-9 (0-0.5')
Chrysene	62	290	0.021	SED-9 (0-0.5')
Fluoranthene	220	2900	0.5	SS7 (1.4-2.5')
Fluorene	280	5400	0.65	SS7 (1.4-2.5')
Indeno(1,2,3-cd)pyrene	0.62	2.9	0.095	SED-9 (0-0.5')
2-Methylnaphthalene	22	170	2.03	SS7 (1.4-2.5')
Phenanthrene	2100	43000	1.87	SS7 (1.4-2.5')
TPH - Fractions (f)				
Aliphatics >C06-C8	1200	8000	ND (15)	-
Aliphatics >C08-C10	120	880	ND (15)	-
Aliphatics >C10-C12	230	2000	353	WL-3 (0-2')
Aliphatics >C12-C16	370	3800	2500	WL-3 (0-2')
Aliphatics >C16-C35	7100	10000	7110	WL-3 (0-2')
Aromatics >C08-C10	65	510	ND (10)	-
Aromatics >C10-C12	120	1100	74	WL-3 (0-2')
Aromatics >C12-C16	180	2100	403	WL-3 (0-2')
Aromatics >C16-C21	150	1700	1070	WL-3 (0-2')
Aromatics >C21-C35	180	2500	1370	WL-3 (0-2')
Polychlorinated Biphenyls (PCBs)				_
Total PCBs	0.11	0.90	ND (0.033-0.42)	-

Notes:

Per RECAP 2003, concentrations are expressed in mg/kg wet weight for this exposure pathway.

ND - Nondetect at the detection limit, or range of detection limits, shown in parentheses.

 $\ensuremath{\mathsf{TPH}}$ - Total Petroleum Hydrocarbons.

A **bold and boxed** value indicates that the maximum reported concentration exceeds a screening standard for the respective constituent and is identified as a site-related COC subject to further evaluation under a higher Management Option.

- (a) Constituents in this table include constituents detected in sediment and indicator constituents for petroleum hydrocarbons (e.g., BTEX, PAHs).
- (b) Soil_{SSni} = RECAP Screening Option Standard from Table 1 of RECAP 2003 for soil protective of nonindustrial land use.
- (c) Soil_{SSi} = RECAP Screening Option Standard from Table 1 of RECAP 2003 for soil protective of industrial land use.
- (d) The maximum reported concentration in sediment samples most representative of surface sediment in the 0 to 3 foot interval (remediated areas excluded). The samples included in the direct contact evaluation are summarized in Table 5-3. Detections in split sample results from two separate laboratories (as submitted by ICON and MP&A) were averaged when valid data were available from both laboratories, and the detected value was used when one detection was reported.
- (e) Value not provided in RECAP; the risk-based values were calculated in accordance with Appendix H of RECAP 2003 (see
- (f) RECAP identifies 10,000 mg/kg as an aesthetic limit for TPH in soil; this is not specifically addressed for sediment. The aesthetic guideline is not a health based limit.

SEDIMENT (ALL DEPTHS) COMPARISON TO RECAP GROUND WATER PROTECTION SCREENING STANDARDS

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Constituents (a)	Soil _{SSGW} (b) (mg/kg)	Maximum (c) (mg/kg-dry)	Location of Maximum Concentration
Metals (Total)	(0, 0)	(8/ 8 - 3/	
Arsenic	100	39	B2 (10-10.5')
Barium	2000	15700	SS7 (0-1.4')
Cadmium	20	3.45	B12 (6.5-7.5')
Chromium	100	25.1	SS11 (0-2.5')
Lead	100	125	WL-3 (0-2')
Mercury	4	14.22	SS8 (2-4')
Selenium	20 L	2.2	SED32 (4-6')
Strontium (d)	44000	459	AB13 (0-3')
Zinc	2800	1780	WL-3 (0-2')
Volatile Organic Compounds (VOCs)			
Benzene	0.051	ND (0.0565-0.141)	_
Ethylbenzene	19	ND (0.353-0.883)	_
Toluene	20	ND (0.353-0.883)	-
Xylenes	150	ND (1.06-2.65)	-
Semi-Volatile Organic Compounds			
Benzo(b)fluoranthene	220	0.0625	SED-9 (0-0.5')
Chrysene	76	0.069	SED-9 (0-0.5')
Fluoranthene	1200	1.3	SS7 (1.4-2.5')
Fluorene	230	1.69	SS7 (1.4-2.5')
Indeno(1,2,3-cd)pyrene	9.2	0.313	SED-9 (0-0.5')
2-Methylnaphthalene	1.7	5.29	SS7 (1.4-2.5')
Phenanthrene	660	4.87	SS7 (1.4-2.5')
TPH - Fractions (e)			
Aliphatics C6-C8	10000	626	WL-4 (11-12.5')
Aliphatics >C8-C10	5300	632	WL-4 (11-12.5')
Aliphatics >C10-C12	10000	699	WL-4 (11-12.5')
Aliphatics >C12-C16	10000	3950	WL-4 (11-12.5')
Aliphatics >C16-C35	10000	12600	SED28 (0-2')
Aromatics >C8-C10	65	281	WL-4 (11-12.5')
Aromatics >C10-C12	100	480	WL-4 (4-11')
Aromatics >C12-C16	200	2660	WL-4 (11-12.5')
Aromatics >C16-C21	2100	3230	WL-4 (4-11')
Aromatics >C21-C35	10000	3090	WL-4 (4-11')
PCBs			
Total PCBs	19	0.248	SED7 (4-6')

Notes:

Per RECAP 2003 and related FAQ guidance, concentrations are expressed in mg/kg dry weight for sediment for this transport pathway.

A **bold and boxed** value indicates that the maximum reported concentration exceeds a screening standard for the respective constituent and is identified as a site-related COC subject to further evaluation under a higher Management Option.

- (a) Constituents in this table include constituents detected in sediment and indicator constituents for petroleum hydrocarbons BTEX, PAHs).
- (b) $Soil_{SSGW}$ = RECAP Screening Option Standard for soil protective of ground water, from Table 1 of RECAP 2003.
- (c) The maximum reported concentration in representative sediment samples collected from any depth throughout the study area (remediated areas excluded). Samples were collected to a maximum depth of 20 feet bgs, and were more soillike at the deepest depths. The samples included in the evaluation of migration from sediment to ground water are summarized in Table 5-4. Detections in split sample results from two separate laboratories (as submitted by ICON and MP&A) were averaged when valid data were available from both laboratories, and the detected value was used when one detection was reported.
- (d) Value not provided in RECAP; the risk-based values were calculated in accordance with Appendix H of RECAP 2003 (see Appendix G).
- (e) RECAP identifies 10,000 mg/kg as an aesthetic limit for TPH in soil; this is not specifically addressed for sediment. The aesthetic guideline is not a health based limit.

TABLE 5-3

SEDIMENT DATA INCLUDED IN DIRECT CONTACT QUANTITATIVE EVALUATION

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

	ICON 2006			
Sample	Depth Interval	Sample Date		
SS1	0-2.1'	25-Apr-06		
SS1	2.1-2.5'	25-Apr-06		
SS2	0-1'	25-Apr-06		
SS2	1-1.5'	25-Apr-06		
SS3	0-0.6'	25-Apr-06		
SS3	0.6-2.2'	25-Apr-06		
SS3	2.2-2.6'	25-Apr-06		
SS4	0-0.6'	26-Apr-06		
SS4	0.6-2.7'	26-Apr-06		
SS5	0-2.15'	26-Apr-06		
SS6	0-1.65'	26-Apr-06		
SS6	1.65-2.5'	26-Apr-06		
SS7	0-1.4'	26-Apr-06		
SS7	1.4-2.5'	26-Apr-06		
SS8	0-1.9'	27-Apr-06		
SS8	1.9-2.3'	27-Apr-06		
SS9	0-1.7'	27-Apr-06		
SS9	1.7-3.2'	27-Apr-06		
SS10	0-1.5'	27-Apr-06		
SS10	1.5-2.5'	27-Apr-06		
SS11	0-2.5'	27-Apr-06		
SS12	0-3.7'	27-Apr-06		
SS13	0-1'	28-Apr-06		
SS13	1-2.75'	28-Apr-06		
SS14	0-0.8'	28-Apr-06		
SS14	0.8-1.7'	28-Apr-06		
SS15	0-3'	28-Apr-06		
AB1	0-3'	13-Nov-06		
AB2	0-3'	13-Nov-06		
AB3	0-3'	13-Nov-06		
AB4	0-3'	13-Nov-06		
AB5	0-6'	13-Nov-06		
AB13	0-3'	13-Nov-06		
AB14	0-3'	13-Nov-06		
AB15	0-6'	13-Nov-06		
B2	2-4'	8-Aug-06		
B4	0-1'	9-Aug-06		
B5	0-1.5'	9-Aug-06		
B6	1.5-3'	9-Aug-06		
B9	0-0.5'	9-Aug-06		
B9	0.5-3.5'	9-Aug-06		
B10	1.5-4'	9-Aug-06		
B12	0-1.5'	10-Aug-06		
B14	0-1'	10-Aug-06		
B17	0-3'	10-Aug-06		
B18	2-4'	10-Aug-06		
B19	1-2.5'	10-Aug-06		
B21	0-2'	10-Aug-06		

ICON/MPA 1Q 2010 Splits ¹			
Sample	Depth Interval	Sample Date	
SS-08	0-2'	26-Feb-10	
SS-10	0-2'	26-Feb-10	
SED-4	0-2'	25-Feb-10	
SED-5	0-2'	25-Feb-10	
SED-6	0-2'	25-Feb-10	
SED-7	0-2'	25-Feb-10	
SED-8	0-2'	25-Feb-10	
SED-9	0-2'	25-Feb-10	
SED-10	0-2'	25-Feb-10	
SED-11	0-2'	25-Feb-10	
SED-12	0-2'	25-Feb-10	
SED-13	0-2'	26-Feb-10	
SED-14	0-2'	26-Feb-10	
SED-16	0-2'	26-Feb-10	
SED-17	0-2'	26-Feb-10	
SED-18	0-2'	26-Feb-10	
SED-19	0-2'	26-Feb-10	
SED-20	0-2'	26-Feb-10	
SED-21	0-2'	26-Feb-10	
SED-22	0-2'	26-Feb-10	
SED-23	0-2'	2-Mar-10	
SED-24	0-2'	2-Mar-10	
SED-25	0-2'	2-Mar-10	
SED-26	0-2'	2-Mar-10	
SED-27	0-2'	2-Mar-10	
SED-28	0-2'	2-Mar-10	
SED-29	0-2'	2-Mar-10	
SED-30	0-2'	2-Mar-10	
SED-31	0-2'	1-Mar-10	
SED-32	0-2'	1-Mar-10	
SED-33	0-2'	1-Mar-10	

MPA August 2010			
Sample	Depth Interval	Sample Date	
AB-13	0-3'	Aug-10	
AB-14	0-3'	Aug-10	
AB-13-SO-E	0-3'	Aug-10	

ICON/MPA January 2015 Splits ¹			
Depth Interval	Sample Date		
0-2'	5-Jan-15		
0-2'	5-Jan-15		
0-2'	6-Jan-15		
	Depth Interval 0-2' 0-2' 0-2' 0-2' 0-2' 0-2' 0-2' 0-2'		

MPA/ICON May 2010 Splits ¹			
Sample	Depth Interval	Sample Date	
SED-8	0-0.5'	6-May-10	
SED-9	0-0.5'	5-May-10	
SED-11	0-0.5'	6-May-10	
SED-13	0-0.5'	6-May-10	
SED-19	0-0.5'	6-May-10	
SED-24	0-0.5'	5-May-10	
SED-26	0-0.5'	5-May-10	
SED-120**	0-0.5'	7-May-10	
SED-31	0-0.5'	5-May-10	
MPA-AB-13	0-3'	19-May-10	
SED-BK-01	0-0.5'	10-May-10	
SED-BK-02	0-0.5'	10-May-10	
SED-BK-03	0-0.5'	10-May-10	
SED-BK-04	0-0.5'	10-May-10	
SED-BK-05	0-0.5'	11-May-10	
SED-BK-06	0-0.5'	10-May-10	
SED-BK-07	0-0.5'	11-May-10	
SED-BK-08	0-0.5'	11-May-10	
SED-BK-09	0-0.5'	11-May-10	
SED-BK-10	0-0.5'	19-May-10	
SED-BK-11	0-0.5'	19-May-10	

MPA Delineation Samples		
Sample	Depth Interval	Sample Date
MPA-Sed 15-N	0-2'	8-Jun-10
MPA-Sed-15-W	0-2'	8-Jun-10
MPA-Sed-15-W-2	0-2'	8-Jun-10
MPA-Sed-15-E	0-2'	8-Jun-10
MPA-Sed-15-E-2	0-2'	8-Jun-10

MPA/ICON Former Pit Delineation Samples ¹		
Sample	Depth Interval	Sample Date
SP-MPA-01 ²	0-0.5'; 0.5-2'	5 and 6-Oct-10
SP-MPA-02 ²	0-0.5'; 0.5-2'	5-Oct-10
SP-MPA-03 ²	0-0.5'; 0.5-2'	5-Oct-10
SP-MPA-04 ²	0-0.5'; 0.5-2'	6-Oct-10

MPA/ICON Mercury Assessment Samples ¹		
Sample	Depth Interval	Sample Date
Hg-MPA-01	0-0.5'; 0.5-2'	6-Oct-10
Hg-MPA-02	0-0.5'; 0.5-2'	6-Oct-10
Hg-MPA-03	0-0.5'; 0.5-2'	6-Oct-10
Hg-MPA-04	0-0.5'; 0.5-2'	6-Oct-10
Hg-MPA-05 ²	0-0.5'; 0.5-2'	6-Oct-10
Hg-MPA-06	0-0.5'; 0.5-2'	7-Oct-10
Hg-MPA-07	0-0.5'; 0.5-2'	7-Oct-10
Hg-MPA-08	0-0.5'; 0.5-2'	7-Oct-10
Hg-MPA-09	0-0.5'; 0.5-2'	7-Oct-10
Hg-MPA-09dup	0.5-2'	7-Oct-10

Notes:

For purposes of evaluating direct contact with sediment, the samples most representative of surface sediment in the 0 to 3 foot interval were identified.

The samples and intervals listed are those for which chemical analytical data useful for human health risk evaluation are available and were used in the risk evaluation.

Locations AB-1 through AB-4 and locations Sed-BK-1 through Sed-BK-11 likely represent conditions unimpacted by site E&P activities. However, for completeness, the reported constituent levels in these locations were not used to exclude any site locations or concentrations from the quantitative risk evaluation, and therefore they are included in the data set for risk evaluation.

The following samples were located in the area that has been remediated as part of the SED-15 Pit Closure, and have been excluded from the quantitative risk evaluation:

Sample	Depth Interval	Sample Date
SED-15	0-2	26-Feb-10
SED-15	0-0.5	6-May-10
SED-115* ²	0-0.5	6-May-10
MPA-Sed 15	0-2'	8-Jun-10
SP-MPA-05	0-5'	5-Oct-10

^{*} SED-115 is a duplicate of SED-15

^{**} SED-120 is the same location as SED-30

 $^{^{1}\,} Detections\ in\ split\ sample\ results\ from\ two\ separate\ laboratories\ (as\ submitted\ by\ ICON\ and\ MP\&A)\ were\ averaged\ when\ valid\ data\ were\ available\ from\ both$

 $^{^2\,\}mathrm{No}$ ICON Split Collected

SEDIMENT DATA INCLUDED IN GROUND WATER PROTECTION QUANTITATIVE EVALUATION

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

	ICON 2006	
Sample	Depth Interval	Sample Date
SS1	0-2.1; 2.1-2.5	25-Apr-06
SS2	0-1; 1-1.5	25-Apr-06
SS3	0-0.6; 0.6-2.2; 2.2-2.6	25-Apr-06
SS4	0-0.6; 0.6-2.7; 2.7-3.8	26-Apr-06
SS5	0-2.15	26-Apr-06
SS6	0-1.65; 1.65-2.5	26-Apr-06
SS7	0-1.4; 1.4-2.5; 2.5-3.5	26-Apr-06
SS8	0-1.9; 1.9-2.3	27-Apr-06
SS9	0-1.7; 1.7-3.2; 3.2-3.7	27-Apr-06
SS10	0-1.5; 1.5-2.5	27-Apr-06
SS11 SS12	0-2.5; 2.5-3.4; 3.4-3.7 0-3.7	27-Apr-06 27-Apr-06
SS13	0-3.7	28-Apr-06
SS14	0-0.8; 0.8-1.7	28-Apr-06
SS15	0-3; 3-3.25	28-Apr-06
B2	2-4; 4-6; 6-8; 10-10.5	8-Aug-06
В3	4-7; 9-12	9-Aug-06
B4	0-1; 3-5; 5-8	9-Aug-06
B5	0-1.5; 4-5.5; 8-10	9-Aug-06
В6	1.5-3; 3-10.5	9-Aug-06
В7	4-5; 8-11	9-Aug-06
B8	5.5-7; 9.5-11.5	9-Aug-06
В9	0-0.5; 0.5-3.5; 8-9	9-Aug-06
B10	1.5-4, 4-7.5	9-Aug-06
B12	0-1.5; 3.5-5; 6.5-7.5	10-Aug-06
B13	3-5; 7.5-9.5	10-Aug-06
B14	0-1; 4-8	10-Aug-06
B15	4-6; 8-11.5	10-Aug-06
B17	0-3; 3-6; 8.5-10.5; 10.5-12	10-Aug-06
B18	2-4; 4-5; 7.5-10; 10-11.5	10-Aug-06
B19	1-2.5; 2.5-4; 4-6.5; 6.5-9.5	10-Aug-06
B20	3-4.5; 7.5-10	10-Aug-06
B21	0-2; 2-4	10-Aug-06
AB1	0-3; 3-6; 6-8; 12-14	13-Nov-06
AB2	0-3; 3-6; 4-6; 10-12	13-Nov-06
AB3	0-3; 3-6; 4-6; 8-10	13-Nov-06
AB4		
AD4	0-3; 3-6; 4-6; 10-12	13-Nov-06
AB5	0-6; 4-6; 10-12;14-16;18-20	13-Nov-06
AB6	8-10; 12-14	3-Nov-06
AB7	6-8; 10-12	3-Nov-06
AB8 AB9	6-8; 10-12; 14-16	6-Nov-06 6-Nov-06
AB10	6-8; 12-14; 18-20	6-Nov-06
AB11	4-6; 12-14; 14-16	
	4-6; 6-8;16-18	6-Nov-06
AB12	6-8; 12-14	7-Nov-06
AB13	0-3; 3-6; 4-6; 8-10; 10-12	13-Nov-06
AB14	0-3; 3-6; 4-6; 8-10	13-Nov-06
AB15	0-6; 4-6; 12-14	13-Nov-06
AB16	4-6; 8-10; 10-12; 12-14	7-Nov-06
AB18	4-6; 10-12; 12-14	8-Nov-06
AB19	4-6; 8-10; 12-14	8-Nov-06
AB20	6-8; 10-12; 14-16; 16-18	8-Nov-06
AB21	4-6; 6-8; 8-10; 12-14	8-Nov-06
AB22	4-6; 6-8; 12-14; 16-18	8-Nov-06

ICON/MPA 1Q 2010 Splits ¹		
Sample	Depth Interval	Sample Date
SS-08	0-2, 2-4	26-Feb-10
SS-10	0-2, 2-4	26-Feb-10
SED4	0-2	25-Feb-10
SED5	0-2	25-Feb-10
SED6	0-2	25-Feb-10
SED7	0-2, 2-4, 4-6	25-Feb-10
SED8	0-2; 2-4	25-Feb-10
SED9	0-2; 2-4	25-Feb-10
SED10	0-2; 2-4	25-Feb-10
SED11	0-2; 2-4	25-Feb-10
SED12	0-2; 2-4; 4-6	25-Feb-10
SED13	0-2; 2-4	26-Feb-10
SED14	0-2; 2-4	26-Feb-10
SED16	0-2	26-Feb-10
SED17	0-2; 2-4	26-Feb-10
SED18	0-2; 2-4	26-Feb-10
SED19	0-2; 2-4	26-Feb-10
SED20	0-2; 2-4	26-Feb-10
SED21	0-2; 2-4; 4-6; 6-8	26-Feb-10
SED22	0-2; 2-4	26-Feb-10
SED23	0-2; 2-4	2-Mar-10
SED24	0-2; 2-4	2-Mar-10
SED25	0-2; 2-4	2-Mar-10
SED26	0-2; 2-4	2-Mar-10
SED27	0-2; 2-4	2-Mar-10
SED28	0-2; 2-4	2-Mar-10
SED29	0-2; 2-4	2-Mar-10
SED30	0-2; 2-4	2-Mar-10
SED31	0-2; 2-4; 4-6	1-Mar-10
SED32	0-2; 2-4; 4-6	1-Mar-10
SED33	0-2; 2-4; 4-6	1-Mar-10

MPA August 2010		
Sample	Depth Interval	Sample Date
AB-5a	4-5.5	Aug-10
AB-5 SO-NE	4-6	Aug-10
AB-5 SO-NW	4-6	Aug-10
AB-6	8-10	Aug-10
AB-8	6-8	Aug-10
AB-8 SO-S	6-8	Aug-10
AB-13	0-3	Aug-10
AB-13-SO-E	0-3	Aug-10
AB-14	0-3	Aug-10
AB-15	4-5.5	Aug-10

ICON/MPA January 2015 Splits ¹		
Sample	Depth Interval	Sample Date
WL-1	0-2; 2-4; 6-8; 9-13	5-Jan-15
WL-2	0-2; 2-4; 8-10; 14-16	5-Jan-15
WL-3	0-2; 4-6/4-8; 10-13	6-Jan-15
WL-4	0-2; 2-4; 4-11; 11- 12.5	6-Jan-15
WL-5	0-2, 2-13	6-Jan-15
WL-6	0-2; 4-6; 8-10; 10-13	6-Jan-15
WL-7	0-2; 2-4; 4-6; 6-8	6-Jan-15
WL-8	0-2; 2-4; 4-6; 6-9	6-Jan-15

MPA/ICON May 2010 Splits ¹		
Sample	Depth Interval	Sample Date
SED-8	0-0.5	6-May-10
SED-9	0-0.5	5-May-10
SED-11	0-0.5	6-May-10
SED-13	0-0.5	6-May-10
SED-19	0-0.5	6-May-10
SED-24	0-0.5	5-May-10
SED-26	0-0.5	5-May-10
SED-120**	0-0.5	7-May-10
SED-31	0-0.5	5-May-10
MPA-AB5 (A)	4-6	19-May-10
MPA-AB5 (B)	4-6	19-May-10
MPA-AB5 (C)	4-6	19-May-10
MPA-AB-6	8-10	19-May-10
MPA-AB-8	6-8	19-May-10
MPA-AB-13	0-3	19-May-10
SED-BK-01	0-0.5'	10-May-10
SED-BK-02	0-0.5'	10-May-10
SED-BK-03	0-0.5'	10-May-10
SED-BK-04	0-0.5'	10-May-10
SED-BK-05	0-0.5'	11-May-10
SED-BK-06	0-0.5'	10-May-10
SED-BK-07	0-0.5'	11-May-10
SED-BK-08	0-0.5'	11-May-10
SED-BK-09	0-0.5'	11-May-10
SED-BK-10	0-0.5'	19-May-10
SED-BK-11	0-0.5'	19-May-10

MPA Delineation Samples		
Sample	Depth Interval	Sample Date
MPA-Sed 15-N	0-2	8-Jun-10
MPA-Sed-15-W	0-2	8-Jun-10
MPA-Sed-15-W-2	0-2	8-Jun-10
MPA-Sed-15-E	0-2	8-Jun-10
MPA-Sed-15-E-2	0-2	8-Jun-10

MPA/ICON Mercury Assessment Samples ¹		
Sample	Depth Interval	Sample Date
Hg-MPA-01	0-0.5; 0.5-2; 5-7	6-Oct-10
Hg-MPA-02	0-0.5; 0.5-2; 5-7	6-Oct-10
Hg-MPA-03	0-0.5; 0.5-2; 4-6	6-Oct-10
Hg-MPA-04	0-0.5; 0.5-2; 3-5	6-Oct-10
Hg-MPA-05 ²	0-0.5; 0.5-2; 6-8	6-Oct-10
Hg-MPA-06	0-0.5; 0.5-2; 5-6	7-Oct-10
Hg-MPA-07	0-0.5; 0.5-2; 6.5-7	7-Oct-10
Hg-MPA-08	0-0.5; 0.5-2; 7.5-8	7-Oct-10
Hg-MPA-09	0-0.5; 0.5-2; 6-7	7-Oct-10
Hg-MPA-09dup	0.5-2	7-Oct-10

MPA/ICON Former Pit Delineation Samples ¹		
Sample	Depth Interval	Sample Date
SP-MPA-01 ²	0-0.5; 0.5-2; 2-4.3; 4.3-4.7; 8-9	5 and 6-Oct-10
SP-MPA-02 ²	0-0.5; 0.5-2; 3-4; 4-5	5-Oct-10
SP-MPA-02a ²	3-5, 7-8	6-Oct-10
SP-MPA-03 ²	0-0.5; 0.5-2; 4-6; 9- 10	5-Oct-10
SP-MPA-04 ²	0-0.5; 0.5-2; 5-7; 9- 10	6-Oct-10

The samples and intervals listed are those for which chemical analytical data useful for human health risk evaluation are available and were used in the risk

evaluation.

Locations AB-1 through AB-4 and locations Sed-BK-11 through Sed-BK-11 likely represent conditions unimpacted by site E&P activities. However, for completeness, the reported constituent levels in these locations were not used to exclude any site locations or concentrations from the quantitative risk evaluation, and therefore they are included in the data set for risk evaluation.

The following samples were located in the area that has been remediated as part of the SED-15 Pit Closure, and have been excluded from the quantitative risk evaluation:

Sample	Depth Interval	Sample Date
SED15	0-2; 2-4	26-Feb-10
MPA-Sed 15	6.5-8.5	8-Jun-10
SED-15	0-0.5	6-May-10
SED-115* 2	0-0.5	6-May-10
SP-MPA-05	0-5: 7-9	5-Oct-10

^{*} SED-115 is a duplicate of SED-15

Notes: ** SED-120 is the same location as SED-30

¹ Detections in split sample results from two separate laboratories (as submitted by ICON and MP&A) were averaged when valid data were available from both laboratories.

² No ICON Split Collected

TABLE 5-5

SUMMARY OF CONSTITUENT CONCENTRATIONS AND LOCATIONS THAT EXCEED RECAP SCREENING STANDARDS

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Residential Direct Contact Screening Sediment (0-3') COCs > Soilssni (wet weight) Ground Water Protection Screening Sediment (all depths) COCs > Soilssgw (dry weight)

Sample	Depth	Date	mg/kg-wet	Sample	Depth	Date	mg/kg-dry
Barium		Soilssni =	550	Barium		Soilssgw =	2000
B2	2-4	8-Aug-06	815	B2	2-4	8-Aug-06	3590
SS3	0-0.6	25-Apr-06	597	SS3	0.6-2.2	25-Apr-06	2330
	0.6-2.2	25-Apr-06	948	SS5	0-2.15	26-Apr-06	7450
	2.2-2.6	25-Apr-06	555	SS7	0-1.4	26-Apr-06	15700
SS5	0-2.15	26-Apr-06	3170		1.4-2.5	26-Apr-06	13500
SS7	0-1.4	26-Apr-06	4440		2.5-3.5	26-Apr-06	3780
	1.4-2.5	26-Apr-06	5170	SS11	0-2.5	27-Apr-06	2750
SS11	0-2.5	27-Apr-06	1950		2.5-3.4	27-Apr-06	2170
SS12	0-3.7	27-Apr-06	1100	SS12	0-3.7	27-Apr-06	2030
SED11	0-2'	25-Feb-10	566	SED17	2-4'	26-Feb-10	2160
SED19	0-2'	26-Feb-10	1270	SED19	0-2'	26-Feb-10	3750
Mercury		Soilssni =	2.3	Lead		Soilssgw =	100
SED6	0-2'	25-Feb-10	2.73	SS5	0-2.15	26-Apr-06	117
Hg-MPA-07 (0.5-2)	0.5-2'	7-Oct-10	4.47	SS7	1.4-2.5	26-Apr-06	117
WL-3	(0-2)	6-Jan-15	4.23	WL-3	0-2'	6-Jan-15	125
Alimbatia - C10 C12		Collegati	230	Монолин		Callagan	4
Aliphatic >C10-C12	(0, 2)	Soilssni =		Mercury	0.4	Soilssgw =	
WL-3	(0-2)	6-Jan-15	353	SS8	2-4'	26-Feb-10	14.2
Alimbatia - C12 C1C		Soilssni =	270	SED6	0-2' 0.5-2'	25-Feb-10 7-Oct-10	7.59 8.52
Aliphatic >C12-C16	(0, 2)		370 2500	Hg-MPA-07			
WL-3	(0-2)	6-Jan-15	2500	Hg-MPA-09 WL-3	0-0.5' 0-2'	7-Oct-10 6-Jan-15	5.57 5.94
Alimbadia : O4C O0E		Callagui	7400				
Aliphatic >C16-C35	(0.0)	Soilssni =	7100	WL-3	(4-6)/(4-8)	6-Jan-15	5.99
WL-3	(0-2)	6-Jan-15	7110	2-Methylnapht	halene	Soilssgw =	1.7
Aromatic >C12-C16		Soilssni =	180	SS7	1.4-2.5	6-Apr-26	5.29
WL-3	(0-2)	6-Jan-15	403		2.0	0740.20	0.20
- I	,	1		Aliphatics >C1	16-C35	Soilssgw =	10,000
Aromatic >C16-C21		Soilssni =	150	SED28	0-2'	2-Mar-10	12600
SED26	0-2'	2-Mar-10	161		-		
SED28	0-2'	2-Mar-10	290	Aliphatic >C8-	C10	Soilssgw =	65
WL-3	(0-2)	6-Jan-15	1070	WL-4	(4-11)	1/6/2015	176
WL-3	(0-2)	0-Jan-13	1070	V L-4	(11-12.5)	1/6/2015	281
Aromatic >C21-C35		Soilssni =	180	WL-5	(2-13)	1/6/2015	83.4
SED28	0-2'	2-Mar-10	433	***	(2 10)	1/0/2010	00.4
SED28	0-2'	2-Mar-10	183	Aromatic >C1	n_C12	Soilssgw =	100
SED30	0-2'	2-Mar-10 2-Mar-10	215	WL-4	(4-11)	1/6/2015	480
WL-3	(0-2)	2-iviar-10 6-Jan-15	1370	VV L-4	` '	1/6/2015	400 407
WL-3	(0-2)	0-Jan-15	1370	WL-5	(11-12.5) (2-13)	1/6/2015	169
				WL-0	(2-13)	1/0/2015	109
				Aromatic >C12	2-C16	Soilssgw =	200
				SED26	0-2'	2-Mar-10	273
				SED28	0-2'	2-Mar-10	790
				WL-3	(0-2)	1/6/2015	534
					(4-6)/(4-8)	1/6/2015	870
				WL-4	(2-4)	1/6/2015	410
					(4-11)	1/6/2015	2360
					(11-12.5)	1/6/2015	2660
				WL-5	(2-13)	1/6/2015	938
				Aromatic >C1		Soilssgw =	2100
				Aromatic >C10	(4-11) (11-12.5)	Soilssgw = 1/6/2015 1/6/2015	3230 2700

Notes:

Detections in split sample results from two separate laboratories (as submitted by ICON and MP&A) were averaged when valid data were available from both laboratories.

TABLE 5-6 GROUND WATER DATA INCLUDED IN OUANTITATIVE EVALUATION

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

	ICON 2006					
Boring ID	Screened Interval (ft. bgs)	Date				
	Peat Zone					
AB2 ⁴	11-21	10-Nov-06				
$AB3^4$	10-20	10-Nov-06				
AB5	12-22	13-Nov-06				
AB6	8-18	10-Nov-06				
AB6DUP	8-18	10-Nov-06				
AB7	10-20	13-Nov-06				
AB15	8-18	13-Nov-06				
AB19	8-18	10-Nov-06				
	40-Foot Zone					
AB1 ³	40-50	10-Nov-06				
Upper	Sand of Chicot Ag	uifer				
AWW1	400	10-Nov-06				

ICON	ICON/MPA 1Q 2010 Splits ²						
Screened Boring ID Interval (ft. bgs) Date							
	40-Foot Zone						
MW1	44-54	5-Mar-10					
MW50 **	44-54	5-Mar-10					
MW-2/MW-2R	42-52	5-Mar-10					
MW-3/MW-3R	37.5-47.5	5-Mar-10					

CON January 2015 Splits						
Boring ID	Screened Interval (ft. bgs)	Date				
Peat Zone						
WL-6	8.5-13	7-Jan-15				

MPA/ICON May 2010 Splits ²					
Boring ID	Date				
Upper S	and of Chicot Aqu	ifer			
WW-1	400	25-May-10			
	40-Foot Zone				
MW-6S	47-50	12-May-10			
SB-1-MW-S	44-54	7-May-10			
SB-1-MW-S	44-54	8-Jun-10			
SB-2-MW-S	42-52	11-May-10			
SB-3-MW-S	37-47	12-May-10			
SB-3-MW-SD *	37-47	12-May-10			
	70-Foot Zone				
MW-4D ⁵	75-77	12-May-10			
MW-5D	75-77	12-May-10			
MW-6D ⁵	75-77	12-May-10			
SB-1-MW-D	72-74	6-May-10			
90-Foot Zone					
MW-1C	97-100	13-May-10			

MPA 2014						
Boring ID	Screened Interval (ft. bgs)	Date				
	40-Foot Zone					
Hebert ³	TD 41	21-Apr-14				
SB-1 MPA (same as SB-1-MW-S)	44-54	21-Apr-14				
EWL dup***	44-54	21-Apr-14				

ICON/MPA	Sept/Oct 2010 Sp	olits ²
Comple ID	Screened	Dete
Sample ID	Interval (ft. bgs)	Date
Unner Sai	nd of Chicot Aquif	er
J. Guidry Well	TD 519	1-Sep-10
j. Galary Wen	15 017	1 Sep 10
40	0-Foot Zone	
Purvis Hebert Well ³	TD 41	1-Sep-10
Purvis Hebert (dup) ³	TD 41	1-Sep-10
A. Crouch Well ³	TD 34	1-Sep-10
HP-MPA-01-T	42-45	29-Sep-10
HP-MPA-02-T	42-45	29-Sep-10
HP-MPA-03-T	42-45	30-Sep-10
HP-MPA-04-T	42-45	30-Sep-10
HP-MPA-05-T	42-45	30-Sep-10
HP-MPA-06-T	42-45	30-Sep-10
HP-MPA-07-T	42-45	01-Oct-10
HP-MPA-08-T	42-45	01-Oct-10
HP-MPA-09-T	42-45	01-Oct-10
HP-MPA-10-T	42-45	01-Oct-10
70	0-Foot Zone	
HP-MPA-02-I	72-75	29-Sep-10
HP-MPA-03-I	72-75	04-Oct-10
HP-MPA-04-I	80-83	04-Oct-10
HP-MPA-05-I	72-75	06-Oct-10
HP-MPA-06-I	72-75	06-Oct-10
HP-MPA-07-I	72-75	05-Oct-10
LID MDA 00 I	70.75	05.0 + 10
HP-MPA-08-I	72-75	05-Oct-10
HP-MPA-09-I	72-75	06-Oct-10
HP-MPA-10-I ⁵	72-75	06-Oct-10

Notes:

- * Duplicate of SB-3-MW-S
- ** Duplicate of MW1
- *** Duplicate of SB-1 MPA

TD is an estimated total depth; screened interval not available.

In accordance with RECAP, the most recent sampling results were used in the RECAP assessment for wells that were sampled more than once over time: WW1 (also called facility well and AWW1), Hebert well, and SB-1-MW-S. The older sampling dates, not used in the current assessment, are identified in this table with gray shading.

² Split sample results from two separate laboratories (as submitted by ICON and MP&A) were averaged when valid data were available from both laboratories.

³ Locations AB-1, Hebert well, and Crouch well likely represent conditions of the 40-Foot Zone unimpacted by site E&P activities. For completeness, the reported constituent levels in these locations were not used to exclude any site locations or concentrations from the quantitative risk evaluation, but the results are used as a reference range for interpreting results for naturally occurring constituents.

⁴ Locations AB-2 and AB-3 likely represent conditions of the Peat Zone unimpacted by site E&P activities. For completeness, the reported constituent levels in these locations were not used to exclude any site locations or concentrations from the quantitative risk evaluation, but the results are used as a reference range for interpreting results for naturally occurring constituents.

⁵ Locations MW-4D, MW-6D, and HP-MPA-10-I likely represent conditions of the 70-Foot Zone unimpacted by site E&P activities. For completeness, the reported constituent levels in these locations were not used to exclude any site locations or concentrations from the quantitative risk evaluation, but the results are used as a reference for interpreting results for naturally occurring constituents.

TABLE 5-7

GROUND WATER COMPARISON TO RECAP SCREENING STANDARDS

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

		Maximum Reported Concentrations in Ground Water (mg/L) (c)						
			•		, 0	Upper Sand of		
Constituents (a)	GWss (b)	Peat Zone	40-Foot Zone	70-Foot Zone	90-Foot Zone	Chicot Aquifer		
Metals (dissolved)								
Arsenic	0.01	<0.1	0.0145	0.0215	< 0.01	-		
Barium	2	10.8	6.06	1.67	1.01	-		
Cadmium	0.005	<0.1	< 0.005	< 0.005	< 0.005	-		
Chromium	0.1	< 0.1	< 0.01	0.0258	< 0.01	-		
Iron	0.3 ^(e)	16.7	14	12	4.51	-		
Lead	0.015	< 0.1	< 0.015	< 0.0125	< 0.01	-		
Manganese	0.05 ^(e)	5.12	2.9	0.63	0.21	-		
Mercury	0.002	< 0.0002	< 0.002	< 0.0002	< 0.0002	-		
Selenium	0.05	-	0.072 (f)	0.0688	0.0355	-		
Strontium (d)	2.2	18.4	6.84	1.42	0.824	-		
Zinc	1.1	<2	0.09	0.188	<0.01	-		
Metals (total)								
Arsenic	0.01	0.025	0.021	(g)	(g)	< 0.01		
Barium	2	12.0	14.8	(g)	(g)	0.74		
Cadmium	0.005	0.002	0.001	(g)	(g)	<0.005		
Chromium	0.1	< 0.055	< 0.01	(g)	(g)	< 0.01		
Iron	0.3 ^(e)	18.1	68.9	(g)	(g)	1.08		
Lead	0.015	0.011	0.0125	(g)	(g)	< 0.015		
Manganese	0.05 ^(e)	5.37	4.3	(g)	(g)	0.082		
Mercury	0.002	< 0.0002	< 0.0002	(g)	(g)	< 0.0002		
Selenium	0.05	0.058	0.077 (f)	(g)	(g)	< 0.04		
Strontium (d)	2.2	17.9	13.9	(g)	(g)	0.54		
Zinc	1.1	1.01	0.113	(g)	(g)	0.31		
TPH Fractions								
Aliphatic >C10-C12	0.15	< 0.15	<0.15	< 0.15	< 0.15	< 0.15		
Aliphatic >C12-C16	0.15	<0.15	<0.15	<0.15	<0.15	<0.15		
Aliphatic >C16-C35	7.3	<0.15	<0.15	<0.15	<0.15	<0.15		
Aliphatic >C8-C10	0.15	< 0.15	<0.15	< 0.15	< 0.15	<0.15		
Aliphatic C6-C8	3.2	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15		
Aromatic >C10-C12	0.15	< 0.15	<0.15	< 0.15	< 0.15	< 0.15		
Aromatic >C12-C16	0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15		
Aromatic >C16-C21	0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15		
Aromatic >C21-C35	0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15		
Aromatic >C8-C10	0.15	<0.15	<0.15	<0.15	<0.15	<0.15		
TPH - Mixtures (f)								
TPH-GRO	0.15	< 0.15	See Fractions	See Fractions	See Fractions	See Fractions		
TPH-DRO	0.15	0.477	See Fractions	See Fractions	See Fractions	See Fractions		
TPH-ORO	0.15	0.405	See Fractions	See Fractions	See Fractions	See Fractions		
Volatile Organic Compounds								
Benzene	0.005	0.005	0.029	0.00343	< 0.005	< 0.005		
Ethylbenzene	0.003	< 0.005	<0.005	< 0.005	<0.005	<0.005		
Toluene	1	<0.003	0.00882	0.0105	<0.005	< 0.0075		
Xylenes	10	<0.0413	<0.05	<0.03	<0.03	<0.03		
Chlorida	NIA (h)	17250	goon	1270	Q44	104		
Chioriae	NA ' '	17330	77UU	13/0		194 116008\24472Mtbl.xls		
Chloride	NA (h)	17350	9900	1370	944	194 116008\24472Mtbl.xls		

TABLE 5-7

GROUND WATER COMPARISON TO RECAP SCREENING STANDARDS

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Notes:

Concentrations expressed in mg/L.

TPH - Total Petroleum Hydrocarbons.

- Not analyzed

Essential elements that are generally not considered toxic to humans (i.e. calcium, magnesium, potassium, sodium) are not included in the risk evaluation for ground water.

A **bold** value indicates that the maximum reported concentration exceeds a screening standard for the respective constituent. See Table 5-8 for additional discussion on these constituents and selection of site-related COCs.

A **bold and boxed** value indicates that the maximum reported concentration exceeds a screening standard for the respective constituent and is identified as a site-related COC subject to further evaluation under a higher Management Option.

- (a) Constituents shown in this table include detected constituents and indicator constituents for petroleum hydrocarbons (e.g., BTEX).
- (b) $GW_{SS} = RECAP$ Screening Standard from Table 1 of RECAP 2003.
- (c) Maximum reported concentrations in ground water samples collected in each respective zone. The samples included in the risk evaluation are summarized in Table 5-6. Split sample results from two separate laboratories (as submitted by ICON and MP&A) were averaged when valid data were available from both laboratories. A proxy value equal to the sample quantitation limit was used for non-detect results in the average of split samples. For locations where samples were collected in multiple events over time, the most recent sample data were used to represent current conditions at that location.
- (d) Value not provided in RECAP; the risk-based values were calculated in accordance with Appendix H of RECAP 2003 (see Appendix G).
- (e) EPA Secondary Maximum Contaminant Level (SMCL), a non-enforceable guideline for public water systems addressing undesirable aesthetic effects such as taste, color, and odor.
- (f) RECAP Appendix D states that "If TPH fractionation data and TPH mixture data have both been collected at an AOI and the two data sets yield different conclusions about management of the AOI, then management decisions shall be based on the fractionation data since the fractionation method yields more specific information regarding the TPH constituents present and thus more accurately characterizes site conditions."

 Adequate TPH-Fraction data were available and used for the assessment of all zones in accordance with this guidance except for the Peat Zone, where fraction data were available for only 1 of 8 sample locations. Therefore, TPH mixtures were assessed in addition to fractions in the Peat Zone.
- (g) All samples from this zone were collected with hydropunch methodology. Filtered samples (i.e., dissolved results) were therefore collected and are used in the risk evaluation.
- (h) Because chlorides naturally exceed 250 mg/L in the sands of the Chicot Aquifer Confining Unit, a screening standard is not identified for the Peat Zone, the 40-Foot Zone, 70-Foot Zone, or 90-Foot Zone. The EPA Secondary Maximum Contaminant Level (SMCL) for chlorides of 250 mg/L is applicable to the Upper Sand of the Chicot Aquifer.

Table 5-8 SUMMARY OF GROUND WATER CONSTITUENTS NOT IDENTIFIED AS SITE-RELATED COCS East White Lake Oil and Gas Field Vermilion Parish, Louisiana

	Peat Zone
	 Split sample results are not available for the Peat Zone with the exception of monitor well WL-6 sampled in 2015, for which results from both investigators showed arsenic was non-detect. Confirmation data are therefore not available for any of the arsenic detections reported in the Peat Zone.
Arsenic	• Arsenic was detected in 4 of 8 locations, including monitor well AB-2 (at 0.015 mg/L) located in the Peat Zone to the south outside of any impacted area (see Figures 5-3 through 5-6 for AB-2 location relative to COC screening standard exceedances).
	 Arsenic occurrence does not show a relationship of higher concentrations with the primary indicator COCs, barium and chlorides, which are clearly the prevalent COCs present as a result of E&P activities at the site. Arsenic was not detected in the well with highest concentrations of barium and chlorides in the Peat Zone, WL-6.
Iron and Manganese	• Iron and manganese are naturally elevated in ground water in this site location, as documented in independent studies by the USGS and Louisiana Geological Survey. Additionally, these constituents are not E&P-related contaminants.
Selenium	• Selenium was analyzed and detected in a single well in the Peat Zone by Sherry Laboratory, and no split result was available. (See additional discussion for 40-Foot Zone)
	40-Foot Zone
	• Split sample results for arsenic in the 40-Foot Zone are notably variable, i.e., detection by one laboratory above the reporting limit of 0.01 mg/L is routinely not confirmed by the second laboratory. Based on review of these variable results with GCAL laboratory, it is suspected that the arsenic results are affected by interference that is introduced by high dissolved solids (high salt levels) in the ground water. High dissolved solids are a known potential interference with the detection of metals by Inductively Coupled Plasma (ICP, Method 6010), which was used as the detection method for ground water analysis by both labs. This potential interference, combined with the fact that arsenic may be present naturally at values very close to the detection limit, may contribute to the poor agreement between split laboratory results.
Arsenic	 Arsenic was detected above the reporting limit of 0.01 mg/L in 6 of 20 locations, and the detection was not confirmed by the split result in 4 of the locations. The monitor well AB-1 located in the 40-Foot Zone to the south outside of any impacted area contained an arsenic level of 0.021 mg/L (see Figures 5-7 through 5-10 for AB-1 location relative to screening standard exceedances). Arsenic occurrence does not show a relationship of higher concentrations with the primary indicator COCs, barium, chlorides, and benzene, which are clearly the COCs present as a result of E&P activities at the site. Therefore, arsenic occurrence does not appear related to the same sources as the E&P-related COCs.
	 Arsenic was not detected in any representative samples from POC wells for the 40-Foot Zone AOIs (the wells most affected with site related constituents), specifically wells SB-1-MW and MW-1, SB-3-MW and MW-3, HP-MPA-02-T, and HP-MPA-08-T.
Iron and Manganese	• Iron and manganese are naturally elevated in ground water in this site location, as documented in independent studies by the USGS. Additionally, these constituents are not E&P-related contaminants.

Table 5-8 SUMMARY OF GROUND WATER CONSTITUENTS NOT IDENTIFIED AS SITE-RELATED COCS East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Selenium	 Split sample results for selenium indicate 100% disagreement regarding detection of selenium, with appropriate detection limits (below screening standards) by both laboratories. Selenium is only detected by Sherry Laboratory, and is not typically a COC for E&P sites.
	70-Foot Zone
Arsenic	 Similar to the 40-Foot Zone, split sample results for arsenic are notably variable. Arsenic was detected above the reporting limit of 0.01 mg/L in representative samples (i.e., filtered hydropunch samples) in 4 of 13 locations, and the detection was not confirmed by the split results in any location. Arsenic occurrence does not show a relationship of higher concentrations with the only indicator COC in the 70-Foot Zone, chlorides. Arsenic was not detected in the representative samples (either split) from the location with maximum chlorides concentration: SB-1D.
Iron and Manganese	• Iron and manganese are naturally elevated in ground water in this site location, as documented in independent studies by the USGS and Louisiana Geological Survey. Additionally, these constituents are not E&P-related contaminants.
Selenium	 Similar to the 40-Foot Zone, split sample results for selenium indicate 100% disagreement regarding detection of selenium, which was only detected by Sherry Laboratory.
	90-Foot Zone and Upper Sand of Chicot Aquifer
Iron and Manganese	• Iron and manganese are naturally elevated in ground water in this site location, as documented in independent studies by the USGS and Louisiana Geological Survey. Additionally, these constituents are not E&P-related contaminants.

TOXICITY FACTORS FOR SITE CONSTITUENTS OF CONCERN (COCs)

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

	Chronic Oral		NONCARCINOGEN	IIC TOXICITY FACTORS A		•	·	1	
	Reference Dose			Reference	Reference Dose			Fish	
	(RfDo)	Toxicity		Concentration (RfC)	(RfDi)	Toxicity		Bioconcentration	
Chemical	(mg/kg-day)	•	RfDo Target Organs	(mg/m3)	(MDI) (mg/kg-day)		RfC Target Organs	Factor (BCF) (L/kg)	BCF Source
Metals	(IIIg/kg-uay)	Jource	NIDO Target Organs	(IIIg/III3)	(IIIg/kg-uay)	Jource	inc raiget Organs	ractor (BCF) (L/Kg)	DCF 30uice
Arsenic, Inorganic	3.0E-04	IRIS	Skin, Vascular	0.000015	4.3E-06	Cal EPA	NA	300	RAIS (RESRAD)
Barium	2.0E-01	IRIS	Kidney	0.0005	1.4E-04	HEAST	Fetus	4	RAIS (RESRAD)
Cadmium	5.0E-04	IRIS	Urinary	0.00001	2.9E-06	ATSDR	Renal	200	RAIS (RESRAD)
Chlorides	(a)	11(13	-	(a)	(a)	AISDIC	-	-	TAIS (TESTAD)
Chromium(III), Insoluble Salts	1.5E+00	IRIS	NA	(a)	(a)	_		200	RAIS (RESRAD)
Lead	(b)	- 11/13	-	(b)	(b)	_		200	INAIS (INESINAD)
Mercury (Mercuric Chloride)	3.0E-04	IRIS	Immune System	0.0003	8.6E-05	IRIS	Neurological	1000	RAIS (RESRAD)
, , , , , , , , , , , , , , , , , , , ,	3.0E-04 1.0E-04		<u>'</u>	0.0003	8.0E-U5			1000	
Methyl Mercury		IRIS	Neurological	- 0.02			-		RAIS (RESRAD)
Selenium	5.0E-03	IRIS	Integument (hair, skin, nails), Dental, Hematological, CNS	0.02	5.7E-03	Cal EPA	NA	200	RAIS (RESRAD)
Strontium	6.0E-01	IRIS	Bone	-	-	-	-	60	RAIS (RESRAD)
Zinc	3.0E-01	IRIS	Blood	-	-	-	-	1000	RAIS (RESRAD)
Organics	•	•		•		•			
Acenaphthene	6.0E-02	IRIS	Liver	-	-	-	-	755	RAIS (EPI)
Benzene	4.0E-03	IRIS	Blood	0.03	8.6E-03	IRIS	Blood	4.27	RAIS (EPI)
Methylnaphthalene, 2-	4.0E-03	IRIS	Lungs	-	-	-	-	74.7	RAIS (EPI)
Aliphatics >C10-C12	1.0E-01	RECAP	Liver, Hematological	-	3.0E-01	RECAP	Liver, Hematological	0 (f)	RECAP
Aliphatics >C12-C16	1.0E-01	RECAP	1	-	3.0E-01	RECAP		0 (f)	RECAP
Aliphatics >C16-C35	2.0E+00	RECAP	Liver	-	2.0E+00	RECAP	Liver	0 (f)	RECAP
Aromatics >C8-C10	4.0E-02	RECAP	Decreased Body Weight	-	6.0E-02	RECAP	Decreased Body Weight	0 (f)	RECAP
Aromatics >C10-C12	4.0E-02	RECAP		-	6.0E-02	RECAP		0 (f)	RECAP
Aromatics >C12-C16	4.0E-02	RECAP	1	-	6.0E-02	RECAP		0 (f)	RECAP
Aromatics >C16-C21	3.0E-02	RECAP	Kidney	-	3.0E-02	RECAP	Kidney	0 (f)	RECAP
Aromatics >C21-C35	3.0E-02	RECAP	1	-	3.0E-02	RECAP		0 (f)	RECAP
TPH-DRO	(c)	RECAP	Kidney, Liver, Hematological System, Decreased Body Weight	-	(c)	RECAP	Kidney, Liver, Hematological System, Decreased Body Weight	0 (f)	RECAP
TPH-ORO	(d)	RECAP	Kidney, Liver	_	(d)	RECAP	Kidney, Liver	0 (f)	RECAP
TPH >C8-C16	7.0E-02	(e)	Liver, Hematological System, Decreased Body Weight	-	-	-	-	0 (f)	RECAP
TPH >C16-C28	1.0E+00	(e)	Kidney, Liver	_	-	_	_	0 (f)	RECAP

Notes:

- Not available or not applicable

RAIS - Risk Assessment Information System

- (a) Chloride is considered a non-traditional parameter per RECAP, with no applicable toxicity factors. Chlorides are evaluated under MO-3.
- (b) Health risks associated with exposure to inorganic lead are not assessed using the traditional risk assessment methodology based on the use of toxicity values (RfD, RfC, SF). Rather, lead exposure is assessed using the Integrated Exposure Uptake Biokinetic Model (IEUBK) (pub. #9285.7-15-2, PB93-963511) or the Adult Lead Cleanup Level Model.
- (c) The RECAP Standard (RS) for TPH-DRO is selected as the minimum of RS for aliphatic and aromatic fractions in the >C8-C35 range (RECAP, 2003).
- (d) The RECAP Standard (RS) RS for TPH-ORO is selected as the minimum of the aliphatic >C16-C35 and aromatic >C21-C35 fractions (RECAP, 2003).
- (e) Tissue Screening Level (TSL) calculated using weighted toxicity value from RECAP (2003) (i.e., oral reference dose, RfD) assuming 50% aliphatics and 50% aromatics. TPH>C8-C16: 0.07 mg/kg-day is the average of the RfDs provided in RECAP for aliphatic and aromatic hydrocarbons within this range. TPH>C16-C28: 1.0 mg/kg-day is the average of the RfDs provided in RECAP for aliphatic and aromatic hydrocarbons within this range.
- (f) Per RECAP (2003), no bioconcentration factor is warranted for this constituent.

TOXICITY FACTORS FOR SITE CONSTITUENTS OF CONCERN (COCs)

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

CARCINOGENIC TOXICITY FACTORS								
Chemical	Oral Slope Factor (SFo) (mg/kg-day)-1	Toxicity Source	Inhalation Unit Risk (IUR) (µg/m3)-1	Inhalation Slope Factor (SFi) (mg/kg-day)-1	Toxicity Source			
Metals	•	•	•	•				
Arsenic, Inorganic	1.50E+00	IRIS	4.30E-03	1.51E+01	IRIS			
Barium	-	-	-	-	-			
Cadmium	-	-	1.80E-03	6.30E+00	IRIS			
Chlorides	(a)	-	(a)	(a)	-			
Chromium(III), Insoluble Salts	-	-	-	-	-			
Lead	(b)	-	(b)	(b)	-			
Mercury (Mercuric Chloride)	-	-	-	-	-			
Methyl Mercury	-	-	-	-	-			
Selenium	-	-	-	-	-			
Strontium	-	-	-	-	-			
Zinc	-	-	-	-	-			
Organics								
Acenaphthene	-	-	-	-	-			
Benzene	5.50E-02	IRIS	7.80E-06	2.73E-02	IRIS			
Methylnaphthalene, 2-	-	-	-	-	-			
Aliphatics >C10-C12	-	-	-	-	-			
Aliphatics >C12-C16	-	-	-	-	-			
Aliphatics >C16-C35	-	-	-	-	-			
Aromatics >C8-C10	-	-	-	-	-			
Aromatics >C10-C12	-	-	-	-	-			
Aromatics >C12-C16	-	-	-	-	-			
Aromatics >C16-C21	-	-	-	-	-			
Aromatics >C21-C35	-	-	-	-	-			
TPH-DRO	-	-	-	-	-			
TPH-ORO	-	-	-	-	-			
TPH >C8-16	-	-	-	-	-			
TPH >C16-28	-	-	-	-	-			

Notes

- (a) Chloride is considered a non-traditional parameter per RECAP, with no applicable toxicity factors. Chlorides are evaluated under MO-3.
- (b) Health risks associated with exposure to inorganic lead are not assessed using the traditional risk assessment methodology based on the use of toxicity values (RfD, RfC, SF). Rather, lead exposure is assessed using the Integrated Exposure Uptake Biokinetic Model (IEUBK) (pub. #9285.7-15-2, PB93-963511) or the Adult Lead Cleanup Level Model.
- (c) The RECAP Standard (RS) for TPH-DRO is selected as the minimum of RS for aliphatic and aromatic fractions in the >C8-C35 range (RECAP, 2003).
- (d) The RECAP Standard (RS) RS for TPH-ORO is selected as the minimum of the aliphatic >C16-C35 and aromatic >C21-C35 fractions (RECAP, 2003).
- (e) Tissue Screening Level (TSL) calculated using weighted toxicity value from RECAP (2003) (i.e., oral reference dose, RfD) assuming 50% aliphatics and 50% aromatics.
 - TPH>C8-C16: 0.07 mg/kg-day is the average of the RfDs provided in RECAP for aliphatic and aromatic hydrocarbons within this range.
 - TPH>C16-C28: 1.0 mg/kg-day is the average of the RfDs provided in RECAP for aliphatic and aromatic hydrocarbons within this range.
- (f) Per RECAP (2003), no bioconcentration factor is warranted for this constituent

EXPOSURE ASSUMPTIONS FOR RECREATIONAL EXPOSURE TO SEDIMENT

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Parameter	Symbol	Value	Units	Source/Description
Ingestion Pathway				
Sediment Ingestion Rate: Adult Recreational Child Recreational	IR_s	50 150	mg/day mg/day	RECAP Default, Adult Industrial Upper bound value estimate; for reference, recommended central tendency values are 50 mg/day for outdoor soil or 100 mg/day for outdoor soil + indoor dust, from Table ES-1 of the EPA's Child-specific Exposure Factors Handbook (2008).
Inhalation Pathway				
Exposure Time:	Ti			
Adult Recreational		9.47E+08	sec	Based on 30 year ED
Child Recreational		1.58E+08	sec	Based on 5 year ED
Inhalation Rate:	IRA	20	2	DECARD (It A L It
Adult Recreational		20	m ³ /day	RECAP Default, Adult
Child Recreational	T/T	20	m ³ /day	RECAP Default, Adult used for conservative evaluation of adolescent
Volatilization Factor	VF_s	chemical-specific	m ³ /kg	Calculated in accordance with RECAP Appendix H.
Dermal Absorption Pathway Sediment-to-Skin Adherence Factor	AF			
Adult Recreational		0.2	mg/cm ²	RECAP Default, Adult Industrial
Child Recreational		6.31	mg/cm ²	Weighted average for child playing in sediment for hands, arms, and feet from Table ES-1 of the EPA's Child-specific Exposure Factors Handbook (2008).
Dermal Absorption	ABS	chemical-specific	unitless	RECAP Default values, RECAP Appendix H.
Skin Surface Area:	SA	604.0	2	
Adult Recreational		6910	cm ²	Arms, hands, and feet assumed to be in contact with sediment. Surface Areas are 95% percentile values for males from Table 7-12 of the EPA's Exposure Factors Handbook (EPA, 2011).
Child Recreational		4080	cm ²	Arms, hands, and feet assumed to be in contact with sediment. Age- specific surface areas from Table 7-2 of the Child-Specific Exposure Factors Handbook (EPA, 2008)
General Parameters				
Exposure Frequency: Adult Recreational	EF	104	days/yr	2 days per week for 52 weeks. This frequency assumes regular visitation for hunting and fishing throughout the year, and assumes sediment ingestion and dermal contact during each visit. Alternatively, this equates to daily visitation for over 3 months of the year. This value is consistent with (or more conservative than) the following relevant sources and EPA or LDEQ-approved assessments:
				(a) U.S. Census Bureau and U.S. Fish and Wildlife data collection, provided in National Survey of Fishing, Hunting, and Wildlife Associated Recreation: Louisiana: average days for fishing in La= 22; average days for hunting = 19; average days for wildlife watching = 13
				(b) LDWF Louisiana Recreational Fisherman and Health Advisory Survey Report 2008 identified fishermen visit a favorite fishing location up to 23 times per year on average, based on a survey of over 1500 (c) Bayou Trepagnier MO-3 RECAP Evaluation (2009, AI# 44765): recreational fishing and hunting EF = 52 days per year (d) EPA Region 6 risk evaluation for Sabine Lake directly west of White Lake and very similar setting to White Lake, although more accessible than East White Lake study area (see Superfund Record of Decision, Palmer Barge Line Superfund Site, Port Arthur, Jefferson County, Texas, September 2005): recreational receptor, direct contact EF= 100 days/year
				(e) EPA Region 6 Baseline Human Health Risk Assessment for Calcasieu Lake, 2002 (prepared by CDM on behalf of Region 6 EPA), AI# 7443: recreational fishing and swimming EF= 48 to 60 days/year

EXPOSURE ASSUMPTIONS FOR RECREATIONAL EXPOSURE TO SEDIMENT

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Parameter	Symbol	Value	Units	Source/Description
Child Recreational		104	days/yr	See prior summary for adult receptor.
Exposure Duration:	ED			
Adult Recreational		30	yrs	RECAP Default, upper bound value for residence in one location
Child Recreational		5	yrs	Age specific. Adolescent years 11-16 identified as age with increased likelihood of contacting sediment in canal bottoms and marshland, specifically at a consistent frequency of weekly. In addition, the larger body surface area for this child age range results in higher exposure estimates than a younger child. The 0-6 year old is not reasonably expected to contact canal bottom sediments.
Body Weight:	BW			
Adult Recreational		70	kg	RECAP Default, Adult
Child Recreational		59.3	kg	Average of 50th percentile body weights for children aged 11 through 16 from the Exposure Factors Handbook (EPA, 2011).
Averaging Time:				
Carcinogenic effects	AT_c	25,550	days	RECAP Default, Carcinogens (70 years time 365 days/yr)
Non-Carcinogenic effects, adult	AT_n	10,950	days	(ED yrs * 365 days/yr)
Non-Carcinogenic effects, child	AT_n	1,825	days	(ED yrs * 365 days/yr)
Target Risk	TR	1.00E-06	unitless	RECAP Default
Target Hazard Quotient	THQ	1	unitless	RECAP Default

Notes:

Chemical/physical properties from RECAP (2003).

EPA (2008). Child-Specific Exposure Factors Handbook (Final Report). EPA/600/R-06/096F.
EPA (2011). Exposure Factors Handbook. EPA/600/R-090/52F.
U.S. Department of the Interior, U.S. Fish and Wildlife Service, and U.S. Department of Commerce, U.S. Census Bureau. (2013). National Survey of Fishing,

Hunting, and Wildlife-Associated Recreation: Louisiana, FHW/11-LA(RV). Revised December 2013.

Louisiana Department of Wildlife and Fisheries for LDHH (2009). Louisiana Recreational Fisherman and Health Survey Report. LDHH Award No 48629.

URS Corporation (2009). RECAP Management Option 3 Report. Bayou Trepagnier Operable Unit 2. AI 44765.

EPA (2005). Record of Decision Palmer Barge Line Superfund Site, Port Arthur, Jefferson County, Texas. US EPA Region 6. September 2005.

CDM (2002). Draft Final Human Health Risk Assessment for Calcasieu Estuary, Lake Charles, Louisiana. Prepared for EPA Region 6.

SEDIMENT COMPARISON TO MO-3 DIRECT CONTACT STANDARDS

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

										AOIC (mg/	kg-wet) (h)
Nonindustrial Direct Contact COCs (a)	Sed _r Adult (b)	Sed _r Child (b)	Industrial Soil _i (c)	Additivity Divisor (d)	Final Sed _r Adult (e)	Final Sed _r Child (e)	Final Industrial Soil _i (e)	Soil _{sat} (f)	Limiting RS (g)	Maximum Sediment Concentration	Maximum excluding WL-3 & WL-4
Metals											
Barium	980,000	280,000	409,000	2	490,000	140,000	204,500	NA	140,000	5,170	5,170
Mercury	1,500	420	610	1	1,500	420	610	NA	420	4.47	4.47
TPH - Fractions (i)											
Aliphatics >C10-C12	51,000	17,000	20,000	2	25,500	8,500	10,000	NA	8,500	353	110
Aliphatics >C12-C16	98,000	32,000	38,000	2	49,000	16,000	19,000	NA	16,000	2,500	362
Aliphatics >C16-C35	1,400,000	130,000	690,000	2	700,000	65,000	345,000	NA	65,000	7,110	2,690
Aromatics >C12-C16	55,000	18,000	21,000	1	55,000	18,000	21,000	NA	18,000	403	169
Aromatics >C16-C21	30,000	2,200	17,000	2	15,000	1,100	8,500	NA	1,100	1,070	290
Aromatics >C21-C35	38,000	2,300	25,000	2	19,000	1,150	12,500	NA	1,150	1,370	433

Notes:

Concentrations in milligrams per kilogram (mg/kg) wet weight

MO-3 - Management Option 3 under RECAP

RS - RECAP Standard

COC - Constituent of Concern

AOIC - Area of Investigation Concentration

TPH - Total Petroleum Hydrocarbons

NA - Not Applicable

Sedr - site-specific RECAP Standard for sediment protective of human health for recreational land use.

A **bold** value indicates that the reported concentration exceeds the Limiting RS for the respective constituent.

- (a) Constituents with concentrations above the RECAP Soil_{SSni} in sediment samples representative of the 0 to 3 foot interval were included for further evaluation under MO-3 (screening evaluation provided in Table 5-1). See Table 5-3 for a list of sediment samples collected by ICON and MP&A used in the quantitative evaluation.
- (b) Sediment RS were developed using the algorithms provided in Appendix H of RECAP for direct contact (per RECAP FAQ guidance), with updated toxicity factors, and modifying exposure assumptions as appropriate for sediment exposure. Exposure assumptions are identified for an adult and child recreational scenario in Table 6-2, with references/rationale for the selected exposure assumptions. Exposure pathways include ingestion, dermal contact, and inhalation of volatiles released to the breathing zone.
- (c) RECAP standard protective of industrial land use, calculated in accordance with Appendix H of RECAP (2003), using default industrial exposure parameters provided in RECAP with current toxicity factors (as identified in Table 6-1).
- (d) Additivity divisor for non-carcinogenic effects on the same target organ/ system applied in accordance with Appendices D and G of RECAP (2003). Target organs are identified as follows:

Barium - Kidney Effects

Aliphatics >C16-C35 - Liver

Mercury - Immune system

Aromatics >C8-C16 - Decreased Body Weight

Aromatics >C16-C35 - Kidney

- Aliphatics > C8-C16 Liver, Hematological Effects
 (e) Final RS Initial RS divided by additivity divisor.
- (f) Soilsat Soil saturation concentration (RECAP Table 2)
- (g) The limiting RS is the minimum of the Final Sedr adult, Sedr child, and Industrial Soili.
- (h) The AOIC is the maximum reported concentration (after split results were averaged) in samples most representative of surface sediment in the 0 to 3 foot interval. Sediment samples included in the direct contact evaluation are summarized in Table 5-3. Maximum concentrations excluding WL-3 and WL-4 are also provided.
- (i) RECAP identifies 10,000 mg/kg as an aesthetic limit for TPH in soil (this is not specifically addressed for sediment). This value is not a health based limit (health based limits are shown in this table), but indicates potential for colored or oily and odorous soil. WL-3 and WL-4 are the only locations with total TPH fraction resuls greater than 10,000 mg/kg.

SEDIMENT COMPARISON TO MO-3 GROUND WATER PROTECTION STANDARDS

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Ground Water Protection Sediment COCs (a)	Soil _{GW3NDW} (b) (mg/kg)	AOIC (Maximum Concentration) (c) (mg/kg-dry)
Semi-Volatile Organic Compounds		
2-Methylnaphthalene	48	5.29
TPH - Fractions		
Aliphatics >C16-C35	1.2E+11 (d,e)	12570
Aromatics >C8-C10	6100	281
Aromatics >C10-C12	9600	480
Aromatics >C12-C16	19,000 (d)	2660
Aromatics >C16-C21	45,000 (d)	3230

Notes:

Per RECAP 2003 and related FAQ guidance, concentrations are expressed in mg/kg dry weight for sediment for this transport pathway.

MO-3 - Management Option 3 under RECAP

COC - Constituent of Concern

AOIC - Area of Investigation Concentration

TPH - Total Petroleum Hydrocarbons

- (a) Constituents with concentrations above the RECAP SoilSSGW in sediment samples collected from all depths were included for further evaluation under MO-3 (screening evaluation provided in Table 5-2). See Table 5-4 for a list of sediment samples collected by ICON and MP&A used in the quantitative evaluation.
- (b) SoilGW3NDW = RECAP Standard for soil protective of ground water, calculated in accordance with Appendix H of RECAP (2003) using current toxicity factors and bioconcentration factors. The NDW designation is based on the uses designated in the Surface Water Quality regulations (LAC Title 33, Part IX, Subpart I, Chapter 11) for Segment 050703 (White Lake).
- (c) The AOIC is the maximum concentration (after split results were averaged). See Table 5-4 for the list of samples included in the evaluation.
- (d) RECAP identifies 10,000 mg/kg as an aesthetic limit for TPH in soil (this is not specifically addressed for sediment). This value is not a health based limit (health based limits are shown in this table), but indicates potential for colored or oily and odorous soil. WL-3 and WL-4 are the only locations with total TPH greater than 10,000 mg/kg.
- (e) A value of 1,000,000 mg/kg (one million parts per million) is a physical upper limit of soil constituent content, and indicates that the constituent is not a human health concern by this pathway at any concentration in soil.

SEDIMENT COMPARISON OF SPLP DATA TO LEACHATE STANDARDS PROTECTIVE OF GROUND WATER

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

		Sediment Concentration (mg/kg-dry)			Corresponding SPLP	SPLP Concentration (b) (mg/L)			
Sample ID/Depth (a)	Sample Date	MPA	ICON	Average	Sample ID/Depth (a)	MPA	ICON	Average	
Barium		Soil _{SSGW} = 20	00 mg/kg		SPLP RS = GW_{3NI}	_{ow} (83 mg/L)	* 20 = 1660	mg/L	
SS-5 (0-2.15')	4/26/2006	-	7450	7450	SPLP-2 (1-3')	0.89	0.0883	0.489	
SS-7 (0-1.4')	4/26/2006	-	15700	15700	SPLP-3 (1-3')	1.39	0.149	0.77	
SS-11 (0-2.5')	4/27/2006	-	2750	2750	SPLP-1 (1-3')	1.07	0.0573	0.564	
Lead		Soil _{SSGW} = 10	00 mg/kg		SPLP RS = GW_{3NI}	_{ow} (0.05 mg/l	L) * 20 = 1.0 :	mg/L	
SS-5 (0-2.15')	4/26/2006	-	117	117 (b)	SPLP-2 (1-3')	1.65	<0.0100	0.83	
SS-7 (0-1.4')	4/26/2006	-	67.5	67.5	SPLP-3 (1-3')	0.15	<0.0100	0.08	
Mercury		Soil _{SSGW} = 4	1 mg/kg		SPLP RS = GW_{3NDW}	_v (0.002 mg/l	L) * 20 = 0.04	mg/L	
SS-8 (2-4')	2/26/2010	28	0.47	14.2	SPLP-4 (2-4')	<0.0002	-	<0.0002	

Notes:

-- Not Analyzed

SPLP - Synthetic Precipitation Leaching Procedure.

Soil_{SSGW} - default RECAP Screening Standard for soil for the protection of ground water.

GW_{3NDW} - Ground Water Class 3 Non-Drinking Water RECAP Standard calculated in accordance with Appendix H of RECAP (2003) using current toxicity factors and bioconcentration factors. Note that the default DFSummers is used in this analysis, however barium and mercury leachate concentrations are less than the GW3NDW standard with no DF applied. For lead, three samples of the hundreds collected exceeded the screening standard, and were laterally delineated; the source areas for lead defined by the screening standard are less than 0.5 acre.

SPLP RS - RECAP Standard for SPLP; SPLP results are compared to the ground water RS (GW3NDW) multiplied by a default factor of 20 per RECAP (2003). GW3NDW values based on current toxicity factors and bioconcentration factors were used.

- (a) Sample locations with highest reported metal concentrations in exceedance of the initial RECAP Screening Standard for the protection of ground water (Soil_{SSGW}) were revisited, and samples were collected for leachate (SPLP) analysis.
- (b) SPLP results are compared to the appropriate ground water standard multiplied by a default Summer's DF of 20, to account for dilution of the constituent as it moves from the soil column into the ground water, in accordance with Appendix H of RECAP (2003). Split leachate sample results from two separate laboratories (as submitted by ICON and MP&A) were averaged for the evaluation, where available. A proxy value equal to the sample quantitation limit was used for non-detect results in the average of split samples.
- (c) The lead concentration reported at SS-5 (0-2.15') (117 mg/kg-dry) is similar to the maximum reported lead concentration of 125 mg/kg-dry at WL-3 (0-2'), for which remedial action has been proposed. The concentration reported at SS-5 (117 mg/kg), for which SPLP results are available, is the maximum concentration for locations that are not included in the remediation plan.

PEAT ZONE GROUND WATER COMPARISON TO CLASS 3 RECAP STANDARDS

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Peat Zone GW COCs (a)	GW _{3NDW} (b)	Compliance Concentrations (Maximum in the Peat Zone (c)			
Metals		Dissolved	Total		
Barium	83	10.8	12.0		
Strontium	33	18.4	17.9		
Chloride	NS (d)	-	17,350		
TPH - Mixtures					
TPH-DRO	24	-	0.477		
TPH-ORO	24	-	0.405		

Notes:

Concentrations expressed in mg/L.

TPH - Total Petroleum Hydrocarbons

NS - No standard

- (a) Site-related constituents with concentrations in Peat Zone ground water samples above the RECAP GW_{SS} were included for further evaluation under MO-3. See Table 5-6 for a list of ground water samples collected by ICON and MP&A used in the quantitative evaluation.
- (b) GW3NDW = RECAP Standard for Class 3 Ground Water, calculated in accordance with Appendix H of RECAP (2003) using current toxicity values and bioconcentration factors (as summarized in Table 6-1).
- (c) Compliance Concentration is the maximum reported concentration in the Peat Zone (after split results were averaged).
- (d) No standard is applicable, as the chlorides standard currently listed in the Surface Water Quality Standard (LAC Title 33, Part IX, Subpart I, Chapter 11) for Segment 050703 (White Lake) requires modification per the Louisiana Water Quality Inventory: Integrated Report (LDEQ, 2014). The standard of 250 mg/L requires modification because the chlorides concentration is naturally elevated above this standard in surface water (as well as ground water) in this area due to tidal influence.

40-FOOT ZONE GROUND WATER COMPARISON TO DEFAULT AND SITE-SPECIFIC MO-3 STANDARDS

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Constituents (a)	Default RECAP Standard GW2 (b)		Adult Recreational GW RS (c)	Shower Inhalation Scenario GW RS (d)	Limiting Recreational GW RS (e)	Compliance Conce Foot Z	
SB-1-MW AOI (g)						MW-1	SB-1-MW
Benzene	0.005	0.347	0.0404	0.0442	0.0404	0.029	0.015
Barium (dissolved)	2	357	249	-	249	-	3.52
Barium (total)	2	357	249	-	249	14.8	3.32
Strontium (dissolved)	22	15,300	10,700	-	10700	-	-
Strontium (total)	22	15,300	10,700	-	10700	13.9	5.42
Chloride	555-1600 (i)	NS (j)	NS (j)	NS (j)	NS (j)	9370	3120
SB-3-MW AOI						SB-3-	- <u>MW</u>
Barium (dissolved)	2	357	249	-	249	6.0	06
Barium (total)	2	357	249	-	249	7.96	(h)
Strontium (dissolved)	22	15,300	10,700	-	10700	6.	34
Strontium (total)	22	15,300	10,700	-	10700	8.42	! (h)
Chloride	555-1600 (i)	NS (j)	NS (j)	NS (j)	NS (j)	71	60
HP MPA-8 AOI						HP M	IPA-8
Barium (dissolved)	2	357	249	-	249	2.:	17
Chloride	555-1600 (i)	NS (j)	NS (j)	NS (j)	NS (j)	15	10

Notes:

Concentrations expressed in mg/L

- Not applicable

RS - RECAP Standard

See Table 5-6 for a list of ground water samples collected by ICON and MP&A used in the quantitative evaluation.

- (a) Constituents determined to be site-related with concentrations above the RECAP GWSS were included for further evaluation under MO-3.
- (b) GW2 = RECAP Standard for Class 2 Ground Water, from Table 3 of RECAP 2003, prior to application of a dilution attenuation factor (DAF).
- (c) Management Option 3 RECAP Standard developed to express Reasonable Maximum Exposure, assuming dermal contact with ground water used as wash water (recreational scenario). Exposure parameters with references are tabulated separately (Table 6-8).
- (d) Management Option 3 RECAP Standard developed to express Reasonable Maximum Exposure, assuming inhalation of volatile COCs from ground water used for showering. Exposure parameters with references are tabulated separately (Table 6-8).
- (e) Limiting RECAP Standard is the minimum of the site-specific MO-3 RS for ground water (recreational adult, recreational child, and shower scenario).
- (f) Compliance Concentration is the maximum reported concentration in the AOI (after split results were averaged). For location SB-1-MW, where samples were collected in multiple events over time, the most recent sample data were used to represent current conditions.
- (g) Two POC values are shown for the SB-1-MW AOI because the sampling locations are immediately adjacent, with MW-1 last sampled in 2010 and SB-1-MW sampled more recently in 2014.
- (h) Value shown is from the adjacent sample location, MW-3, because the unfiltered (total) results for SB-3-MW were not considered representative (due to turbid samples).
- (i) Because the natural levels of chlorides exceed the SMCL, an alternative GW2 RECAP standard is appropriate for chlorides. Chlorides reported in unimpacted locations collected north of Schooner Bayou and at location AB-1 in the 40-Foot Zone are provided as reference values: 555 -1600 mg/L.
- (j) No standard applicable (NS): constituent is not toxic via dermal exposure route.

EXPOSURE ASSUMPTIONS FOR RECREATIONAL EXPOSURE TO GROUND WATER

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

		Recreational Scenario	Shower Scenario		
Parameter	Symbol	Value	Value	Units	Source/Description
Ingestion Pathway					
Incidental Ingestion Rate:	IRw				
Adult		NA	0.089	L/day	RECAP Default
Child		NA	0.089	L/day	RECAP Default
Inhalation Pathway					
Shower Inhalation Exposure Time:	ETiw				
Adult		NA	0.71	hr	RAIS Default, EPA, 2004 (RAGS Part E, Exhibit 3-2)
Child		NA	0.71	hr	RAIS Default, EPA, 2004 (RAGS Part E, Exhibit 3-2)
Inhalation Rate:	IRA				
Adult		NA	20	m³/day	Incorporated into the RfC
Child		NA	20	m ³ /day	Incorporated into the RfC
Andelman Volatilization Factor	K	NA	0.5	L/m^3	Default, EPA, 1991 (RAGS Part B)
Dermal Absorption Pathway					
Dermal Exposure Time:	ETiww				
Adult		2	NA	hr	Assumes 2 hours with skin immersed during washing boats, traps, fish, etc.
Child		2	NA	hr	Assumes 2 hours with skin immersed during washing boats, traps, fish, etc.
Skin Surface Area:	SA				
Adult		6910	NA	cm ²	Arms, hands, and feet assumed to be in contact with sediment. Surface Areas are 95% percentile values for males from Table 7-12 of the EPA's Exposure Factors Handbook (EPA, 2011).
Child		4080	NA	cm ²	Arms, hands, and feet assumed to be in contact with sediment. Age-specific surface areas from Table 7-2 of the Child-Specific Exposure Factors Handbook (EPA, 2008)
General Parameters					
Exposure Frequency:	EF				
Adult		104	104	days/yr	See summary provided in Table 6-2 for sediment.
Child		104	104	days/yr	See summary provided in Table 6-2 for sediment.
Exposure Duration:	ED	101	101	days, yr	occommunity provided in Tuble of 2 for bediment
Adult		30	30	yrs	RECAP Default, residential
Child		5	5	yrs	Age specific. Adolescent years 11-16 identified as age with increased likelihood of fishing and hunting, specifically at a consistent frequency of weekly. In addition, the larger body surface area for this child age range results in higher exposure estimates than a younger child.
Body Weight:	BW				exposure estimates than a vounger child.
Adult		70	70	kg	RECAP Default, adult
Child		59.3	59.3	kg	Average of 50th percentile body weights for children aged 11 through 16 from the Exposure Factors Handbook (EPA, 2011).
Averaging Time:					
Carcinogenic effects	AT_c	25,550	25,550	days	RECAP Default, Carcinogens (70 years time 365 days/yr)
Non-Carcinogenic effects, adult	AT_n	10,950	10,950	days	(ED yrs * 365 days/yr)
Non-Carcinogenic effects, child	AT _n	1,825	1,825	days	(ED yrs * 365 days/yr)
Target Risk	TR	1.00E-06	1.00E-06	unitless	RECAP Default
Target Hazard Quotient	THO	1	1	unitless	RECAP Default
Tanget Hazard Quotient	1110	1	1	unness	RECTI Deliuit

Chemical/physical properties from RAIS PRG Calculator

EPA (July 2004). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). EPA/540/R/99/005. July 2004. EPA (December 1991), Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals), EPA/540/R-92/003. December 1991. EPA (2008). Child-Specific Exposure Factors Handbook (Final Report). EPA/600/R-06/096F.

EPA (2011). Exposure Factors Handbook. EPA/600/R-090/52F.

SURFACE WATER COMPARISON TO MO-3 STANDARDS

Constituents (a)	Health- Based NDW SW RS (b)	Adult Recreational SW RS (c)	Child Recreational SW RS (c)	Target Organs (d)	Additive Divisor (e)	Final Adult Recreational SW RS (f)	Final Child Recreational SW RS (f)	Limiting Recreational SW RS (g)	Maximun Concenti	
Metals									Dissolved	Total
Arsenic	0.05	0.014	0.12	Skin, Vascular	_	0.014	0.12	0.014	0.014	0.013
Barium	83	124	179	Kidney	3	41	60	41	1.1	1.23
Cadmium	0.01	0.22	0.32	Urinary	1	0.22	0.32	0.22	0.00086	0.00021
Chromium (h)	26	173	249	NA	1	170	250	170	0.0051	0.0075
Lead (i)	0.05	-	-	NA	-	-	-	-	0.0088	0.021
Mercury (j)	0.002	0.19	0.27	Immune System	1	0.19	0.27	0.19	0.00012	0.00007
Selenium	0.086	44.4	63.8	Integument (hair, skin, nails), Dental, Hematological, CNS	3	11	16	11	0.032	0.054
Strontium	33	5330	7650	Bone	1	5300	7700	5300	1.66	1.74
Zinc	5	4440	6380	Blood	3	1100	1600	1100	0.023	0.13
Polycyclic Aromatic Hydrocarbons (PAH)										
Acenaphthene (k)	0.28	5.01	7.19	Liver	3	1.7	2.4	1.7	-	0.000131
Total Petroleum Hydrocarbons (TPH) (l)										
TPH-DRO (m)	24	-	-	Kidney, Liver, Hematological, Body Weight	-	-	-	-	-	1.34
TPH-ORO (n)	24	-	-	Kidney, Liver	-	-	-	-	-	1.11
Chlorides (o)	-	-	-	NA	-	-	-	-	-	3690

SURFACE WATER COMPARISON TO MO-3 STANDARDS

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Notes:

Concentrations expressed in mg/L CNS - Central Nervous System

SW RS - Surface Water RECAP Standard

NDW - Non-Drinking Water

NA - Not available or not applicable

- RS not developed, see note assigned to each constituent below
- (a) Site-specific MO-3 RS were developed for site-related constituents detected in surface water samples listed in Table E-7, as applicable. Essential elements that are generally not considered toxic to humans (i.e. calcium, iron, magnesium, manganese, potassium, and sodium) are not included in the evaluation of surface water.
- (b) Ground Water 3 Non-Drinking Water (GW3NDW) Standards calculated in accordance with Appendix H of RECAP (2003) are considered protective of recreational use of surface water without a dilution factor applied. Pathways include incidental ingestion of surface water and consumption of fish caught from the surface water. Current toxicity values and fish bioconcentration factors (BCFs) were used for all constituents.
- (c) Site-Specific Recreational Surface Water Standards for adult and child receptors were developed to express Reasonable Maximum Exposure, assuming contact with surface water during recreational fishing and hunting. Exposure parameters and references are tabulated separately (Table 6-10).
- (d) Target organs associated with each detected constituent that elicits noncarcinogenic effects. Target organs are associated with the reference doses used in this evaluation and were obtained from RAIS, with the exception of selenium and TPH, which were provided by RECAP.
- (e) Additive divisor for non-carcinogenic effects on the same target organ.
- (f) The final adult and child recreational MO-3 RS for surface water is the lower of the carcinogenic RS and the noncarcinogenic RS divided by the additive divisor.
- (g) Maximum detected concentration from surface water samples and splits collected in May 2010 from access canals on the property (SW-01 through SW-07, SW-09 (and its field duplicate, SW-109), SW-10, SW-20), surface water samples and splits collected in May 2010 from locations outside of the canals along Schooner Bayou/White Lake (SW-BK-01 through SW-BK-11), and surface water samples collected in November 2014 from the canal near the SED15 Pit area before initiation of remediation activities (SW-1 through SW-3). Dissolved (filtered) concentrations are most appropriate for assessment of metals in accordance with Louisiana surface water quality regulations. Total metals concentrations
- provided for completeness of information.
 (h) Chromium (III), insoluble salts was assumed for selection and development of RS.
- (i) A site-specific surface water standard for lead could not be developed using standard risk algorithms, because lead exposure is evaluated using a biokinetic model and risk is interpreted in terms of blood lead concentration rather than a Hazard Quotient. Drinking water standard provided as a conservative reference.
- (j) Mercuric chloride was assumed for development of surface water RS.
- (k) Acenaphthene was only detected in a single surface water sample out of 22 analyzed for PAHs (MPA sample SW-BK-06).
- (l) RECAP does not provide data for TPH to support development of standards for dermal exposure to surface water.
- (m) TPH-DRO was reported in a single surface water sample out of 22 analyzed for TPH, with no fraction data available (ICON sample SW-20).
- (n) TPH-ORO was reported in two surface water samples out of 22, with no fraction data available [ICON samples SW-20 (1.11 mg/L) and SW-10 (0.173 mg/L)].
- (o) No standard is applicable, as the chlorides standard currently listed in the Surface Water Quality Standard (LAC Title 33, Part IX, Subpart I, Chapter 11) for Segment 050703 (White Lake) requires modification per the Louisiana Water Quality Inventory: Integrated Report (LDEQ, 2014). The standard of 250 mg/L requires modification because the chlorides concentration is naturally elevated above this standard in surface water (as well as ground water) in this area due to tidal influence.

EXPOSURE ASSUMPTIONS FOR RECREATIONAL EXPOSURE TO SURFACE WATER

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Parameter	Symbol	Value	Units	Source/Description
Dermal Absorption Pathway				
Dermal Exposure Time:	ETiww			
Adult Recreational		4	hr	Assumes 4 hours with skin immersed during fishing, crabbing, or hunting
Child Recreational		4	hr	Assumes 4 hours with skin immersed during fishing, crabbing, or hunting
Skin Surface Area:	SA			
Adult Recreational		6910	cm ²	Arms, hands, and feet assumed to be in contact with sediment. Surface Areas are 95% percentile values for males from Table 7-12 of the EPA's Exposure Factors Handbook (EPA, 2011).
Child Recreational		4080	cm ²	Arms, hands, and feet assumed to be in contact with sediment. Surface Areas from Table 7-2 of the Child-Specific Exposure Factors Handbook (EPA, 2008)
General Parameters				
Exposure Frequency:	EF			
Adult Recreational		104	days/yr	See summary provided in Table 6-2 for sediment.
Child Recreational		104	days/yr	See summary provided in Table 6-2 for sediment.
Exposure Duration:	ED			
Adult Recreational		30	yrs	RECAP Default, residential
Child Recreational		5	yrs	Age specific. Adolescent years 11-16 identified as age with increased likelihood of surface water contact during fishing and hunting, specifically at a consistent frequency of weekly. In addition, the larger body surface area for this child age range results in higher exposure estimates than a younger child.
Body Weight:	BW			
Adult Recreational		70	kg	RECAP Default, adult
Child Recreational		59.3	kg	Average of 50th percentile body weights for children aged 11 through 16 from the Exposure Factors Handbook (EPA, 2011).
Averaging Time:				, , ,
Carcinogenic effects	AT_c	25,550	days	RECAP Default, Carcinogens (70 years time 365 days/yr)
Non-Carcinogenic effects, adult	AT_n	37,960	days	(ED yrs * 365 days/yr)
Non-Carcinogenic effects, child	AT_n	37,960	days	(ED yrs * 365 days/yr)
Target Risk	TR	1.00E-06	unitless	RECAP Default
Target Hazard Quotient	THQ	1	unitless	RECAP Default

Notes:

Chemical/physical properties from RAIS PRG Calculator

EPA (2008). Child-Specific Exposure Factors Handbook (Final Report). EPA/600/R-06/096F.

EPA (2011). Exposure Factors Handbook. EPA/600/R-090/52F.

EXPOSURE ASSUMPTIONS FOR SHELLFISH INGESTION

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Parameter	Symbol	Value	Units	Source/Description
Biota Ingestion Pathway				
Shellfish Ingestion Rate:	IR_f			
Adult- all edible tissue		30	g/day	Based on four 8-ounce meals per month, every month. Default per LDEQ et al., 2012. TSL Guidelines. Value represents consumption rate for edible tissue of a single species harvested from the same water body over exposure duration.
Adult- hepatopancreas		7.5	g/day	Default per LDHH et al., 2012. Protocol for Issuing Advisories
Child		15	g/day	Four 4-ounce meals per month, every month. Default per LDHH et al., 2012. Protocol for Issuing Advisories
General Parameters				
Exposure Frequency:	EF			
Adult		365	days/yr	Default per LDEQ et al., 2012. TSL Guidelines
Child		365	days/yr	Default per LDHH et al., 2012. Protocol for Issuing Advisories
Exposure Duration:	ED			
Adult		30	yrs	Default per LDEQ et al., 2012. TSL Guidelines, based upon USEPA default value for residence in a single location.
Child		6	yrs	Default per LDHH et al., 2012. Protocol for Issuing Advisories, based upon USEPA default value.
Body Weight:	BW			
Adult		70	kg	Default per LDEQ et al., 2012. TSL Guidelines, based upon USEPA default value for residence in a single location.
Child		35	kg	Default per LDHH et al., 2012. Protocol for Issuing Advisories, based upon USEPA default value.
Averaging Time:				
Carcinogenic effects	AT_c	25,550	days	Default per LDEQ et al., 2012. TSL Guidelines, Carcinogens (70 years time 365 days/yr)
Non-Carcinogenic effects, adult	AT_n	10,950	days	(ED yrs * 365 days/yr)
Non-Carcinogenic effects, child	AT_n	2,190	days	(ED yrs * 365 days/yr)
Target Risk	TR	1.00E-04	unitless	Default per LDEQ et al., 2012. TSL Guidelines. Selected by LDHH to balance risk from exposure and nutritional benefits of fish consumption, per LDHH. The following rationale is provided by Ratard, 1993: "The level of $1 \times 10\text{-}4$ has been carefully selected to provide some balance to the process: the multistage model used does not estimate the actual cancer risk, but the upperbound limits of the risk The combination of these very conservative assumptions with a 10-6 or even a 10-5 risk level would lead to extremely low concentrations that could not be reasonably justified."
Target Hazard Quotient	THQ	1	unitless	Default per LDEQ et al., 2012. TSL Guidelines

Notes

Louisiana Dept. of Environmental Quality (LDEQ); Louisiana, Dept. of Health and Hospitals (LDHH); Louisiana, Dept. of Wildlife and Fisheries (LDWF); Louisiana, Dept. of Agriculture and Forestry (LDAF) (2012). Tissue Screening Level Guidelines for Issuance of Public Health Advisories for Selected Contaminants and Supporting Documentation.

LDHH, LDEQ, LDAF, and LDWF (2012). Protocol for Issuing Public Health Advisories for Chemical Contaminants in Recreationally Caught Fish and Shellfish.

Ratard, Raoult, Eric T. Baumgartner, and Louis Trachtman (1993). How to Interpret Fish Consumption Advisories. *Journal of Louisiana State Medical Society*, Volume 145, June, 1993.

CRAB EDIBLE TISSUE COMPARISON TO TISSUE SCREENING LEVELS (TSLs)

					Crab Edible	Tissue Conce	ntration (HP	& Meat) (a,b)	
	Default	TSLs (e)	Target	Si	ite		rence	Mar	ket
Constituent	TSLnc	TSLc	Organs (d)	Average	Max	Average	Max	Average	Max
ТРН (с)			0 ()						
TPH >C8-16	160		liver, hematological system, decreased BW	16	48.4	17	40.3	21	71.3
TPH >C16-28	2400		liver, kidney	49	148	44	85	43	79.8
Metals			·						
Arsenic, inorganic	0.7	0.36	skin, vascular	0.011	0.016	0.013	0.016	0.015	0.023
Barium	470		kidney	9.2	14	11	16	1.5	3.1
Mercury, total	0.7		autoimmune	0.069	0.091	0.062	0.092	0.036	0.049
Methyl Mercury	0.23		developmental neuro- psychological impairment	0.039	0.061	0.028	0.052	0.018	0.027
	!		•			Hazard I	ndices (d)		
			Kidney	0.04	0.09	0.04	0.07	0.02	0.04
			Liver	0.1	0.4	0.1	0.3	0.2	0.5
Evaluation of Crab Meat Cor	ncentrations								
					C	Trab Meat Cor	ncentrations (l	0)	
	Crab Mea	ıt TSLs (e)	Target	Si	ite	Refe	rence	Market	
Constituent	TSLnc	TSLc	Organs (d)	Average	Max	Average	Max	Average	Max
ГРН (с)	·								
TPH >C8-16	160		liver, hematological system, decreased BW	NC	13.9 U	NC	8.7 U	NC	16.2 U
TPH >C8-16 TPH >C16-28	160			NC NC	13.9 U 13.9 U	NC NC	8.7 U	NC 6.7	16.2 U 8.1 J
TPH >C16-28			system, decreased BW						
TPH >C16-28			system, decreased BW						8.1 J
TPH >C16-28 Metals	2400 0.7 470		system, decreased BW liver, kidney	NC	13.9 U	NC	8.7 U	6.7	8.1 J
TPH >C16-28 Metals Arsenic, inorganic	2400	0.36	system, decreased BW liver, kidney skin, vascular	NC 0.0032	13.9 U 0.0065 J	NC 0.0039	8.7 U 0.0090 J	6.7 0.0076	8.1 J 0.014 2.5
TPH >C16-28 Metals Arsenic, inorganic Barium	2400 0.7 470	0.36	system, decreased BW liver, kidney skin, vascular kidney	NC 0.0032 6.7	13.9 U 0.0065 J 12	NC 0.0039 8.4	8.7 U 0.0090 J 14	6.7 0.0076 1.3	0.014]
TPH >C16-28 Metals Arsenic, inorganic Barium Mercury, total	2400 0.7 470 0.7	0.36	system, decreased BW liver, kidney skin, vascular kidney autoimmune developmental neuro-	NC 0.0032 6.7 0.077	13.9 U 0.0065 J 12 0.10	NC 0.0039 8.4 0.068	8.7 U 0.0090 J 14 0.11 0.061	0.0076 1.3 0.039	8.1 J 0.014 2.5 0.054
TPH >C16-28 Metals Arsenic, inorganic Barium Mercury, total	2400 0.7 470 0.7	0.36	system, decreased BW liver, kidney skin, vascular kidney autoimmune developmental neuro-	NC 0.0032 6.7 0.077	13.9 U 0.0065 J 12 0.10	NC 0.0039 8.4 0.068	8.7 U 0.0090 J 14 0.11 0.061	0.0076 1.3 0.039	8.1 J 0.014] 2.5 0.054

CRAB EDIBLE TISSUE COMPARISON TO TISSUE SCREENING LEVELS (TSLs)

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Evaluation of Crab Hepatopancre	eas (HP) Concer	itrations								
				Crab Hepatopancreas Concentrations (b)						
	Crab HP	TSLs (e)	Target	Site		Reference		Mar	ket	
Constituent	TSLnc	TSLc	Organs (d)	Average	Max	Average	Max	Average	Max	
TPH (c)										
TPH >C8-16	650		liver, hematological system, decreased BW	69	242	80	188	93	311	
TPH >C16-28	9500		liver, kidney	249	856	226	393	215	351	
Metals										
Arsenic, inorganic	2.8	1.5	skin, vascular	0.047	0.079	0.054	0.066	0.049	0.072	
Barium	1900		kidney	21	32	24	33	2.9	6.1	
Mercury, total	2.8		autoimmune	0.034	0.045	0.033	0.056	0.022	0.042	
Methyl Mercury	0.93		developmental neuro- psychological impairment	0.021	0.039	0.014	0.024	0.0089	0.015	
	-	•				Hazard In	dices (d)			
			Kidney	0.04	0.1	0.04	0.06	0.02	0.04	
			Liver	0.1	0.5	0.1	0.3	0.2	0.5	

Notes:

Concentrations in mg/kg-wet weight

- U = Result was reported as not detected by the laboratory (i.e., less than the MDL, defined by the laboratory as the "Adjusted Method Detection Limit"); value shown is the MDL. One-half the detection limit was used to calculate Edible Tissue Concentrations (ETCs) in accordance with the Louisiana Protocol, so ETCs with U are calculated from one-half detection limits for non-detect meat and hepatopancreas results.
- J = Laboratory qualifier indicating that the reported value is an estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- NA = HI not calculated when data for the relevant constituents are all nondetect.
- NC = Not calculated; for datasets that were completely nondetect, an average concentration was not calculated.
- (a) Edible Tissue Concentration (ETC) for each composite crab sample, the ETC was calculated as the sum of the mass-weighted TPH concentrations for crab meat and hepatopancreas. using sample-specific tissue weight (mass) data reported by the laboratory for meat and hepatopancreas as follows:
 - ETC = (concentration in meat) x (% edible tissue comprised of meat) + (concentration in hepatopancreas) x (% edible tissue comprised of hepatopancreas).
- (b) For datasets with all results reported as nondetect, an average concentration was not calculated (NC), and the highest detection limit was used to represent the maximum nondetect result. For datasets comprised of both detects and nondetects, one-half detection limit was used for determining the average concentration for the dataset, and the highest detected value (including J-flagged) was used as the maximum.
- (c) TSL calculated using weighted toxicity value assuming 50% aliphatics and 50% aromatics.
- (d) Hazard Indices calculated for target organs associated with more than one detected constituent.
- (e) TSLs were calculated using the algorithms provided in the *Tissue Screening Level Guidelines for Issuance of Public Health Advisories for Selected Contaminants* (LDEQ et al., 2012). For evaluation of ETCs and crab meat, the TSLs were calculated using default parameters. For evaluation of hepatopancreas, the TSLs were calculated using a hepatopancreas-specific ingestion rate identified in the *Protocol for Issuing Public Health Advisories for Chemical Contaminants in Recreationally Caught Fish and Shellfish* (LDHH et al., 2012).

SENSITIVITY ANALYSIS

COMPARISON OF CRAB EDIBLE TISSUE CONCENTRATIONS TO TSLs AT 60 G/DAY INGESTION RATE

Evaluation of Crab Edible Tis	ssue Concentrations	(ETCs)			0 1 5 11 1	T		0.75 37 4.53		
							•	on (HP & Meat) (a,b)		
		TSLs (e)	Target	_	ite	Refe		Mar		
Constituent	TSLnc	TSLc	Organs (d)	Average	Max	Average	Max	Average	Max	
ГРН (с)										
TPH >C8-16	82		liver, hematological system, decreased BW	16	48.4	17	40.3	21	71.3	
TPH >C16-28	1200		liver, kidney	49	148	44	85	43	79.8	
Metals										
Arsenic, inorganic	0.35	0.18	skin, vascular	0.011	0.016	0.013	0.016	0.015	0.023	
Barium	230		kidney	9.2	14	11	16	1.5	3.1	
Mercury, total	0.35		autoimmune	0.069	0.091	0.062	0.092	0.036	0.049	
Methyl Mercury	0.12		developmental neuro- psychological impairment	0.039	0.061	0.028	0.052	0.018	0.027	
	•					Hazard Iı	ndices (d)	•		
			Kidney	0.1	0.2	0.1	0.1	0.04	0.1	
			Liver	0.2	0.7	0.2	0.6	0.3	0.9	
Evaluation of Crab Meat Cor	centrations									
					(Crab Meat Con	centrations (l	o)		
	Crab Mea	at TSLs (e)	Target	Si	ite	Refe	ence	Market		
Constituent	TSLnc	TSLc	Organs (d)	Average	Max	Average	Max	Average	Max	
ГРН (с)										
TPH >C8-16	82		liver, hematological system, decreased BW	NC	13.9 U	NC	8.7 U	NC	16.2 U	
TPH >C16-28	1200		liver, kidney	NC	13.9 U	NC	8.7 U	6.7	8.1 J	
Metals										
Arsenic, inorganic	0.35	0.18	skin, vascular	0.0032	0.0065 J	0.0039	0.0090 J	0.0076	0.014 J	
riberne, morganic			kidney	6.7	12	8.4	14	1.3	2.5	
Barium	230				2.12	0.068	0.11	0.039	0.054	
	230 0.35		autoimmune	0.077	0.10	0.000	0.11	0.039	0.054	
Barium			<u> </u>	0.077	0.10	0.032	0.061	0.039	0.029	
Barium Mercury, total	0.35		autoimmune developmental neuro-				0.061			
Barium Mercury, total	0.35		autoimmune developmental neuro-			0.032	0.061			

SENSITIVITY ANALYSIS

COMPARISON OF CRAB EDIBLE TISSUE CONCENTRATIONS TO TSLs AT 60 G/DAY INGESTION RATE

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Evaluation of Crab Hepatopa	ncreas (HP) Concen	trations								
				Crab Hepatopancreas Concentrations (b)						
	Crab HP	TSLs (e)	Target	Site		Reference		Market		
Constituent	TSLnc	TSLc	Organs (d)	Average	Max	Average	Max	Average	Max	
ТРН (с)										
TPH >C8-16	325		liver, hematological system, decreased BW	69	242	80	188	93	311	
TPH >C16-28	4750		liver, kidney	249	856	226	393	215	351	
Metals										
Arsenic, inorganic	1.4	0.75	skin, vascular	0.047	0.079	0.054	0.066	0.049	0.072	
Barium	950		kidney	21	32	24	33	2.9	6.1	
Mercury, total	1.4		autoimmune	0.034	0.045	0.033	0.056	0.022	0.042	
Methyl Mercury	0.465		developmental neuro- psychological impairment	0.021	0.039	0.014	0.024	0.0089	0.015	
						Hazard In	dices (d)			
			Kidney	0.1	0.2	0.1	0.1	0.05	0.08	
			Liver	0.3	0.9	0.3	0.7	0.3	1.0	

Notes:

Concentrations in mg/kg-wet weight

- U = Result was reported as not detected by the laboratory (i.e., less than the MDL, defined by the laboratory as the "Adjusted Method Detection Limit"); value shown is the MDL. One-half the detection limit was used to calculate Edible Tissue Concentrations (ETCs) in accordance with the Louisiana Protocol, so ETCs with U are calculated from one-half detection limits for non-detect meat and hepatopancreas results.
- J = Laboratory qualifier indicating that the reported value is an estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- NA = HI not calculated when data for the relevant constituents are all nondetect.
- NC = Not calculated; for datasets that were completely nondetect, an average concentration was not calculated.
- (a) Edible Tissue Concentration (ETC) for each composite crab sample, the ETC was calculated as the sum of the mass-weighted TPH concentrations for crab meat and hepatopancreas, using sample-specific tissue weight (mass) data reported by the laboratory for meat and hepatopancreas as follows:

ETC = (concentration in meat) x (% edible tissue comprised of meat) + (concentration in hepatopancreas) x (% edible tissue comprised of hepatopancreas).

- (b) For datasets with all results reported as nondetect, an average concentration was not calculated (NC), and the highest detection limit was used to represent the maximum nondetect result. For datasets comprised of both detects and nondetects, one-half detection limit was used for determining the average concentration for the dataset, and the highest detected value (including J-flagged) was used as the maximum.
- (c) TSL calculated using weighted toxicity value assuming 50% aliphatics and 50% aromatics.
- (d) Hazard Indices calculated for target organs associated with more than one detected constituent.
- (e) TSLs were calculated using the algorithms provided in the *Tissue Screening Level Guidelines for Issuance of Public Health Advisories for Selected Contaminants* (LDEQ et al., 2012). For evaluation of ETCs and crab meat, the TSLs were calculated using default parameters. For evaluation of hepatopancreas, the TSLs were calculated using a hepatopancreas-specific ingestion rate identified in the *Protocol for Issuing Public Health Advisories for Chemical Contaminants in Recreationally Caught Fish and Shellfish* (LDHH et al., 2012).

SENSITIVITY ANALYSIS

COMPARISON OF CRAB HYDROCARBON >C28 TO C40 RANGE CONCENTRATIONS TO TSLs

		Mea	at (n	ng/kg-wet	wei	ght)	Hepat	topa	ancreas (m weight)	g/kg-wet			Concentratio	n (HP & Meat) ht) ^(b)
	Sample ID ^(a)	ТРН (C8-C16)		TPH (C16-28)		Estimated TPH (C16-C40)	ТРН (C8-C16)		TPH (C16-28)	Estimated TPH (C16-C40)	ТРН (C8-C16)		TPH (C16-28)	Estimated TPH (C16-C40)
	Default TSL	160		2400		2400	650		9500	9500	160		2400	2400
	2x Default TSL	82		1200		1200	325		4750	4750	82		1200	1200
	EWL-T-01A-C	4.5	UR	4.5	UR	13.1	21.6	U	59.4	456	NA		NA	82.9
	EWL-T-01-C	9.4	U	9.4	U	159	70.3		167	428.7	15.8		32.2	205
	EWL-T-02-C	5	U	5	U	142	22.2	U	90.8	461	3.96	U	17.5	196
	EWL-T-03-C (c)	13.9	U	13.9	U	108	242		242	627.5	48.4		48.3	200
	EWL-T-04-C	5.5	U	5.5	U	110	5.8	U	9.9	J 45	2.77	U	3.91	99.5
	EWL-T-05-C	5.1	U	5.1	U	121	136	U	856	3207	13.7	U	148	649
4)	EWL-T-06-C	8	U	8	U	49.1	34.1	U	174	806	6.14	U	31.8	173
Site	EWL-T-07-C	6.5	U	6.5	U	133	47.1		101	464.9	10.8		20.1	190
S	EWL-T-08-C	5	U	5	U	51.3	90		300	651	15.3		46.1	139
	EWL-T-09-C	6.7	U	6.7	U	164	54	U	209	1202	7.54	U	39.8	348
	EWL-T-10-C (c)	12.6	U	12.6	U	139.5	142		314	734	30.9		62.1	247
	EWL-T-11-C	12.9	U	12.9	U	226	111		443	989	24.3	Ħ	81.2	357
	EWL-T-12-C	4.4	U	4.4	U	79.2	60.6	Ţ	277	685	12.9	Ħ	52.4	190
	Average ^(e)	NC		NC		115	69		249	827	16		49	237
	EWL-TR-01-C	8.7	U	8.7	U	200	NA	1 1	NA	NA	NA	ТТ	NA	NA
	EWL-TR-02-C	4.7	U	4.7	U	20.1	61.1		143	507.9	14.1	11	30.5	118
	EWL-TR-03A-C	5.2	U	5.2	Ū	154	135		305	664	27	11	58.3	248
	EWL-TR-03-C	4.9	U	4.9	Ū	51.6	34.3	IJ	145	740	5.19	IJ	29	180
e	EWL-TR-04-C	4.6	U	4.6	U	95.4	91.6		262	670.4	15.3	Ħ	40	179
l a	EWL-TR-05-C	4.8	U	4.8	Ū	122	53.9	IJ	82	I 505	7.19	IJ	17.9	197
ere	EWL-TR-06-C	7.4	U	7.4	Ū	128	21.7	U	144	585	4.96	U	28.5	209
Reference	EWL-TR-07-C	4.8	U	4.8	U	72.6	85.5		302	924.5	15.4	1	49.2	206
~	EWL-TR-08-C	5.0	U	5.0	U	142	188	+	254	568	40.3	+	53.8	229
	EWL-TR-09-C	5.2	U	5.2	U	166	100	+1	393	790	23.2	$\dagger \dagger$	85	298
			Ť									11		
	Average ^(e)	NC		NC		115	80		226	662	17		44	207
	EWL-BIL-C	3.5	U	4.4	J	96.3	22.4	U	140	772	3.27	U	26.2	205
	EWL-BR-C	9.6	U	9.6	Ù	135	23.7	U	241	611	6.2	U	51.6	229
ب	EWL-DES-C	5.6	U	8.1	J	123.5	22.7	U	88.1	431	3.54	U	15.1	150
Market	EWL-HOU-C	5.3	U	7.5	J	104.0	28.4	U	174	732	4.08	U	28.1	182
ar	EWL-LC-C (c)	16.2	U	16.2	U	220	310.5		351	837.5	71.3		79.8	349
\mathbf{Z}	EWL-NO-C	14.4	U	14.4	U	192	197	\dagger	298	532	38.8	T	55.6	249
								\dagger		11		$\dagger \dagger$		
	Average (e)	NC		6.7		145	93		215	653	21		43	227

SENSITIVITY ANALYSIS COMPARISON OF CRAB HYDROCARBON >C28 TO C40 RANGE CONCENTRATIONS TO TSLs

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Notes:

- U = Result was reported as not detected by the laboratory (i.e., less than the MDL, defined by the laboratory as the "Adjusted Method Detection Limit"); value shown is the MDL (shaded cells).
- J = Laboratory qualifier indicating that the reported value is an estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- UR = Surrogate recovery identified as less than 10%; therefore, this non-detect result is considered not reliable for use in quantitative analysis.
- NA = Edible Tissue Concentration could not be calculated due to unavailable meat or hepatopancreas data (either due to insufficient hepatopancreas sample to analyze TPH or R-qualified results).
- NC = Not calculated; for datasets that were completely nondetect, an average concentration was not calculated.
- (a) Consistent with Louisiana regulatory agency Protocol (LDHH et al., 2012), crab meat and hepatopancreas were analyzed separately in composite samples collected during the field study (December 2010 through January 2011). These tissues comprise the edible tissues for regular human consumption.
- (b) Edible Tissue Concentration (ETC) for each composite crab sample, the ETC was calculated as the sum of the mass-weighted TPH concentrations for crab meat and hepatopancreas, using sample-specific tissue weight (mass) data reported by the laboratory for meat and hepatopancreas as follows:
 - ETC = (concentration in meat) x (% edible tissue comprised of meat) + (concentration in hepatopancreas) x (% edible tissue comprised of In accordance with Louisiana regulatory agency guidance for treatment of nondetect results in tissues (LDHH et al, 2012), one-half the detection limit was used for non-detect results to calculate Edible Tissue Concentrations (ETCs), so ETCs with U are calculated from one-half detection limits for non-detect meat or hepatopancreas results.
- (c) Duplicate samples were prepared by the sample preparation laboratory (Columbia Analytical Services, Inc.) as separate aliquots from the same composite homogenized tissue (i.e., meat or hepatopancreas), where one aliquot is considered the parent and the other is labeled as a laboratory duplicate. The concentrations listed in this table, and used in the risk assessment, represent the average concentration from the parent sample and the duplicate. Since the tissue weight data was obtained from the composite homogenized tissue, the tissue weights are equal for the parent sample and duplicate.
- (d) TPH (C16-40) was estimated by subtracting the concentration of TPH (C8-16) from the concentration of TPH (C8-40).
- (e) For averaging datasets comprised of both nondetect values and detections, one-half detection limits were used to represent concentrations of nondetect results in accordance with Louisiana regulatory agency guidance for treatment of nondetect results in tissues (LDHH et al, 2012).

SENSITIVITY ANALYSIS COMPARISON OF FORAGE FISH TISSUE CONCENTRATIONS TO TSLs

	TS	SLs		Foraș	ge Fish Whole Bo	ody Concentration	s (a)
	Defaul	t IRF (b)	Target	Site		Reference	
Constituent	TSLnc	TSLc	Organs (d)	Average	Max	Average	Max
TPH (c)							
TPH >C8-16	160		liver, hematological system, decreased BW	NC	30 U	NC	45 U
TPH >C16-28	2400		liver, kidney	33	106	20	61
Metals							
Arsenic, inorganic	0.7	0.36	skin, vascular	0.085	0.11	0.089	0.16
Barium	470		kidney	17	20	12	20
Mercury, total	0.7		autoimmune	0.021	0.094	0.018	0.055
Methyl Mercury	0.23		developmental neuro- psychological impairment	0.012	0.078	0.011	0.041
	-	•			Hazard I	ndices (e)	
			Kidney	0.05	0.09	0.03	0.07
			Liver	0.01	0.04	0.008	0.03

	TS	SLs		Foraș	ge Fish Whole Bo	ody Concentration	s (a)
	2x Defau	lt IRF (b)	Target	Si	te	Reference	
Constituent	TSLnc	TSLc	Organs (d)	Average	Max	Average	Max
TPH (c)							
TPH >C8-16	82		liver, hematological system, decreased BW	NC	30 U	NC	45 U
TPH >C16-28	1200		liver, kidney	33	106	20	61
Metals							
Arsenic, inorganic	0.35	0.18	skin, vascular	0.085	0.11	0.089	0.16
Barium	230		kidney	17	20	12	20
Mercury, total	0.35		autoimmune	0.021	0.094	0.018	0.055
Methyl Mercury	0.12		developmental neuro- psychological impairment	0.012	0.078	0.011	0.041
	-				Hazard I	ndices (e)	
			Kidney	0.1	0.2	0.07	0.1
			Liver	0.03	0.09	0.02	0.05

SENSITIVITY ANALYSIS COMPARISON OF FORAGE FISH TISSUE CONCENTRATIONS TO TSLs

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Notes:

Concentrations in mg/kg-wet weight

- U = Result was reported as not detected by the laboratory (i.e., less than the MDL, defined by the laboratory as the "Adjusted Method Detection Limit"); value shown is the MDL.
- NC = Not calculated; for datasets that were completely nondetect, an average concentration was not calculated.
- (a) For datasets with all results reported as nondetect, an average concentration was not calculated (NC), and the highest detection limit was used to represent the maximum nondetect result. For datasets comprised of both detects and nondetects, one-half detection limit was used for determining the average concentration for the dataset in accordance with Louisiana Protocol, and the highest detected value was used as the maximum.
- (b) TSLs were calculated using the algorithms provided in the *Tissue Screening Level Guidelines for Issuance of Public Health Advisories for Selected Contaminants* (LDEQ et al., 2012). In addition to the default fish ingestion rate provided in this guidance, twice the default ingestion rate was evaluated as a sensitivity analysis.
- (c) TSL calculated using weighted toxicity value assuming 50% aliphatics and 50% aromatics.
- (d) Target organs for noncarcinogenic effects obtained from RECAP (LDEQ, 2003) for TPH and EPA's IRIS for metals.
- (e) Hazard Indices calculated for target organs associated with more than one detected constituent.

CUMULATIVE HAZARD INDEX CALCULATIONS

	Multiple Media HI (b)		SEDIMEN	T DIRECT CO	ONTACT	40-FOOT 2	ZONE GROUN	ND WATER	SU	RFACE WA	ΓER	CRAE	EDIBLE T	ISSUE
COCs (a)	RME Scenario	Target Organs (c)	Sediment DC LRS (d)	AOIC Maximum Conc. (e)	Sediment (Max) HQ	40-FT GW LRS (f)	CC Maximum Conc. (g)	GW HQ	SW LRS (h)	Maximum Conc. (i)	SW HQ	Default TSLs (j)	Site ETC (k)	Crab ETC HQ
Metals														
Arsenic	0.021	Skin, Vascular							2.67	0.014	0.0052	0.7	0.011	0.016
Barium	0.11	Kidney	280,000	5,170	0.018	249	14.8	0.059	124	1.1	0.0089	470	9.2	0.02
Cadmium	0.0039	Urinary							0.22	0.00086	0.0039			
Chromium	0.000029	NA							173	0.0051	0.000029			
Lead (l)	NA	NA							-	0.0088	NA			
Mercury	0.11	Immune System	420	4.47	0.011				0.19	0.00012	0.00063	0.7	0.069	0.099
Methyl Mercury	0.17	Neurological										0.23	0.039	0.17
Selenium	0.00073	Integument (hair, skin, nails), Dental,								0.032				
		Hematological, CNS							44		0.00073			
Strontium	0.0016	Bone				10700	13.9	0.0013	5330	1.66	0.00031			
Zinc	0.0000052	Blood							4440	0.023	5.2E-06			
BTEX														
Benzene	0.0076	Blood				3.8	0.029	0.0076						
PAH														
Acenaphthene	0.000026	Liver							5.01	0.000131	0.000026			
TPH - Fractions (m)														
Aliphatics >C10-C12	0.021	Liver, Hematological	17,000	353	0.021									
Aliphatics >C12-C16	0.078		32,000	2,500	0.078									
Aliphatics >C16-C35	0.055	Liver	130,000	7,110	0.055									
Aromatics >C12-C16	0.022	Decreased BW	18,000	403	0.022									
Aromatics >C16-C21	0.49	Kidney	2,200	1,070	0.49									
Aromatics >C21-C35	0.6	Riuliey	2,300	1,370	0.6									
ТРН														
TPH > C8-16	0.1	Liver, Hematological, Decreased BW										160	16	0.1
TPH >C16-28	0.02	Lliver, Kidney										2400	49	0.02

Target Organ-Specific HI	Target Organ-Specific HIs (n)						
Target Organ	HI	COCs					
Skin	0.02	arsenic, selenium					
Kidney	0.7	barium, aromatics >C16-35, TPH>C16-28					
Immune System	0.1	mercury					
Liver	0.3	acenaphthene, aliphatics >C10-16, aliphatics >C16-35, TPH>C8-16, TPH>C16-28					
Blood/Hematologic.	0.2	selenium, zinc, benzene, aliphatics >C10-16, TPH>C8-16					
Bone	0.002	strontium					
Body Weight	0.1	aromatics >C12-16, TPH>C8-16					
Neurological/CNS	0.2	methyl mercury, selenium					

CUMULATIVE HAZARD INDEX CALCULATIONS

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Notes:

HQ - Hazard Quotient, equal to the Area of Investigation Concentration (AOIC) or Compliance Concentration (CC) for each Constituent of Concern (COC) divided by the applicable risk based standard.

RME - Reasonable Maximum Exposure

LRS - Limiting RECAP Standard

DC - Direct Contact

- (a) COCs Constituents of Concern include those constituents evaluated under Management Option 3 (MO-3) in sediment, 40-Foot Zone ground water, surface water, and crab.
- (b) Multiple Media Hazard Index (HI) is the sum of the HQs for each COC in each medium where it warranted evaluation under MO-3.
- (c) Target organs associated with each detected constituent that elicits noncarcinogenic effects. Target organs are associated with the reference doses used in this evaluation and were obtained from RAIS, with the exception of selenium and TPH, which were provided by RECAP.
- (d) Limiting recreational RECAP Standard for direct contact with sediment, prior to adjusting for additive effects (from Table 6-3).
- (e) Maximum reported concentrations in sediment across the site in the 0-3 foot interval (from Table 6-3).
- (f) Limiting recreational RECAP Standard for the 40-Foot Zone ground water (from Table 6-7).
- (g) Maximum concentration in the 40-Foot Zone ground water, considering all AOIs and both dissolved and total metals (from Table 6-7).
- (h) Limiting recreational RECAP Standard for surface water (from Table 6-9).
- (i) Maximum reported concentrations in surface water, using dissolved metals concentrations (from Table 6-9).
- (j) Default Tissue Screening Levels (TSLs) calculated using the default LDHH crab consumption scenario (30 g/day) for edible tissues (from Table 6-12).
- (k) Average Edible Tissue Concentration (ETC) considering crabs collected on site (from Table 6-12).
- (l) Based on lead's mechanism of toxicity, EPA considers it inappropriate to develop a RfD for lead. Risk-based standards for lead are developed using toxicokinetic models based on acceptable blood lead levels in sensitive receptor populations. Therefore, lead is not included in the assessment for additive health effects.
- (m) Per RECAP (2003), when accounting for additivity for the TPH fractions, the following fractions should be treated as individual COCs: aliphatics C>6-C8, aliphatics C>8-C16, aliphatics C>16-C35, aromatics C>8-C16, and aromatics C>16-C35.
- (n) Target organ specific HIs were calculated by summing the multiple-media HIs from COCs affecting each respecitive target organ. Target organs affected by more than one COC or more than one medium were included. For TPH fractions that are considered a single COC for the pupose of addressing additive effects, the larger HI was used to represent that range in calculating the target organ specific HI.

CUMULATIVE RISK CALCULATIONS

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

		40-FOOT	40-FOOT ZONE GROUND WATER					
COCs (a)	Multiple Media Risk (b)	GW LRS (c)	CC Maximum Conc. (d)	GW Risk				
Metals Arsenic BTEX	4.1E-06							
Benzene	7.2E-07	4.0E-02	2.9E-02	7.2E-07				

SURFACE WATER						
SW LRS (e)	Maximu m Conc. (f)	SW Risk				
1.4E-02	1.4E-02	1.0E-06				

CRAB EDIBLE TISSUE						
Default TSLs (g)	Site ETC (h)	Crab ETC Risk				
3.6E-01	1.1E-02	3.1E-06				

Total Risk	5E-06
1 Otal Kisk	3E-00

Notes:

Risk - equal to the Area of Investigation Concentration (AOIC) or Compliance Concentration (CC) for each Constituent of Concern (COC) divided by the applicable risk based standard, and multiplied by the target risk used in developing the standard: 10⁻⁶ for all media except crab, and 10⁻⁴ for crab per LDHH guidance.

LRS - Limiting RECAP Standard

- (a) COCs Constituents of Concern include those carcinogenc constituents that warranted evaluation under Management Option 3 (MO-3) in sediment (none), 40-Foot Zone ground water, surface water, and crab.
- (b) Multiple Media Risk is the sum of risk for each COC in each medium where it warranted evaluation under MO-3.
- (c) Limiting recreational RECAP Standard for the 40-Foot Zone ground water (from Table 6-7).
- (d) Maximum concentration in the 40-Foot Zone ground water, considering all AOIs and both dissolved and total metals (from Table 6-7).
- (e) Limiting recreational RECAP Standard for surface water (from Table 6-9).
- (f) Maximum reported concentrations in surface water, using dissolved metals concentrations (from Table 6-9).
- (g) Default Tissue Screening Levels (TSLs) calculated using the default LDHH crab consumption scenario (30 g/day) for edible tissues (from Table 6-12).
- (h) Average Edible Tissue Concentration (ETC) considering crabs collected on site (from Table 6-12).

SUMMARY OF TPH MIXTURE CONCENTRATIONS AND LOCATIONS THAT EXCEED RECAP SCREENING STANDARDS

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Industrial Direct Contact Screening - Sediment (0-3')							
TPH-DRO		Soilssi =	510				
IPH-DKO	'	MO-3 Soili =	2550				
Samples (a)	Depth	Date	mg/kg-wet				
SS7	1.4-2.5	26-Apr-06	678				
SED-26	0-6"	5-May-10	696				
SED-120*	0-6"	7-May-10	2550				

MO-3 Ground Water Protection - Sediment (all depths)								
TPH-DRO SoilGW3NDW = 6100								
Samples (c)	Depth	Date	mg/kg-dry					
AB13	4-6	7-Nov-06	8400					
SED-120*	0-6"	7-May-10	14300					

		Residential I	Direct Contact	Screening - Sed	iment (0	-3')
		Soilssni =	65			
TPH-DRO		MO-3 Soili =		TPH-ORO		
		MO-3 Recr LRS =		MO		
Samples (b)	Depth	Date	mg/kg-wet	Samples (b)	Depth	
B2	2-4	8-Aug-06	233	B2	2-4	
B4	0-1	9-Aug-06	440	B4	0-1	
B5	0-1.5	9-Aug-06	112	SS7	1.4-2.5	
SS2	0-1	25-Apr-06	107	SS11	0-2.5	
SS5	0-2.15	26-Apr-06	78.6	SS12	0-3.7	
SS7	0-1.4	26-Apr-06	109	SED4	0-2'	
	1.4-2.5	26-Apr-06	678	SED6	0-2'	
SS11	0-2.5	27-Apr-06	231	SED7	0-2'	
SS12	0-3.7	27-Apr-06	223	SED11	0-2'	
SED4	0-2'	25-Feb-10	287	SED12	0-2'	
SED5	0-2'	25-Feb-10	96.8	SED17	0-2'	
SED6	0-2'	25-Feb-10	196	SED24	0-2'	
SED7	0-2'	25-Feb-10	163	SED-26	0-6"	
SED8	0-2'	25-Feb-10	108	SED-120 (d)	0-6"	
SED-8	0-6"	6-May-10	134			
SED10	0-2'	25-Feb-10	122			
SED11	0-2'	25-Feb-10	337			
SED12	0-2'	25-Feb-10	216			
SED16	0-2'	26-Feb-10	70.8			
SED17	0-2'	26-Feb-10	314			
SED20	0-2'	26-Feb-10	112			
SED21	0-2'	26-Feb-10	138			
SED22	0-2'	26-Feb-10	128			
SED24	0-2'	2-Mar-10	297			
SED-26	0-6"	5-May-10	696			
SED-120 (c)	0-6"	7-May-10	2550	1		

		MO-3 Recr LRS =	1150
Samples (b)	Depth	Date	mg/kg-we
B2	2-4	8-Aug-06	191
B4	0-1	9-Aug-06	347
SS7	1.4-2.5	26-Apr-06	190
SS11	0-2.5	27-Apr-06	224
SS12	0-3.7	27-Apr-06	254
SED4	0-2'	25-Feb-10	366
SED6	0-2'	25-Feb-10	565
SED7	0-2'	25-Feb-10	316
SED11	0-2'	25-Feb-10	260
SED12	0-2'	25-Feb-10	194
SED17	0-2'	26-Feb-10	193
SED24	0-2'	2-Mar-10	294
SED-26	0-6"	5-May-10	425
SED-120 (d)	0-6"	7-May-10	1450

Notes:

Bold and boxed concentrations indicate exceedance of the MO-3 LRS.

This assessment considers the reported TPH mixture concentrations where fraction data were not collected

TPH - total petroleum hydrocarbons: diesel range organics (DRO) and oil range organics (ORO)

MO-3 - RECAP Management Option 3

SoilSSi = RECAP Screening Option Standard from Table 1 of RECAP 2003 for soil protective of industrial land use.

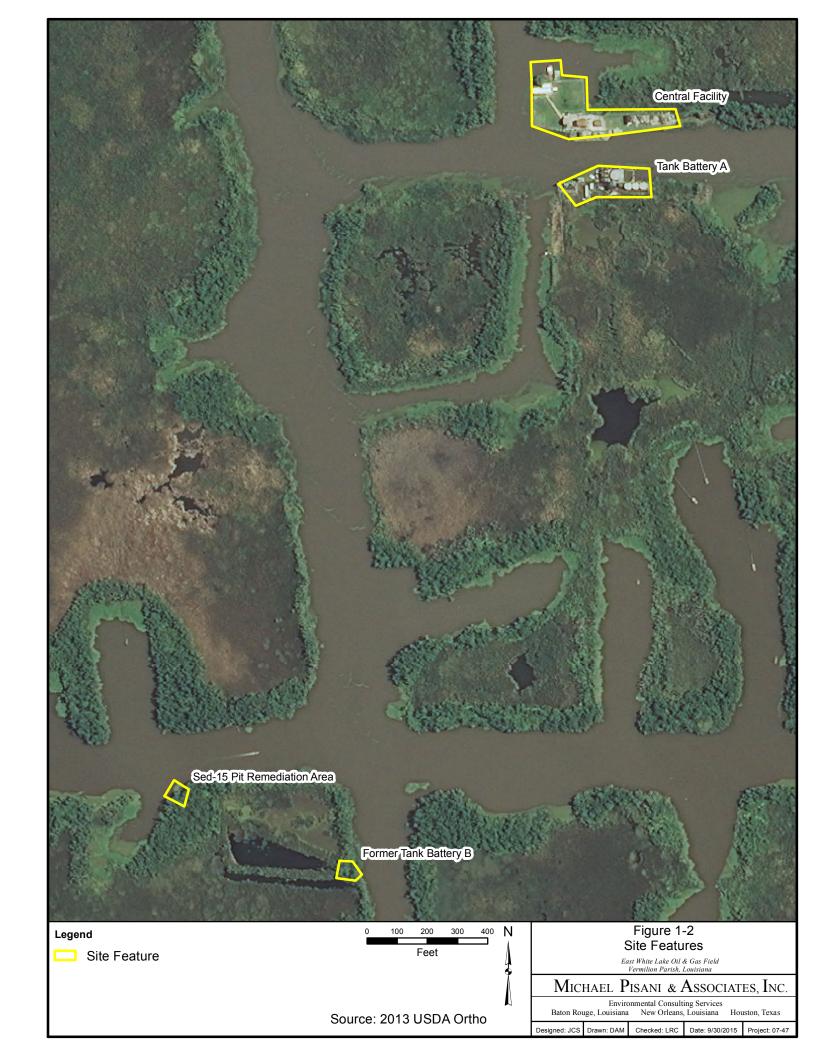
SoilSSni = RECAP Screening Option Standard from Table 1 of RECAP 2003 for soil protective of nonindustrial land use.

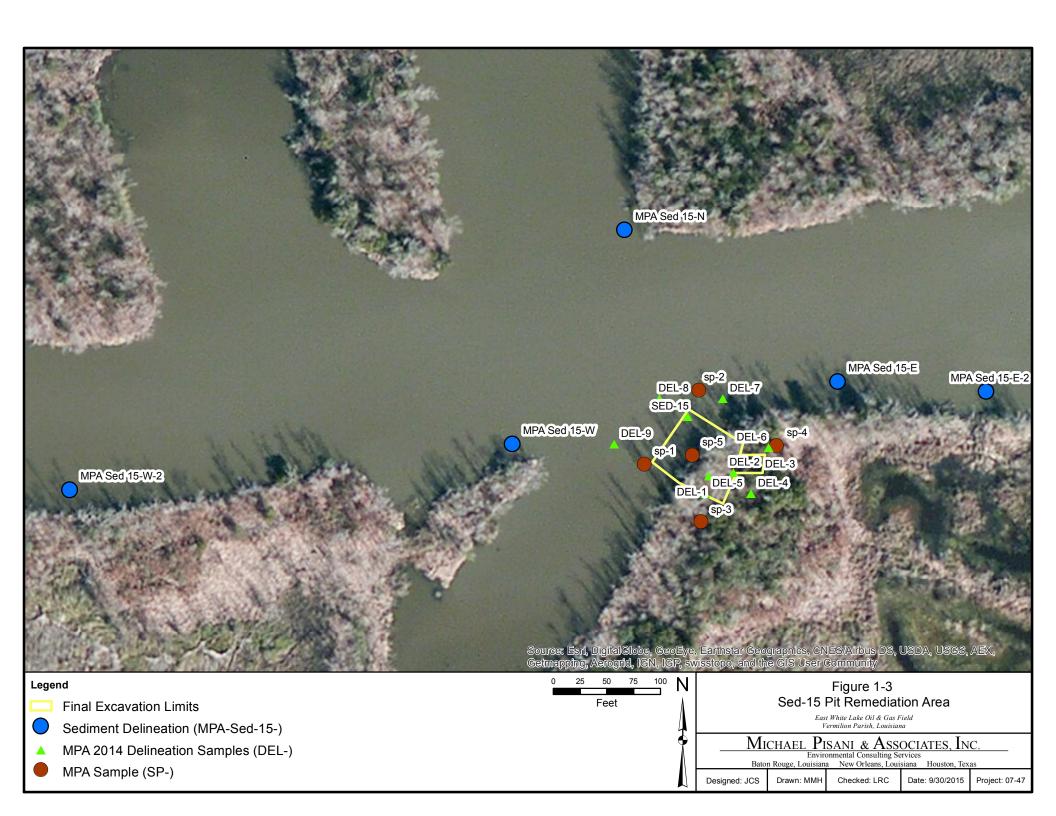
MO-3 Soili - RECAP standard calculated for sediment using the default industrial adult exposure assumptions for direct contact with soil.

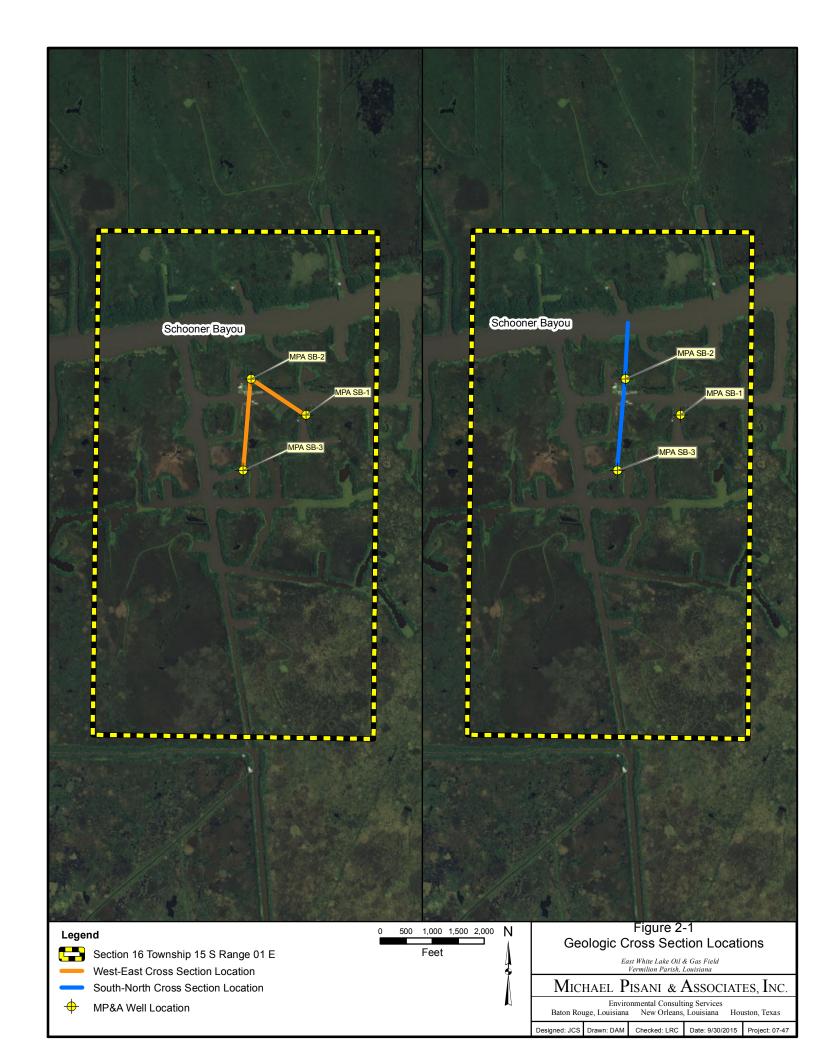
MO-3 Recr LRS - Recreational Limiting RECAP Standard is the lowest of the MO-3 Sediment RS for the recreational adult and child, calculated using direct contact soil algorithms from Appendix H of RECAP (2003). The child recreational scenario is limiting.

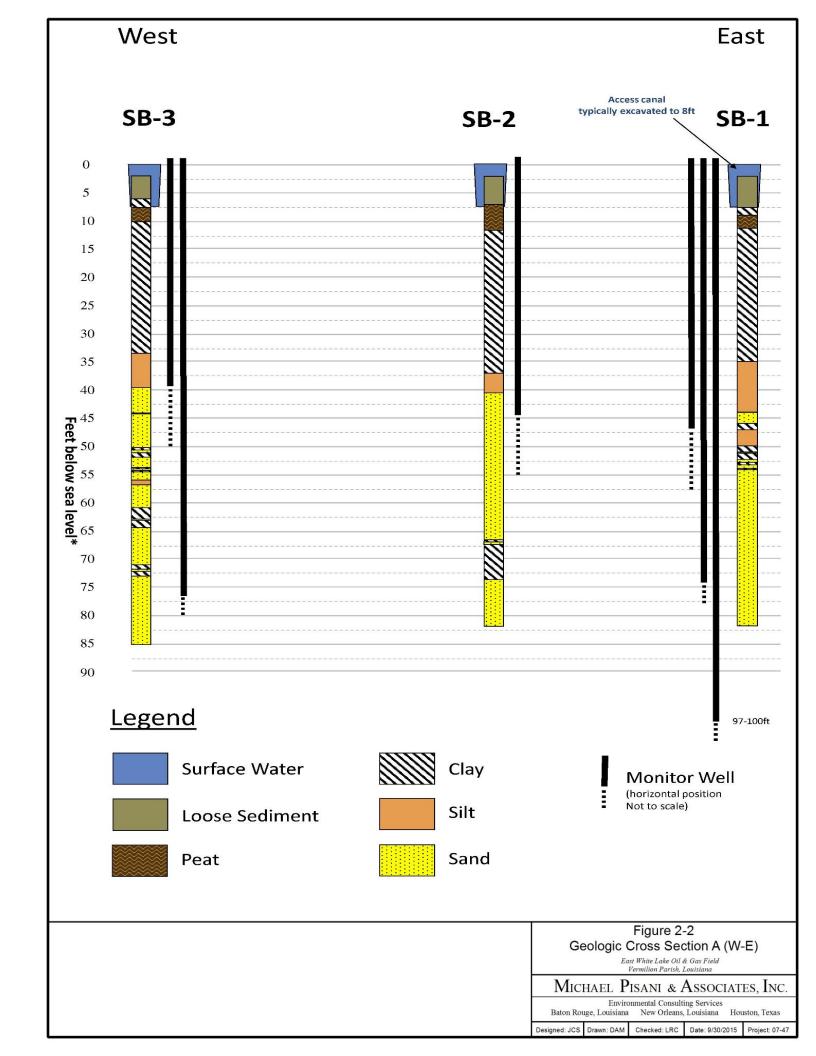
SoilGW3NDW = RECAP Standard for soil protective of ground water, calculated in accordance with Appendix H of RECAP (2003).

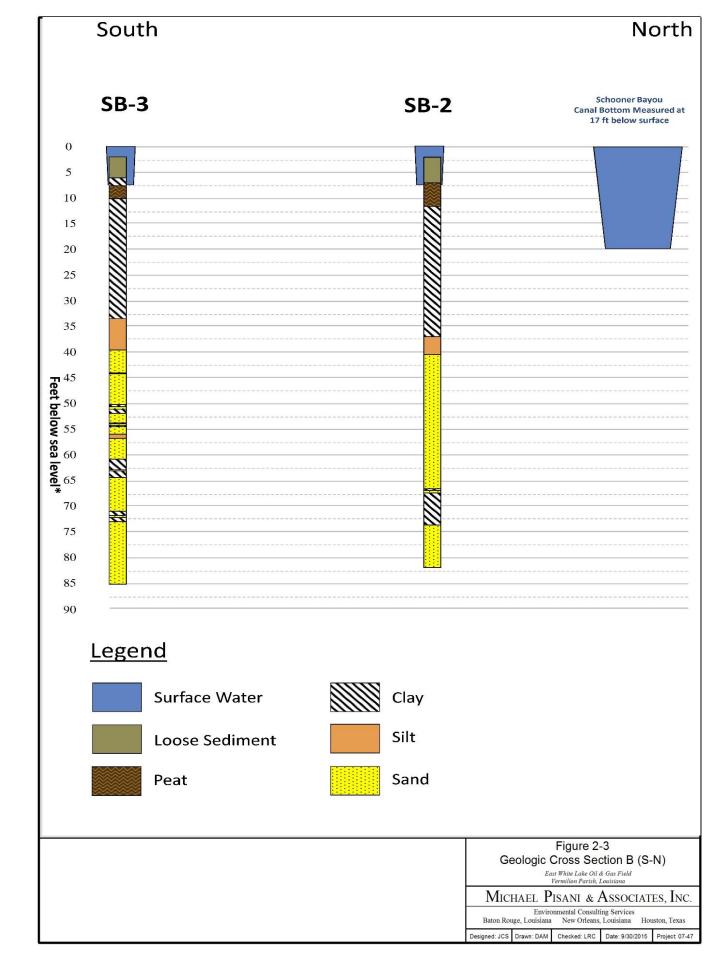
- (a) Samples with concentrations > Soilssi (wet weight)
- (b) Samples with concentrations > Soilssni (wet weight)
- (c) Samples with concentrations > SoilGW3NDW (dry weight)
- (d) SED-120 was collected from the same sample location as Sed-30, and hydrocarbon fraction data available for Sed-30 (0-2') were less than both industrial and recreational standards.

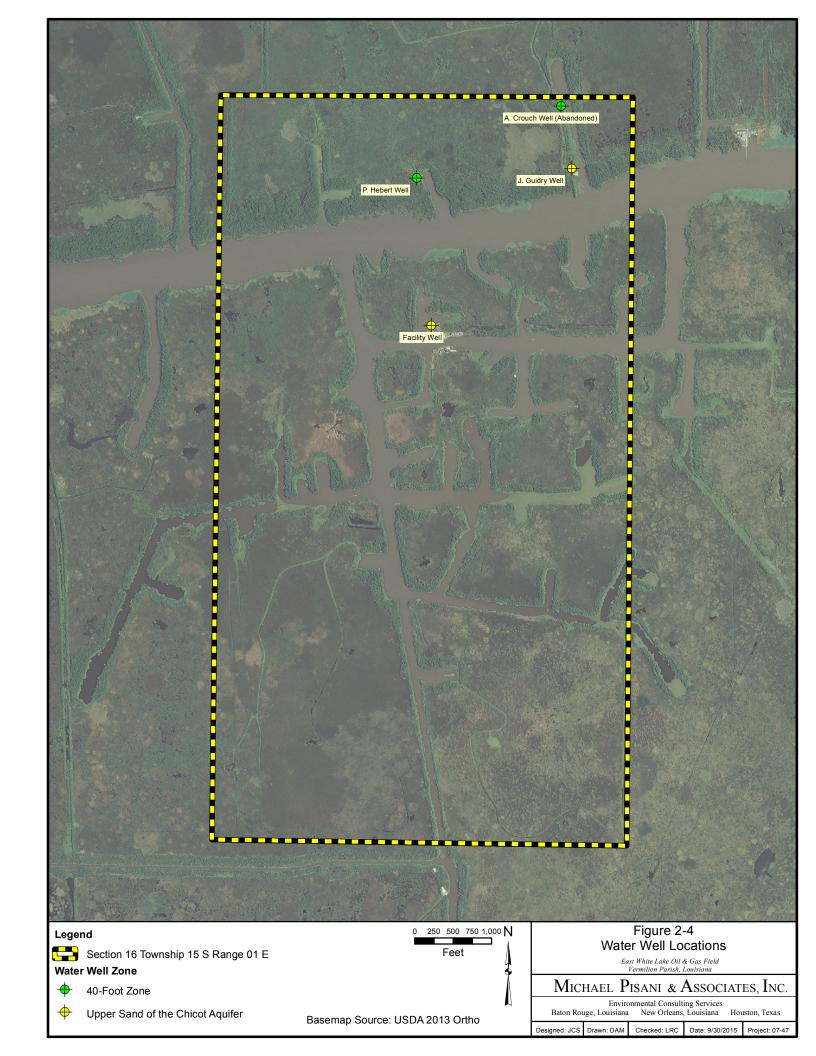

Figures

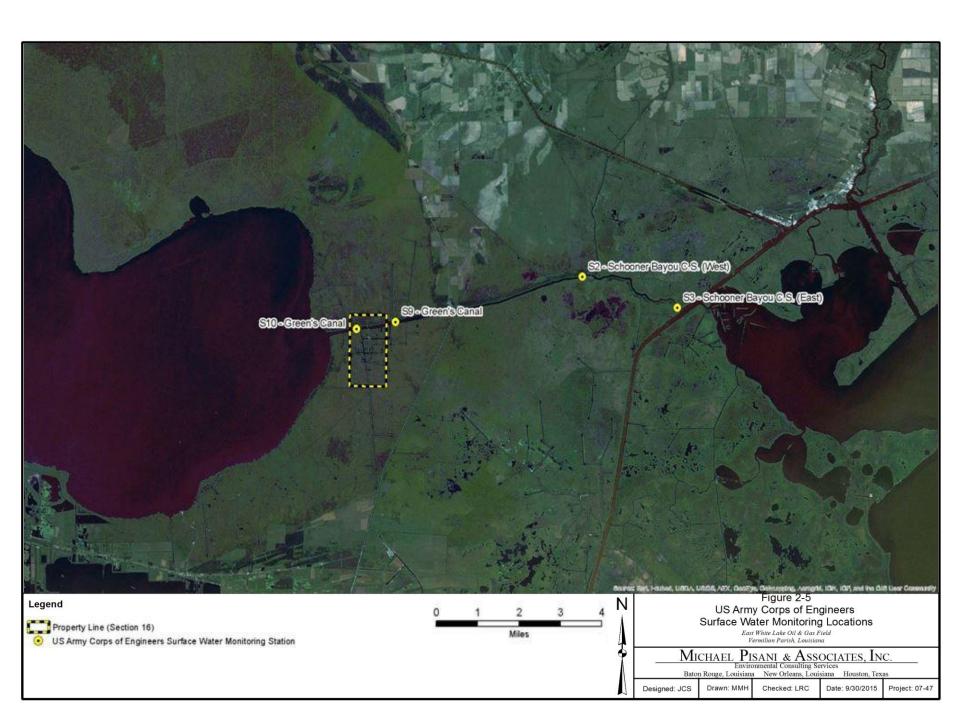

Project No. 0116008 UNOCAL Vermilion Parish, Louisiana

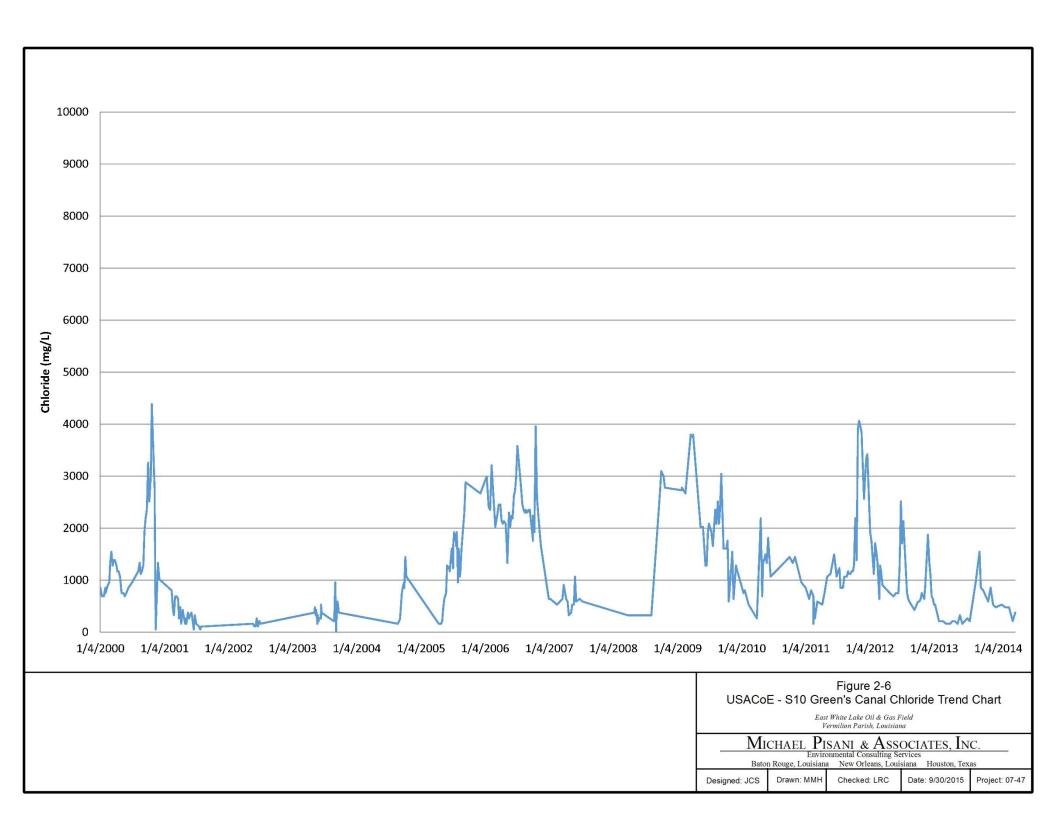

Environmental Resources Management Southwest, Inc.

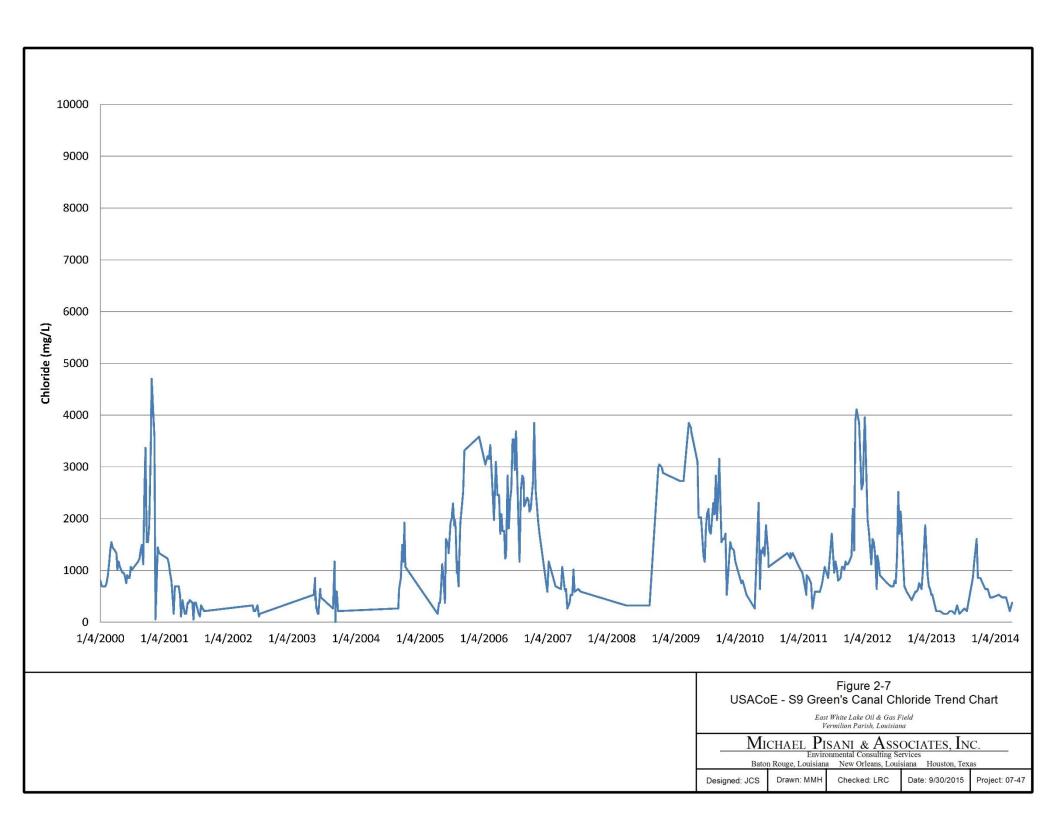

3838 North Causeway Boulevard, Suite 3000 Metairie, Louisiana 70002 (504) 831-6700

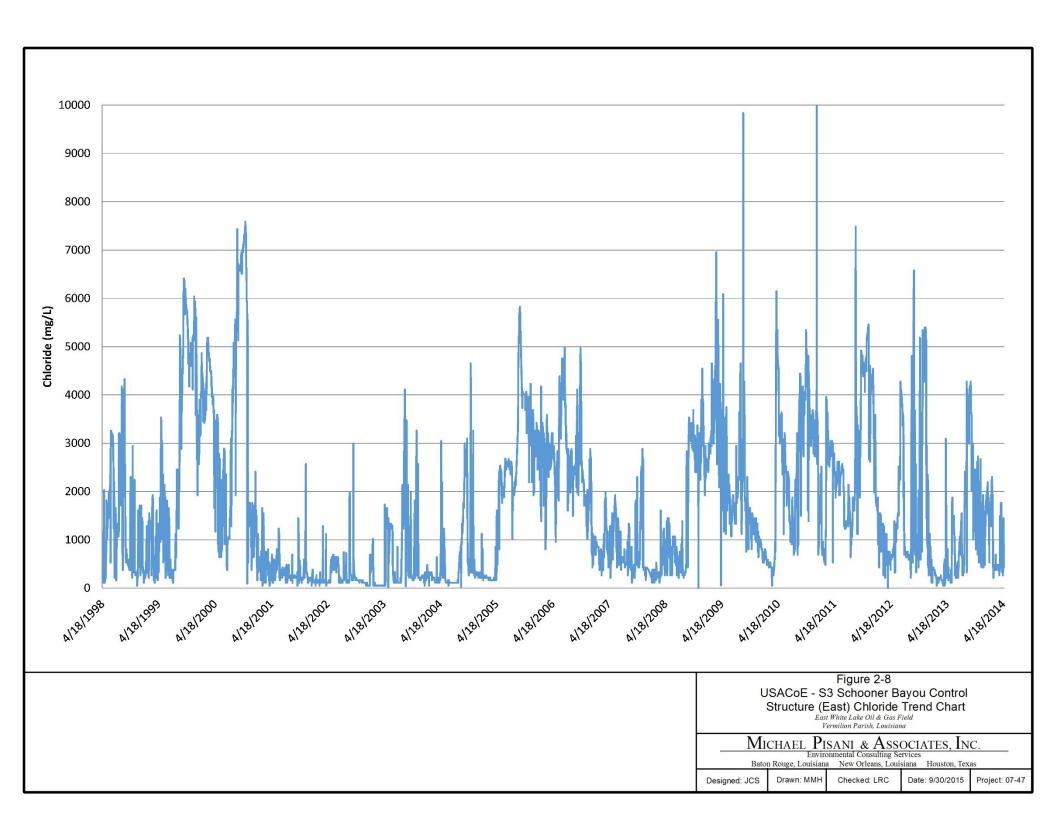


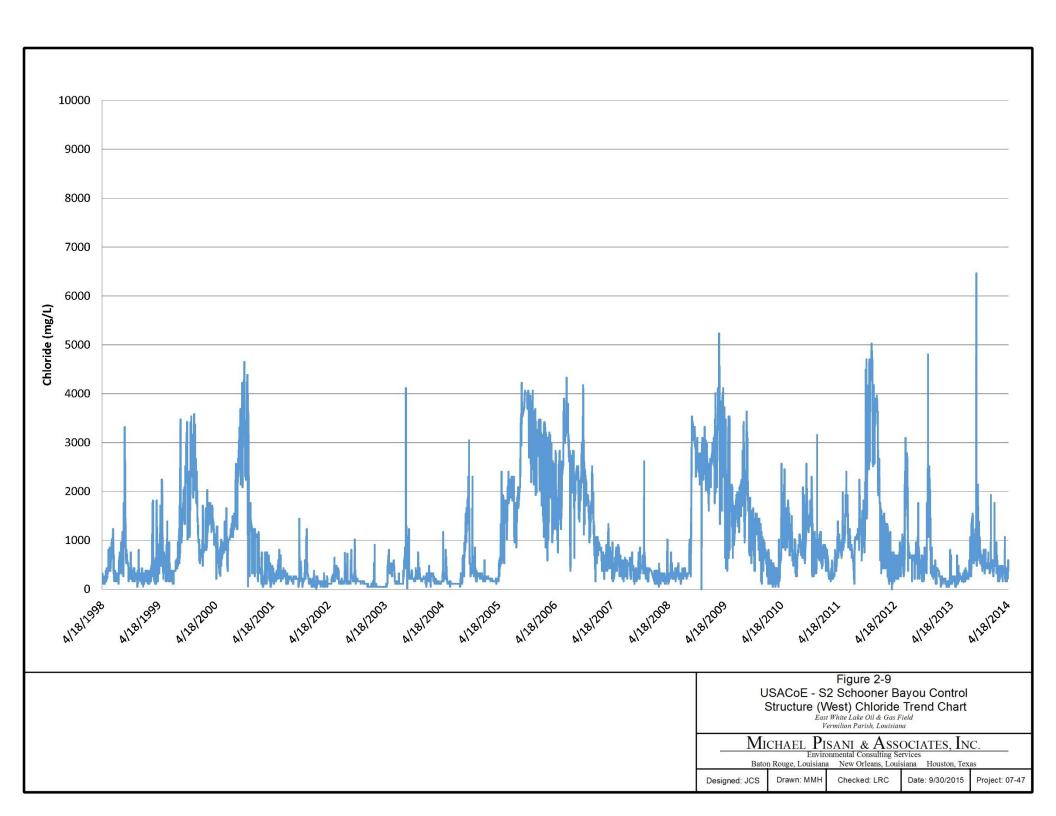


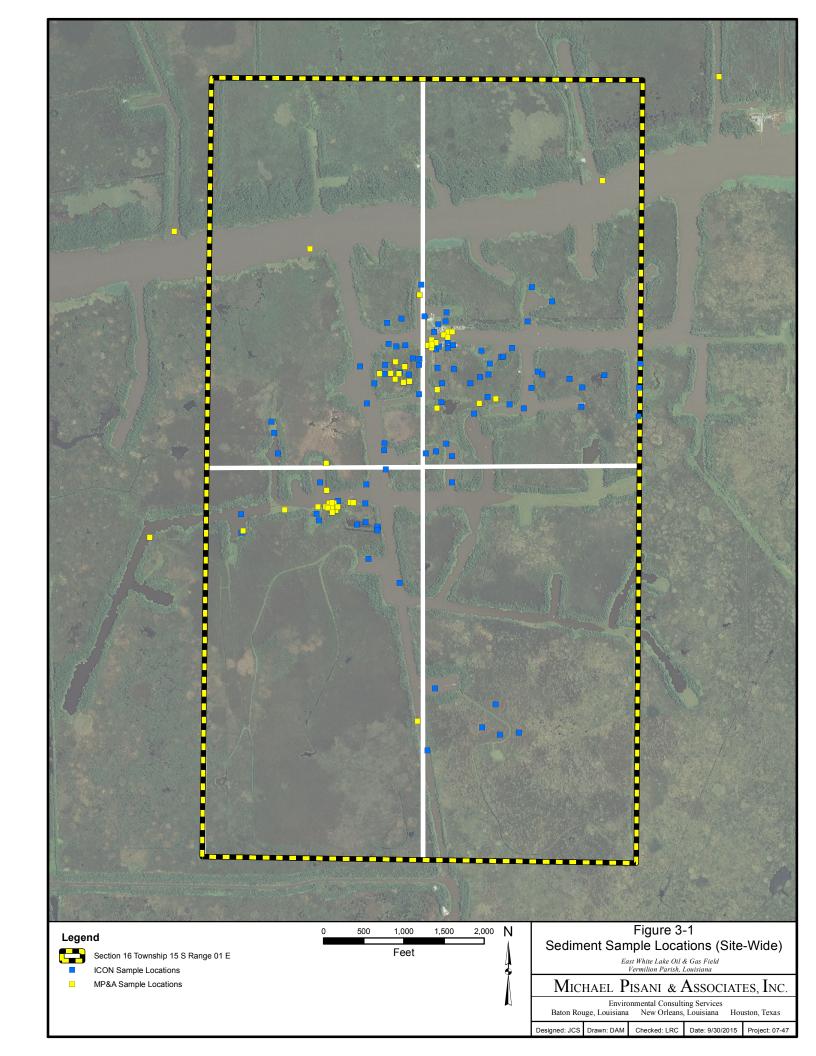


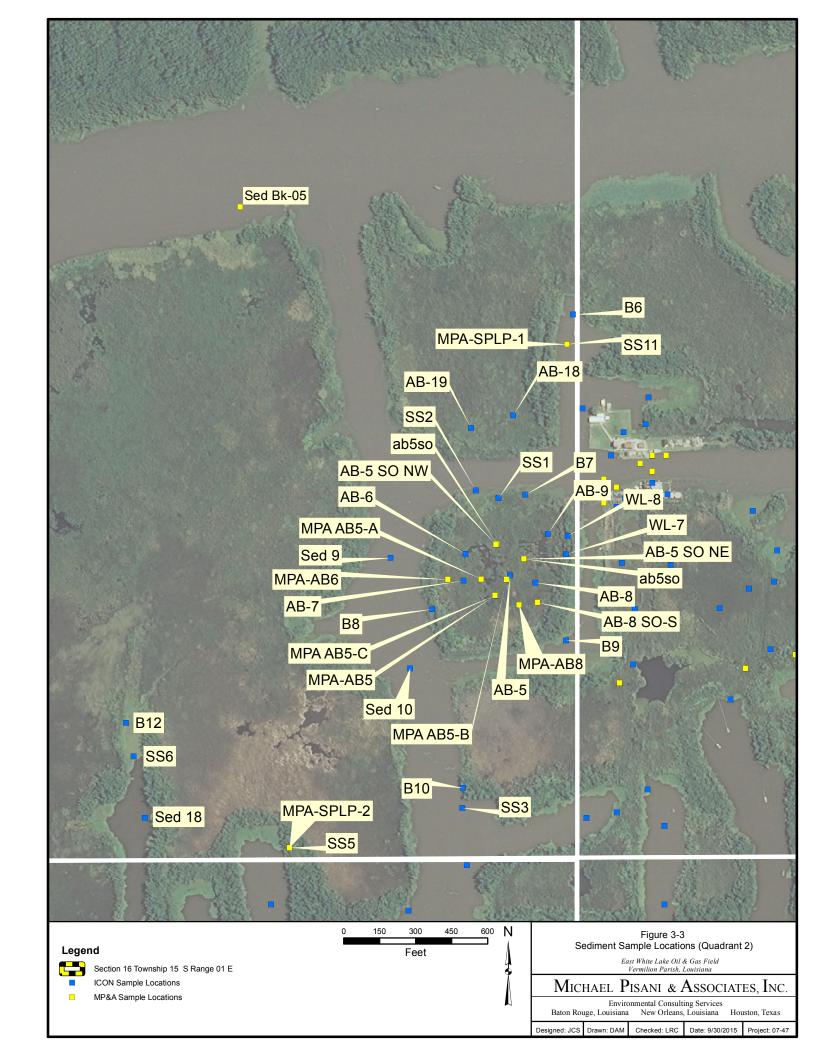


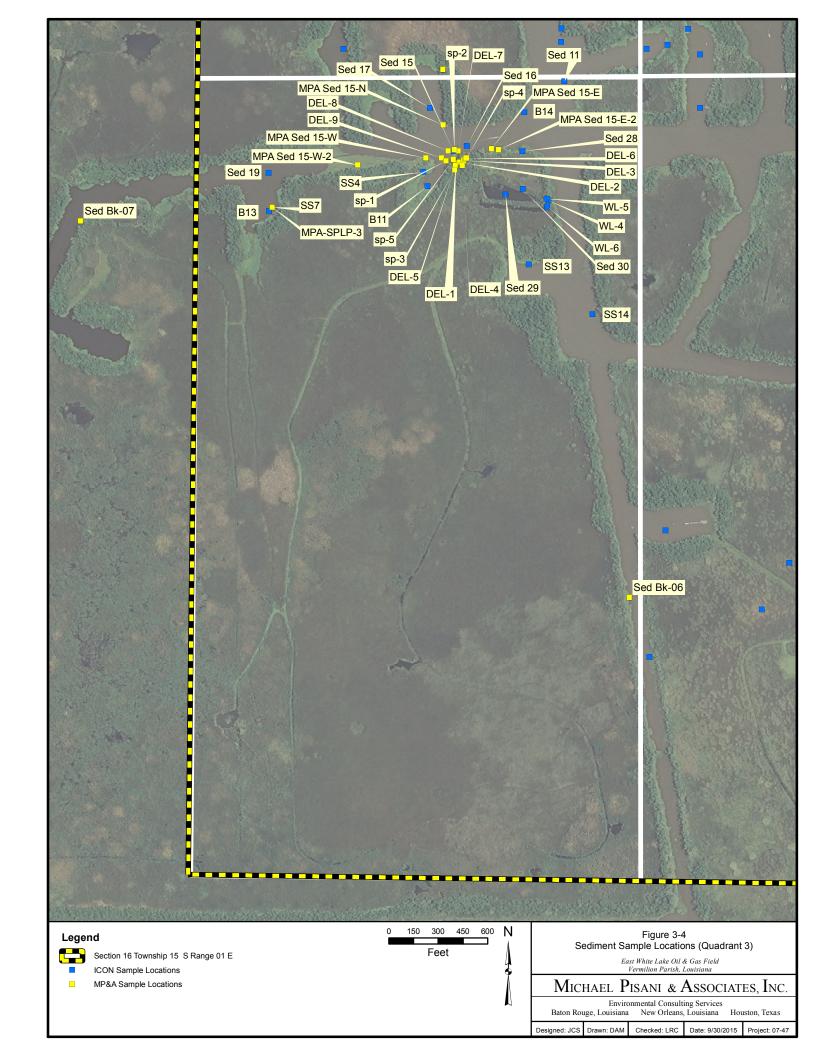


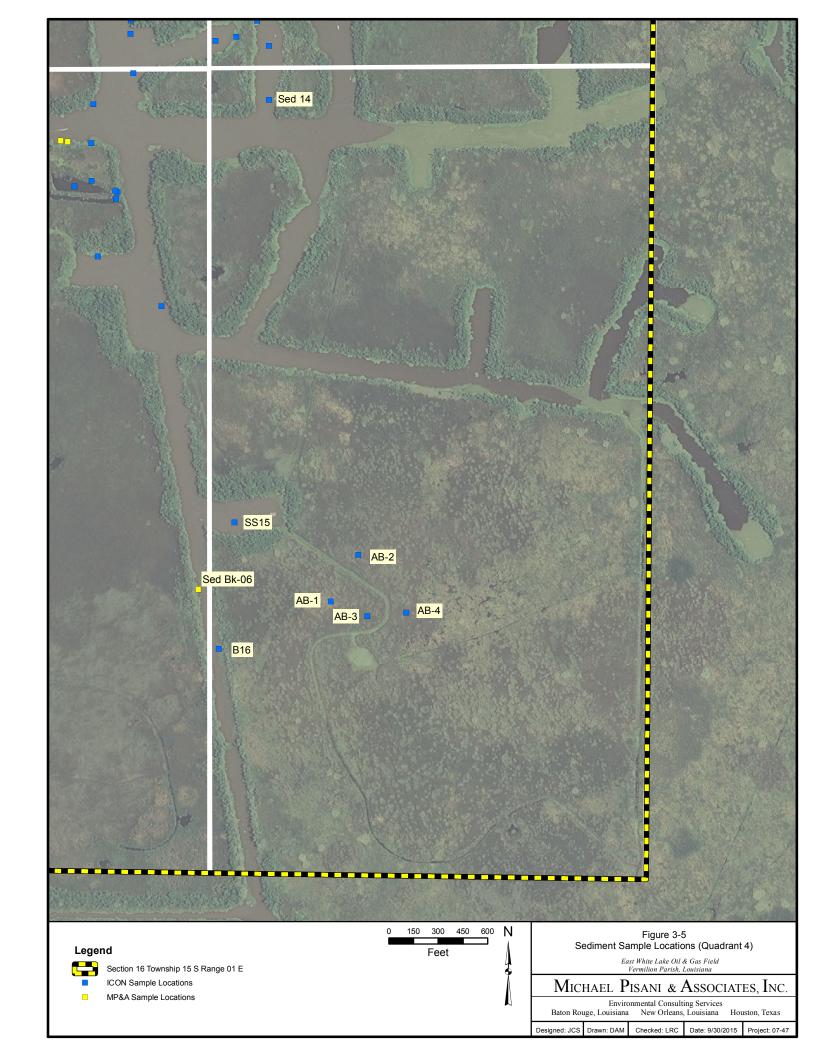


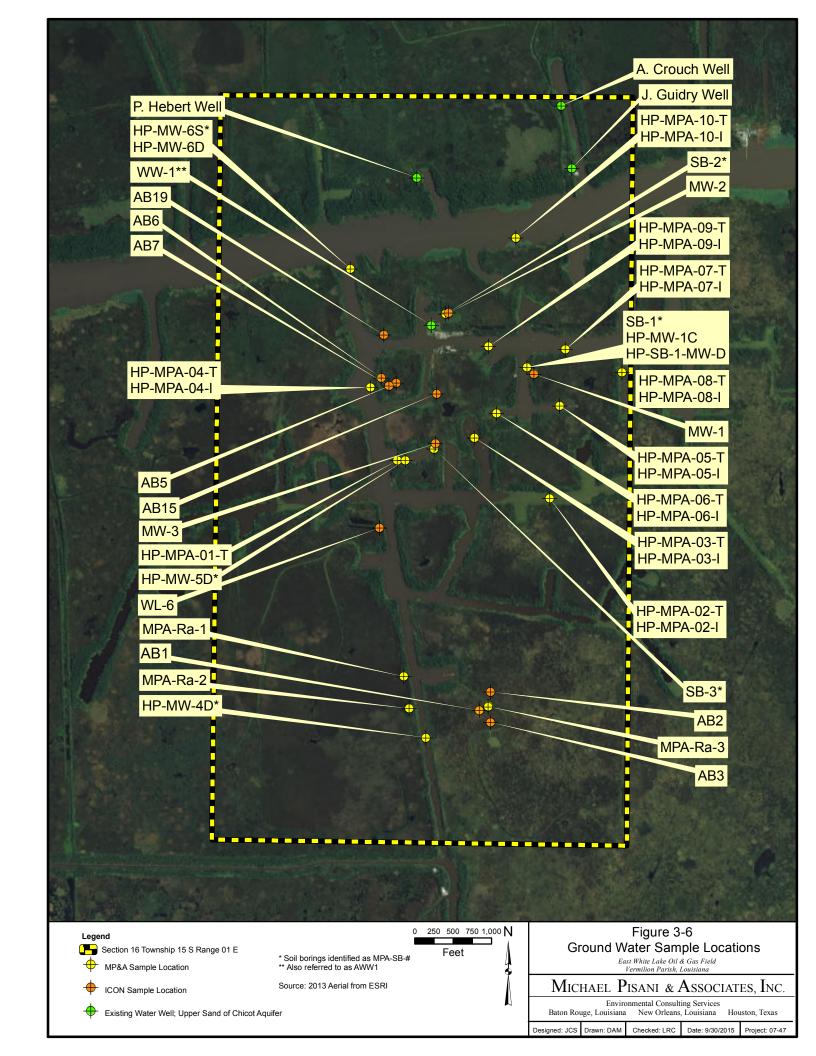


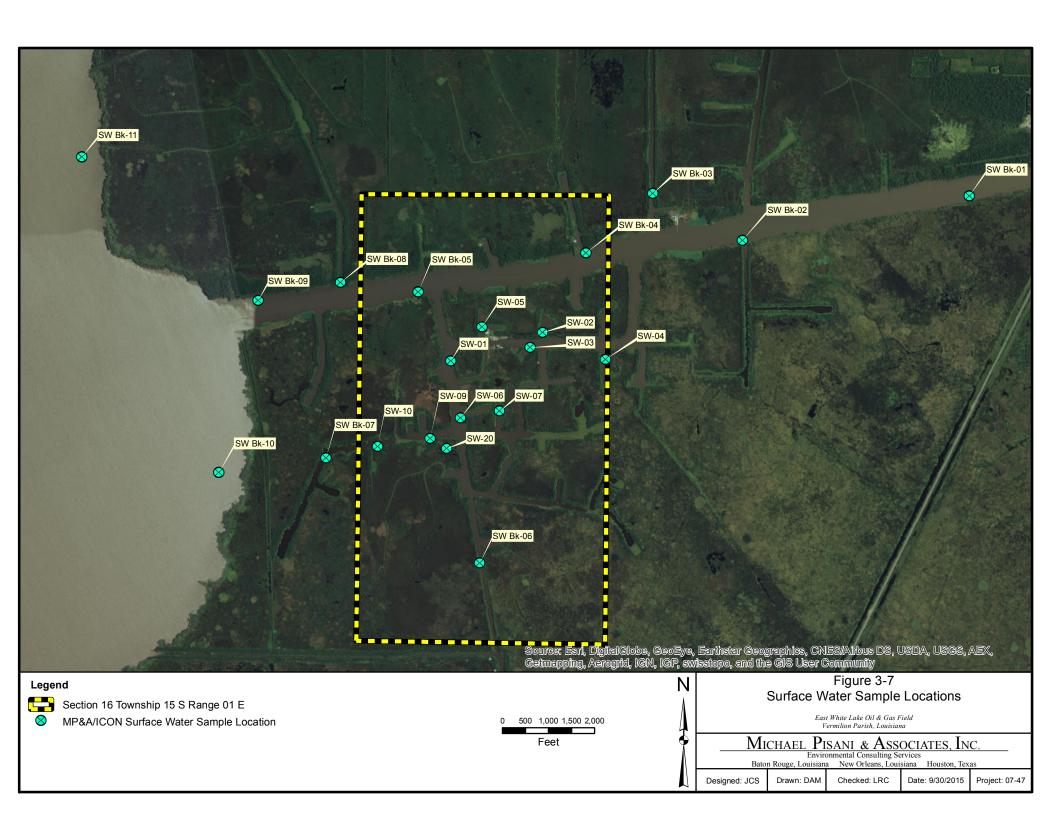


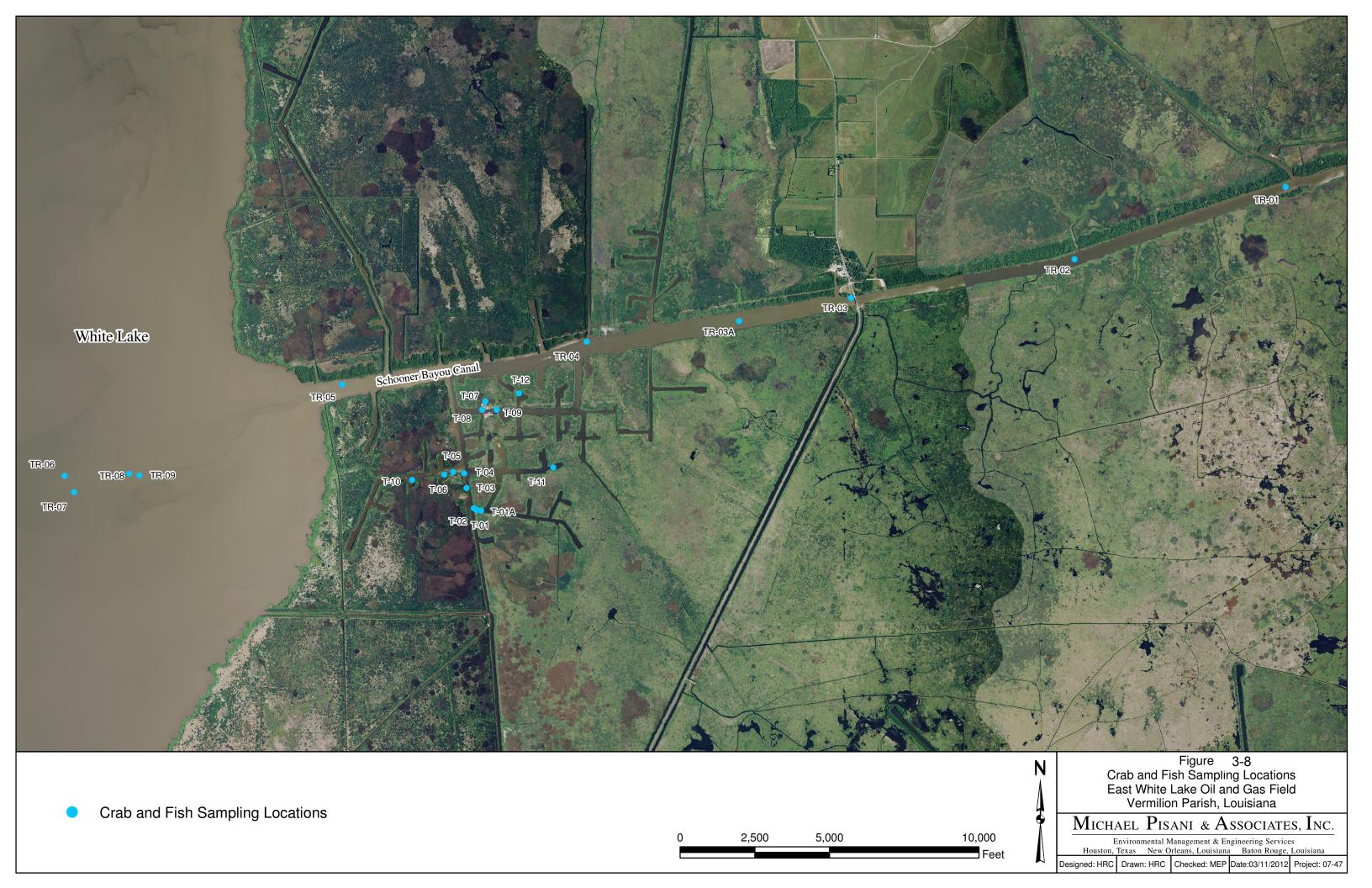


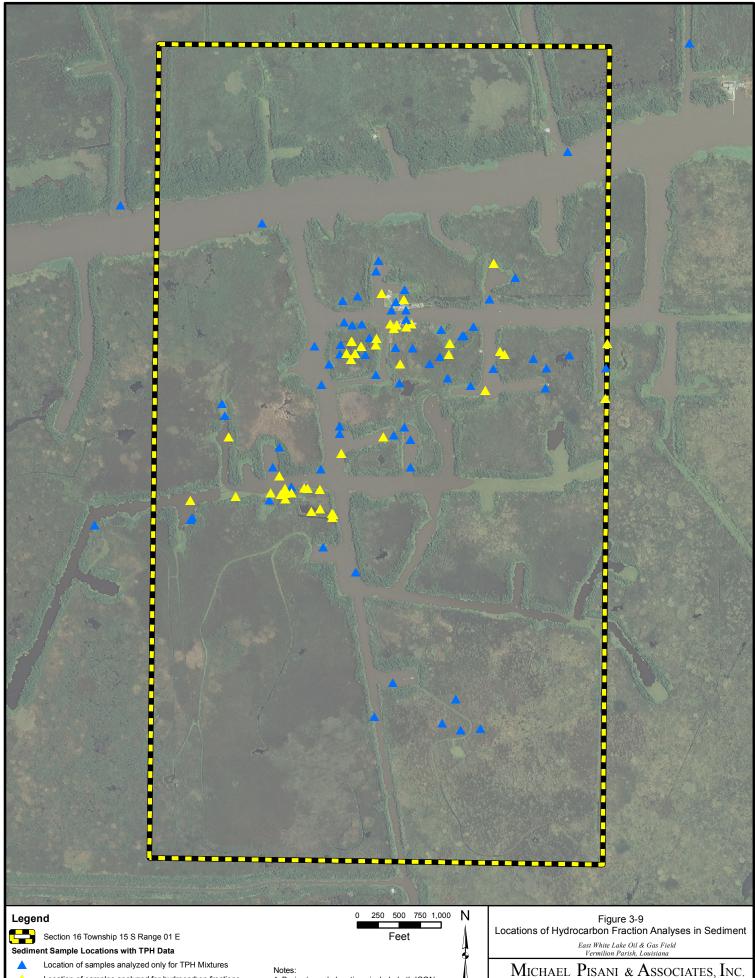






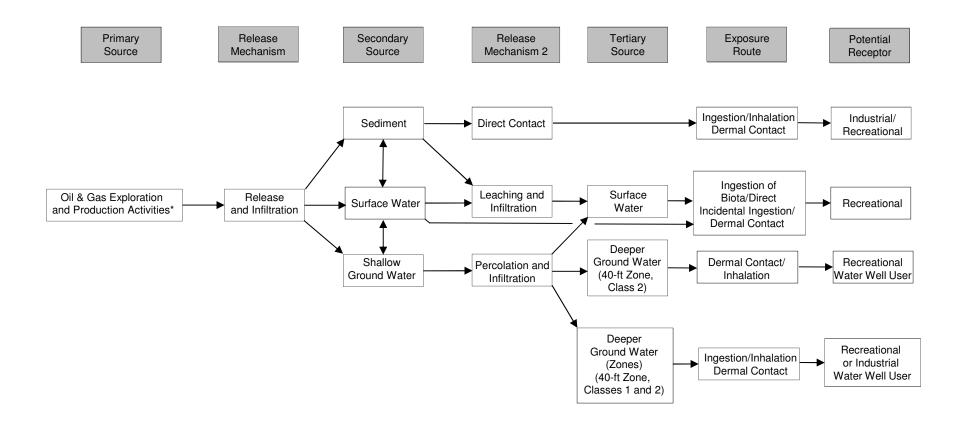




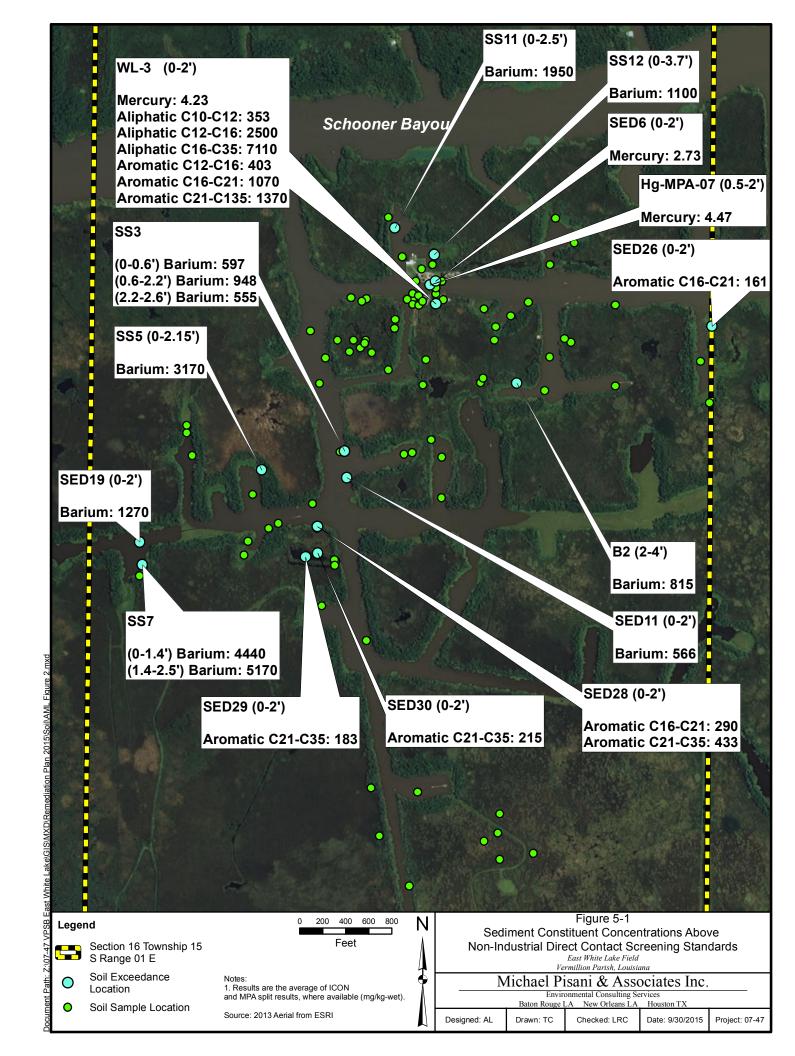


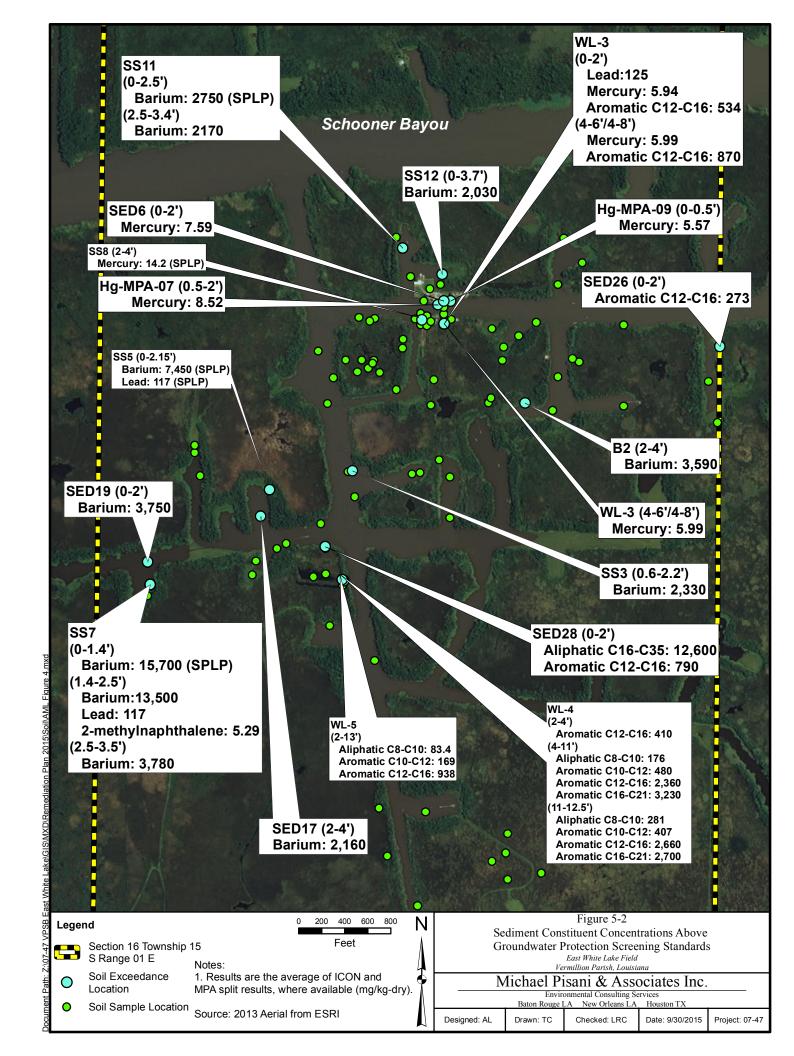
Location of samples analyzed for hydrocarbon fractions

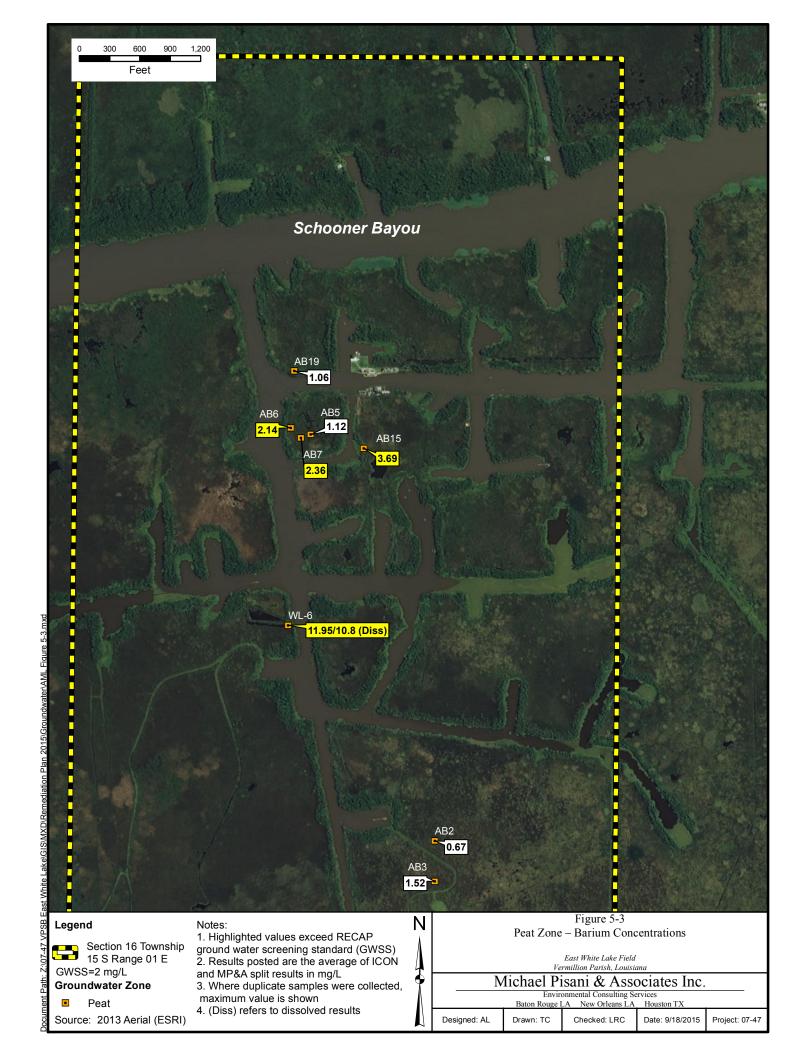
1. Boring/sample locations include both ICON and MP&A sample locations.
 2. Locations generally represent multiple samples, collected from multiple depth intervals of the boring.

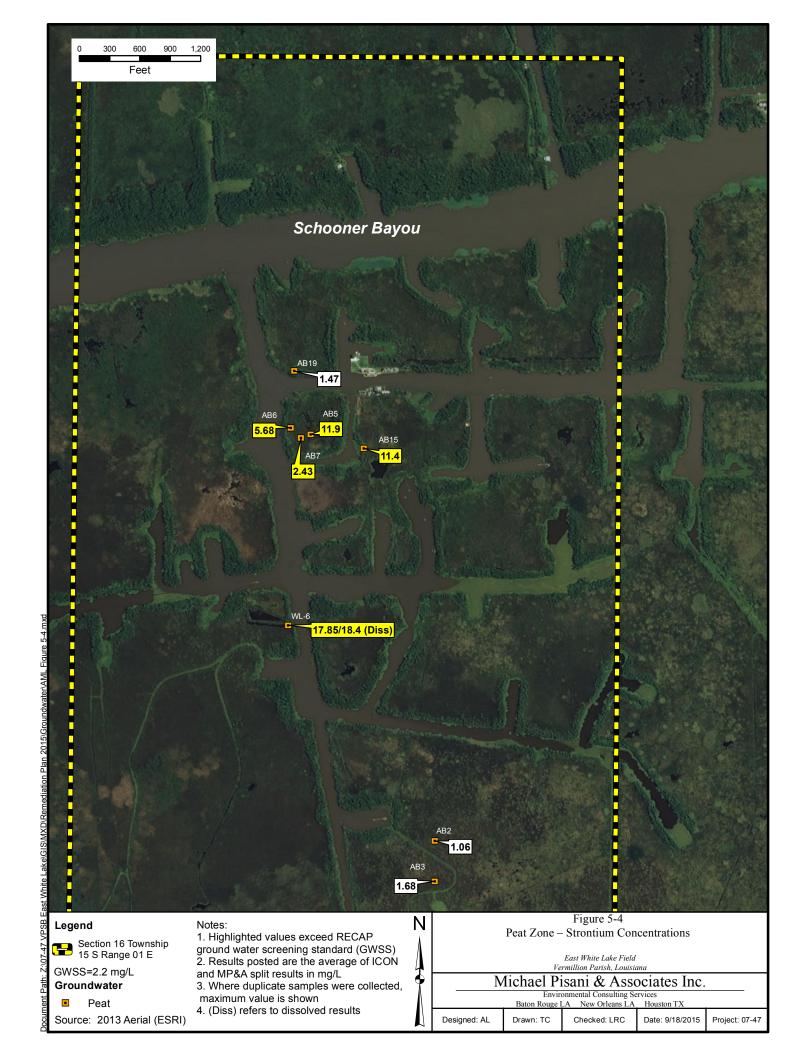

Environmental Consulting Services uisiana New Orleans, Louisiana Houston, Texas

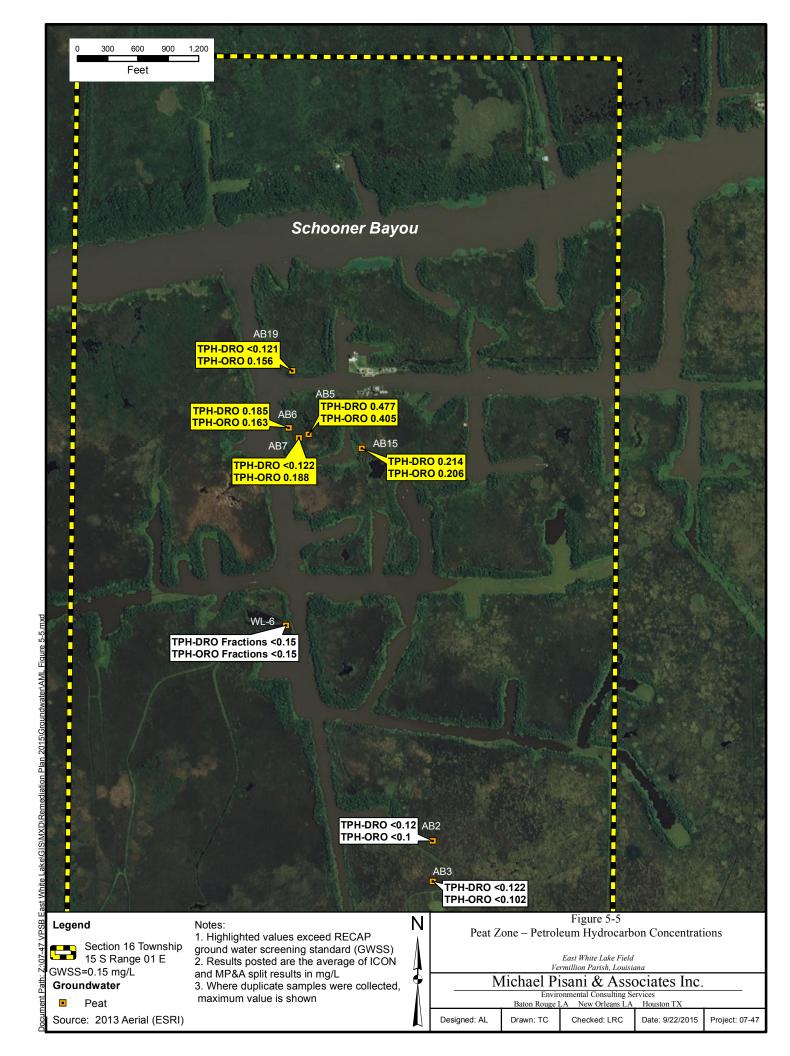
Designed: JCS Drawn: DAM Checked: LRC Date: 9/30/2015 Project: 07-47

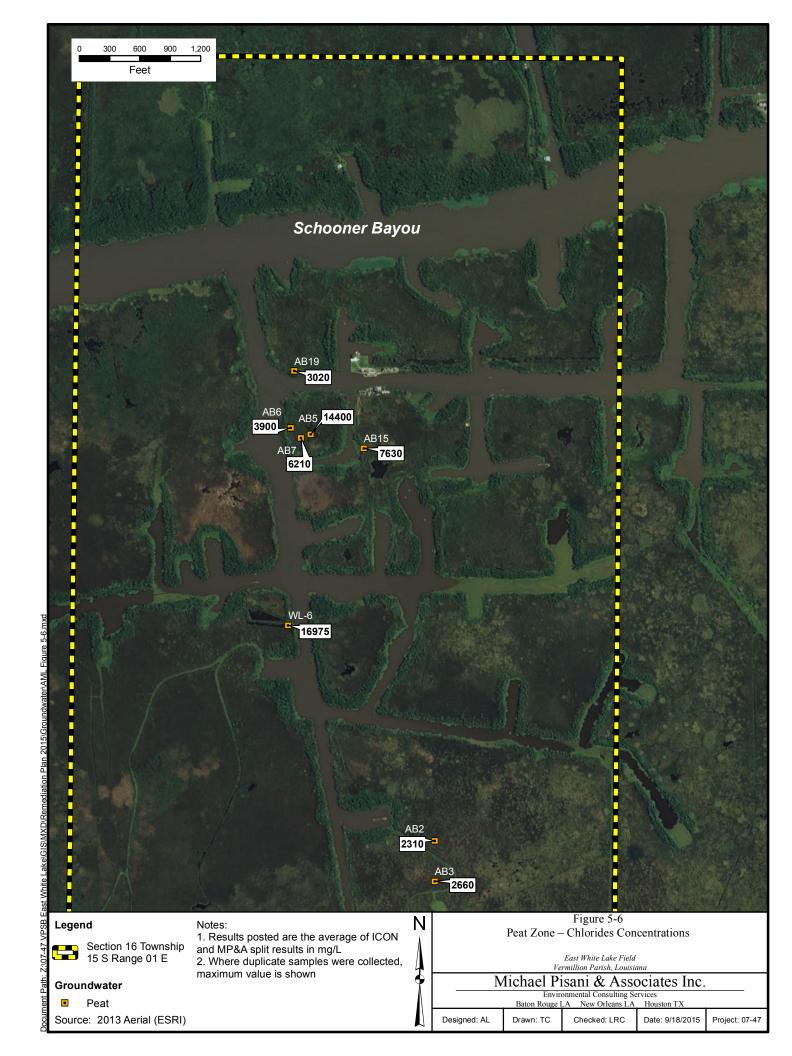

Baton Rouge, Louisiana

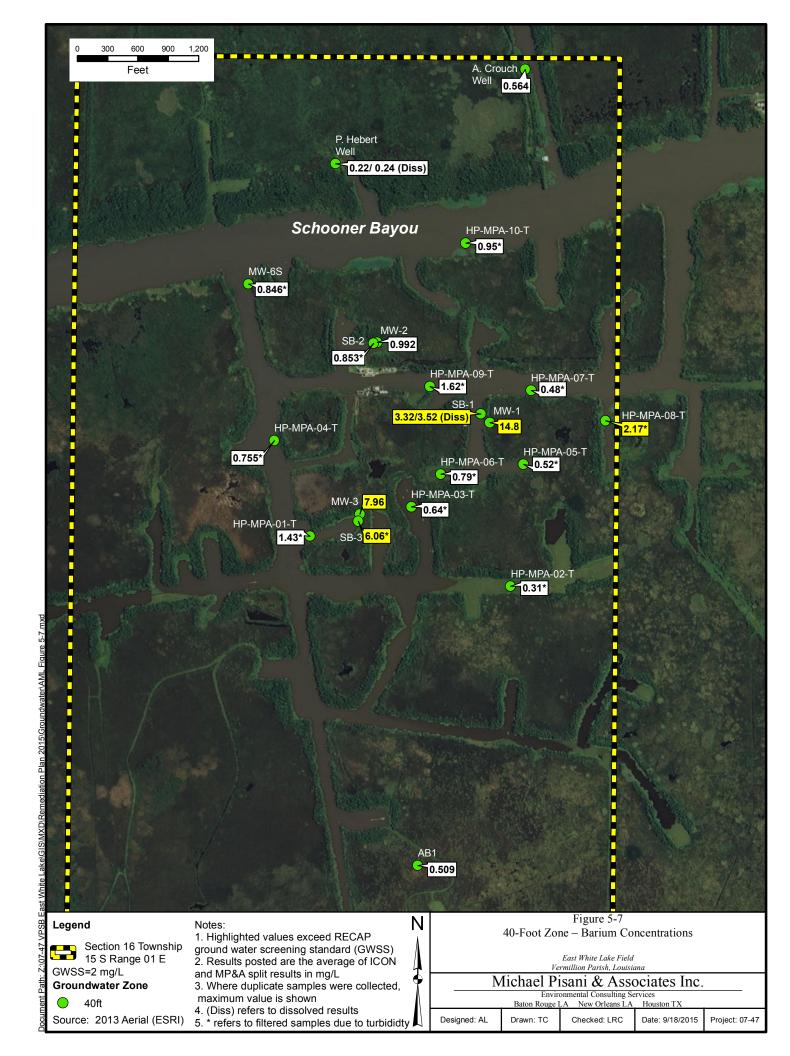

Figure 4-1
Conceptual Site Model
East White Lake Field

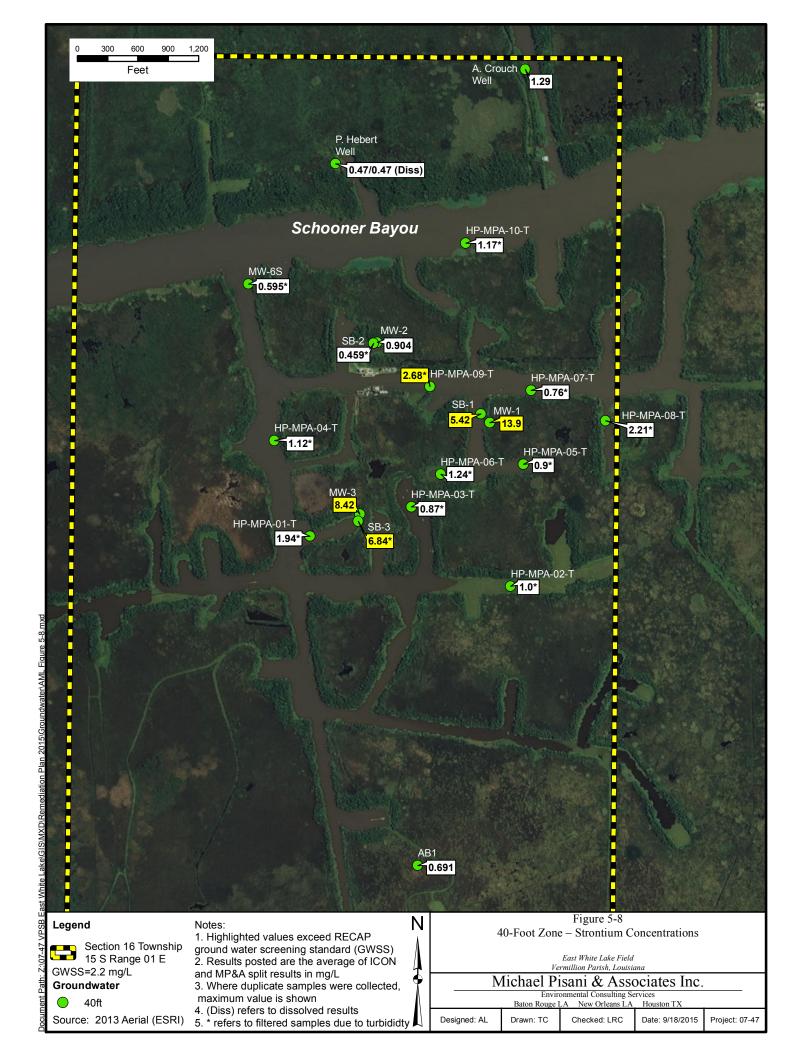

Vermilion Parish, Louisiana

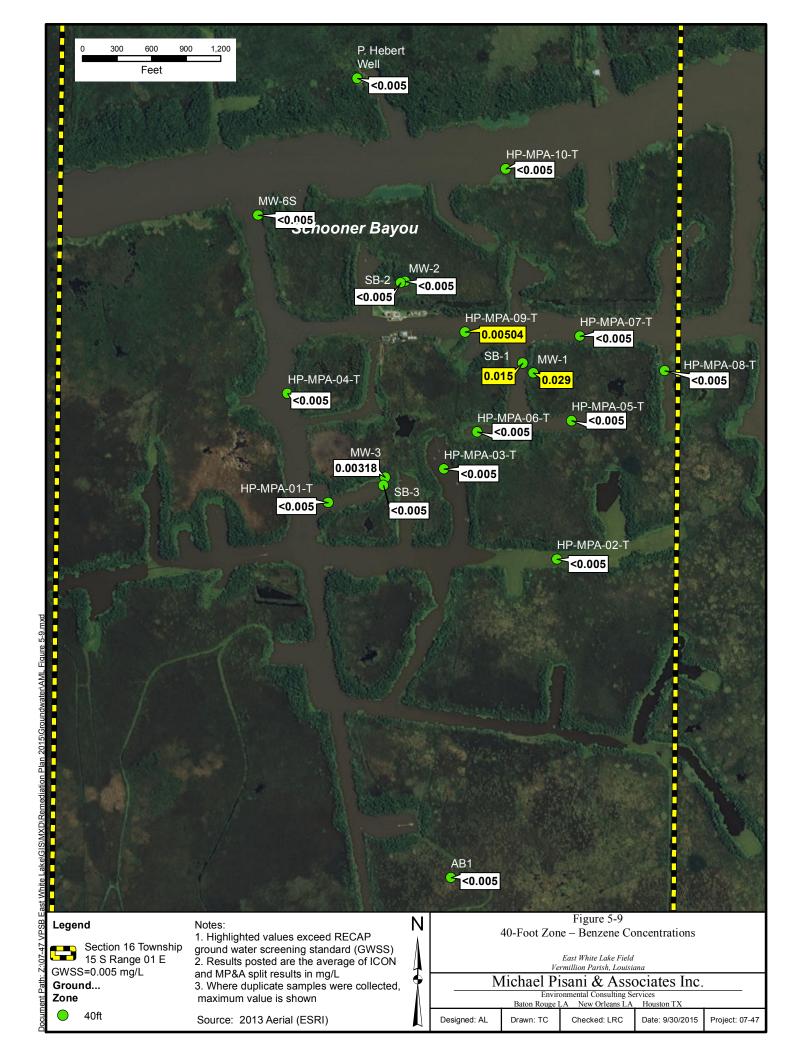



^{*} Former pit features, releases from flow lines, discharge of produced water to canals prior to regulation of the discharge, and accidental release during hydrocarbon storage and waste management.

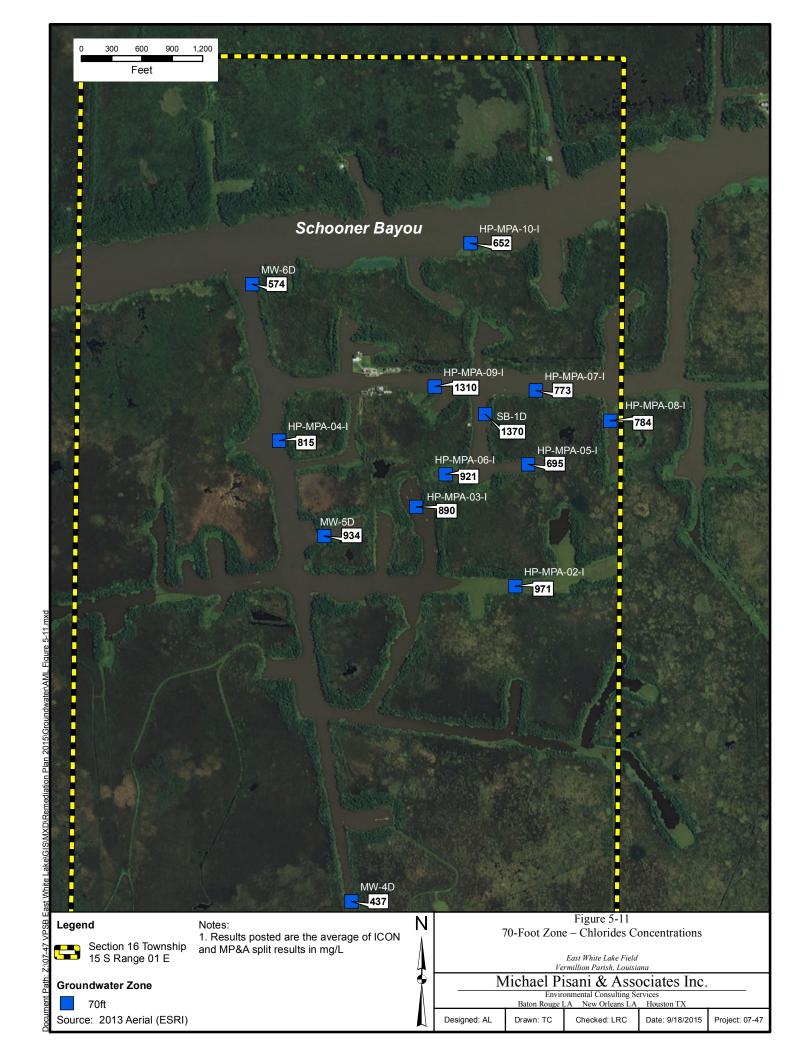


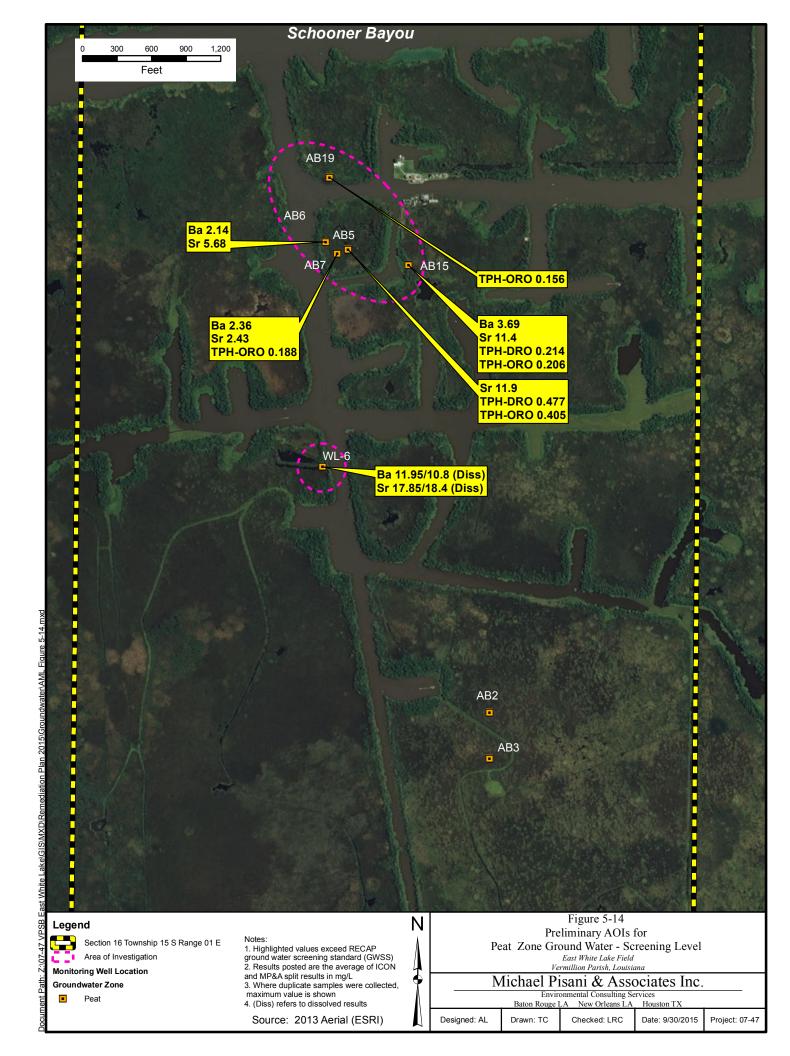


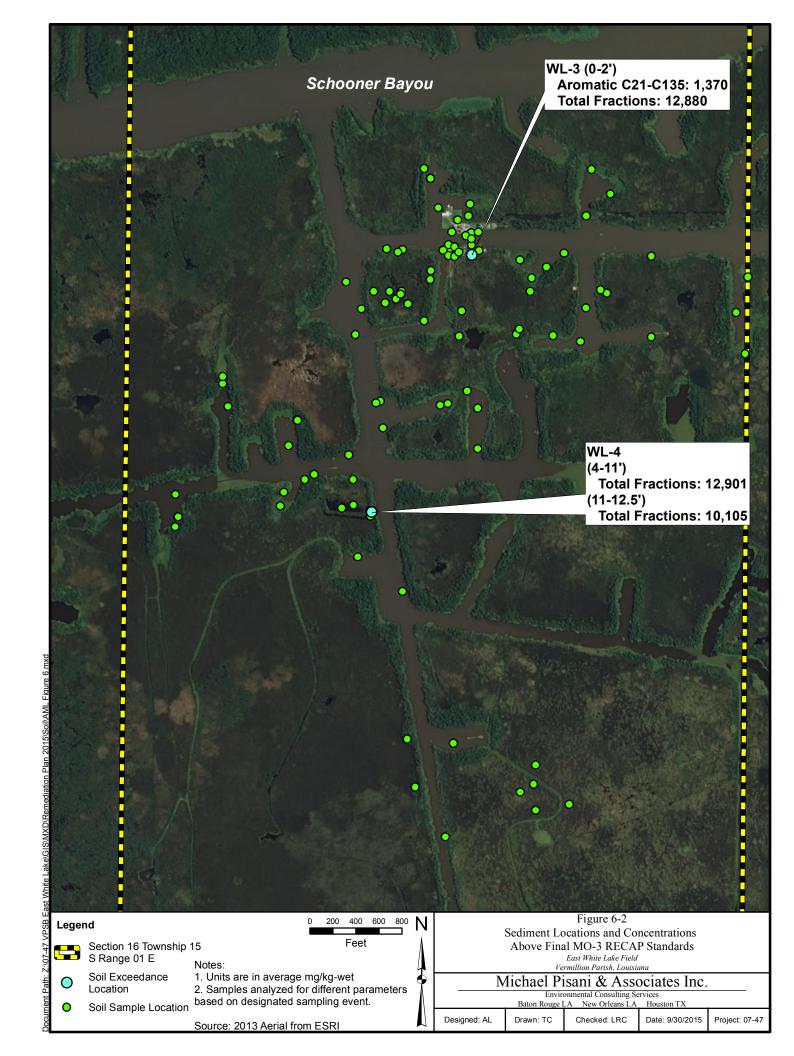


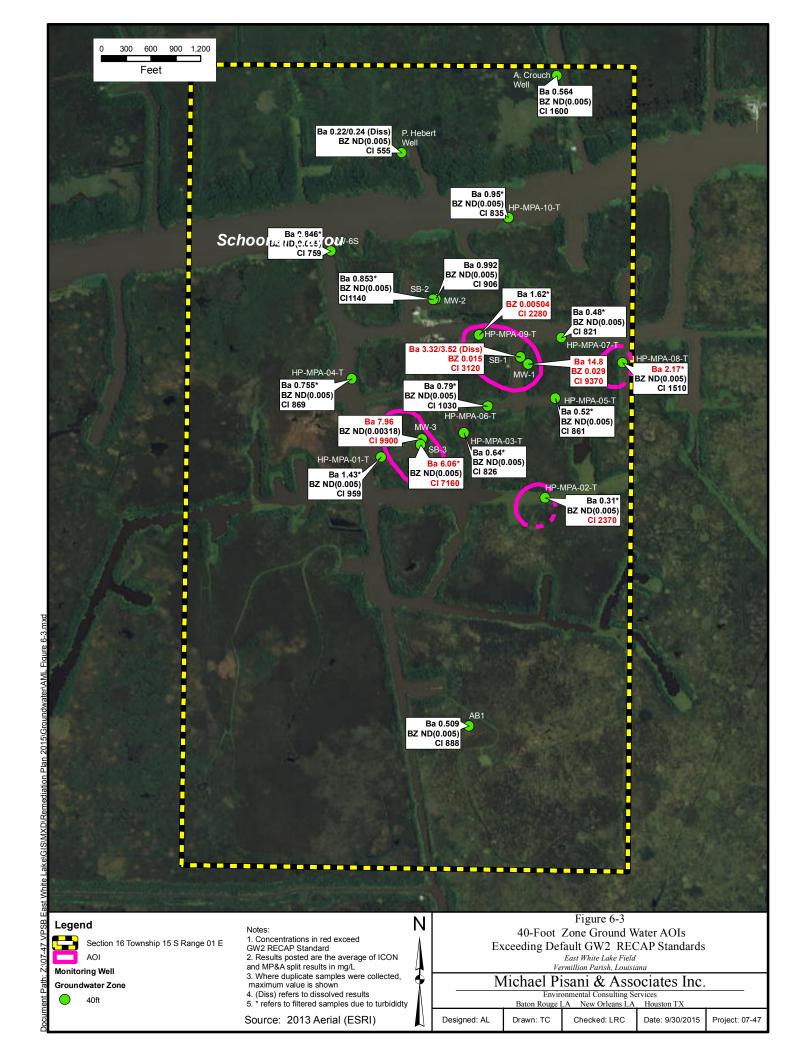









Figure 6-1
Photograph of Tank Battery A and Boring Location WL-3 Area


East White Lake Oil & Gas Field Vermilion Parish, Louisiana

MICHAEL PISANI & ASSOCIATES, INC.

Designed: JCS Drawn: DAM Checked: LRC Date: 9/30/2015 Project: 07-47

Environmental Consulting Services Baton Rouge, Louisiana New Orleans, Louisiana Houston, Texas

Summary of RECAP Forms

Appendix A

Project No. 0116008 UNOCAL Vermilion Parish, Louisiana

Environmental Resources Management Southwest, Inc.

3838 North Causeway Boulevard, Suite 3000 Metairie, Louisiana 70002 (504) 831-6700

RECAP FORM SUMMARY

Form	Title/Content	Location of Information						
RECAP FORM 1	Submittal Summary	Executive Summary						
RECAP FORM 2	Analytical Data Summary	Sample by sample chemical analytical results provided in Appendix E of the RECAP report.						
RECAP FORM 3	Analytical Data Evaluation	Provided in Appendix F of the RECAP Report.						
RECAP FORM 4	Sampling Information Summary	Provided in Section 3.0 and Appendix E of the RECAP report.						
RECAP FORM 5	Groundwater Monitoring Well Characteristics	Provided in the MP&A Feasible Plan for Evaluation/Remediation, to which this report is appended. Well completion information (e.g., screen depths) is also provided in Table 5-6 of this RECAP report.						
RECAP FORM 6	Groundwater Monitoring Well Sampling Event Summary	Provided in Section 3.0 of this RECAP report and in the MP&A Feasible Plan for Evaluation/Remediation, to which this report is appended.						
RECAP FORM 7	Site-Specific Environmental Fate and Transport Data Summary	Not Applicable						
RECAP FORM 8	Chemical-Specific Data Summary	RECAP default values were used for chemical and physical properties as shown in Appendix G, in the RECAP Standard development input/output tables. Toxicity values are identified in Table 6-1 for Management Option 3 (MO-3). For MO-3 scenarios evaluated using the RAIS PRG calculator, default values for chemical and physical properties provided in RAIS were used.						

Form	Title/Content	Location of Information							
RECAP FORM 9	Management Option 3 Site-	MO-3 Exposure data are provided in the following tables in							
	Specific Exposure Data Summary	the RECAP report:							
		Table 6-2 Exposure Assumptions for Recreational Exposure to Sediment							
		Table 6-8 Exposure Assumptions for Recreational							
		Exposure to Ground Water							
		Table 6-10 Exposure Assumptions for Recreational							
		Exposure to Surface Water							
		Table 6-11 Exposure Assumptions for Shellfish Ingestion							
RECAP FORM 10	Screening Option Summary for Soil	See Section 5.1.1 and Tables 5-1 through 5-5 of the RECAP report.							
RECAP FORM 11	Management Option 1 Summary	Not Applicable							
	for Soil 0-15 ft bgs								
RECAP FORM 12	Management Option 1 Summary	Not Applicable							
	for Soil > 15 ft bgs								
RECAP FORM 13	Management Option 2 or 3	See Section 6.2 and Tables 6-2 through 6-5 of the RECAP							
	Summary for Soil 0-15 ft bgs	Report.							
RECAP FORM 14	Management Option 2 or 3	See Table 6-4 of the RECAP report.							
	Summary for Soil > 15 ft bgs								
RECAP FORM 15	Screening Option Summary for	See Section 5.1.2 and Tables 5-6 through 5-8 of the RECAP							
	Groundwater	report.							
RECAP FORM 16	Management Option 1 Summary	Not Applicable							
	for Groundwater								
RECAP FORM 17	Management Option 2 or 3	See Section 6.3 and Tables 6-6 through 6-8 of the RECAP							
	Summary for Groundwater	Report.							
RECAP FORM 18	Ecological Checklist	Completed, and provided in Appendix J of this RECAP							
		report							

Water Well Survey Results

Appendix B

Project No. 0116008 UNOCAL Vermilion Parish, Louisiana

Environmental Resources Management Southwest, Inc.

3838 North Causeway Boulevard, Suite 3000 Metairie, Louisiana 70002 (504) 831-6700

LDOTD Water Well Registry, Search Completed September 2015 Wells located within 2 mile radius

of Latitude 29°43'53" and Longitude 92°'22'02"

TOWNSHIP	RANGE	PARISH_NAME	OWNERS_NAME	LOCAL_WELL_N UM	OWNERS_NUM	DRILLERS_NAME	WELL_DEPT H	DESCRIPTION	CASING_DIAM ETER	D DATE_COMPLETE	WATER_LEVEL	DATE_MEAS URED	LATITUDE	LONGITUDE	Well Distance Ft
15\$	01E	VERMILION	VERMILLION PARISH SCHOOL BOARD	1 12456Z	MW-3	WALKER- HILL(CO)ENVIRONMENTAL, INC.	49	Monitor	1	5/27/2010			294353	922201	88.14
15\$	01E	VERMILION	VERM SCHOOL BRD	12371Z	MW-3R	ICON	46	Monitor	0.75	10-Apr	0.5	4/23/2010	294352	922202	100.98
158	01E	VERMILION	PEAK OPERATING COMPANY	12991Z	WW-1 (CREW FACILITY)	ICON ENVIRONMENTAL SERVICES, INC	460	Domestic	4				294408	922202	1514.78
15\$	01E	VERMILION	VERM SHOOL BOAR	12369Z	MW-1	ICON	53	Monitor	0.75	10-Apr	1.6	4/23/2010	294402	922148	1532.5
15\$	01E	VERMILION	VERMILLION PARISH SCHOOL BOARD	1 12454Z	MW-1	WALKER- HILL(CO)ENVIRONMENTAL, INC.	54	Monitor	1	5/27/2010			294403	922147	1663.6
15\$	01E	VERMILION	VERMILLION PARISH SCHOOL BOARD	1 12455Z	MW-2	WALKER- HILL(CO)ENVIRONMENTAL, INC.	49	Monitor	1	5/27/2010			294410	922200	1725.77
158	01E	VERMILION	VERM SCHOOL BOA	12370Z	MW-2R	ICON	45	Monitor	0.75	10-Apr	1.2	4/23/2010	294411	922201	1819.87
15\$	01E	VERMILION	VERMILLION PARISH SCHOOL BOARD	1 12988Z	VPSB-1 (HEBERT)	ICON ENVIRONMENTAL SERVICES, INC	41	Domestic	2				294428	922205	3544.35
158	01E	VERMILION	VERMILLION PARISH SCHOOL BOARD	1 12990Z	VPSB-3 (JAMES GUIDRY)	ICON ENVIRONMENTAL SERVICES, INC	519	Domestic	4				294429	922142	4040.24
15\$	01E	VERMILION	VERMILLION PARISH SCHOOL BOARD	1 12989Z	VPSB-2 (CROUCH)	ICON ENVIRONMENTAL SERVICES, INC	34	Domestic	2		3	2010	294437	922143	4748.39

Quality Assurance Project Plan/Sampling Analysis and Assessment Plan for Crab and Forage Fish Tissue at the East White Lake Oilfield

Appendix C

Project No. 0116008 UNOCAL Vermilion Parish, Louisiana

3838 North Causeway Boulevard, Suite 3000 Metairie, Louisiana 70002 (504) 831-6700 December 6, 2010

Mr. Chris Piehler, Administrator Louisiana Department of Environmental Quality Office of Environmental Compliance, Inspection Division 602 North Fifth Street Baton Rouge, LA 70802

Mr. Glenn Cambre Louisiana Department of Health and Hospitals 628 North 4th Street Baton Rouge, Louisiana 70802

Mr. James H. Welsh Commissioner of Conservation Louisiana Department of Natural Resources (LDNR) 617 North Third Street, Ninth Floor Baton Rouge, Louisiana 70802

Mr. Robert Barham Secretary Louisiana Department of Wildlife and Fisheries 2000 Quail Dr. Baton Rouge, La 70808

> RE: Quality Assurance Project Plan/Sampling Analysis and Assessment Plan for Crab and Forage Fish Tissue -- East White Lake Oilfield, Vermilion Parish, Louisiana Vermilion Parish School Board Property, Section 16 T15S, R01E

Dear Madame and Sirs:

Enclosed please find a Quality Assurance Project Plan/Sampling Analysis and Assessment Plan for Crab and Forage Fish Tissue at the East White Lake Oilfield, Vermilion Parish, Louisiana (the "Plan"). This plan has been prepared on behalf of UNOCAL in response to questions that have been raised regarding whether the historic oil and gas operations in this field have adversely impacted the crabs in the area.

In summary, pursuant to this Plan the project team will collect and analyze tissue from blue crabs and forage fish in the East White Lake Oilfield, certain reference sites identified in the Plan, and, for crab, seafood markets in the region. The tissue will be analyzed for arsenic (inorganic and total), total barium, mercury (methylmercury and total) and total petroleum hydrocarbons. We will provide a summary of the field sampling and analytical results to the agencies upon completion.

Environmental Resources Management

3838 North Causeway Boulevard Suite 2725 Metairie, Louisiana 70002 (504) 831-6700 (504) 831-6742 (fax)

Mr. Chris Piehler, LDEQ Mr. Glenn Cambre, LDHH Mr. James Welch, LDNR Mr. Robert Barham, LDWF December 6, 2010 Page 2

Environmental Resources Management

We plan to start setting crab traps on Monday, December 13, 2010, with fishing and crab collection to occur in the following days. You or your representatives are welcome to observe or participate in the collection process. In the meantime, should you have any questions or comments on the attached plan, please feel free to contact me.

Sincerely,

Environmental Resources Management Southwest, Inc.

Angela M. Levert
Senior Associate

cc: John Rodgers David Lingle Barbara Beck

Enclosures

QUALITY ASSURANCE PROJECT PLAN AND SAMPLING ANALYSIS AND ASSESSMENT PLAN FOR CRAB AND FORAGE FISH TISSUE – EAST WHITE LAKE OIL AND GAS FIELD VERMILLION PARISH, LOUISIANA

Barbara D. Beck, Ph.D., DABT

Gradient 20 University Road Cambridge, MA 02138 Phone (617) 395-5000 Fax (617) 395-5001

Email: bbeck@gradientcorp.com

Angela Levert

Environmental Resources Management 3838 N. Causeway Blvd, Suite 2725 Metairie, LA 70002 Phone (504) 831-6700 Fax (504) 831-6742 Email: angela.levert@erm.com.

David Lingle

URS Corporation 10550 Richmond Avenue, Suite 155 Houston, Texas 77042 Phone (713) 914-6503 Email: david lingle@urscorp.com

John H. Rodgers, Jr., Ph.D.

Clemson University
Department of Forestry and Natural Resources
P.O. Box 340317
261 Lehotsky Hall
Clemson, SC U.S.A. 29634-0317
Phone 864.656.0492
Fax 864.656.1034

E-mail: jrodger@clemson.edu

TABLE OF CONTENTS

Project Summary	
A. Project Management	1
1.0 Sampling, Analysis and Assessment Protocol – Purpose	1
2.0 Project Management Overview	2
3.0 Project Organization	2
4.0 Problem Definition and Background	2
5.0 Project Description	
6.0 Quality Objectives and Criteria for Measurement Data	3
6.1 Project Quality Objectives	
6.2 Measurement Quality Objectives	4
7.0 Special Training Requirements	
8.0 Documentation and Records	
8.1 Analytical Laboratory Records	
B. Data Acquisition	
9.0 Sampling Design	8
9.1 Rationale for Selection of Sample Locations or Sites	8
9.2 Rationale for Selection of Parameters	
9.3 Sample Size	9
9.4 Sample Types	
9.5 Sampling Period	10
9.6 Evaluation of Objectives	10
10.0 Sampling Methods	10
10.1 Target Species	
10.2 Composite Sampling	10
10.3 Sample Collection Methods	
10.4 Equipment and Supply List for Crab and Forage Fish Tissue Sampling	
11.0 Sample Handling and Custody Requirements	
11.1 Sample Handling	
11.2 Sample Integrity	12
11.3 Custody Requirements	
12.0 Analytical Methods Requirements	
13.0 Quality Control Requirements	
14.0 Instrument/Equipment Testing, Inspection and Maintenance Requirements	16
15.0 Data Acquisition Requirements (Non-direct Measurements)	
16.0 Data Management	
C. Assessment / Oversight	
17.0 Assessment and Response Actions	
18.0 Reports to Project Scientists and Study Sponsor	
D. Data Validation and Usability	
19.0 Data Review, Validation and Verification Requirements	
20.0 Validation and Verification Methods	
21.0 Reconciliation with Data Quality Objectives	
22.0 Literature Cited and Reviewed	

PROJECT SUMMARY

This Quality Assurance Project Plan (QAPP) and Sampling Analysis and Assessment Plan (SAP) for crab and forage fish tissue was prepared for the East White Lake Oil and Gas Field, Vermilion Parish, Louisiana. Based on recent blue crab tissue analysis (of whole animal samples), conducted on behalf of the landowner, questions have been raised concerning concentrations of arsenic, barium, mercury, and total petroleum hydrocarbons in the crabs in this area. Previous sampling and analyses of surface water and sediments from the area did not indicate that concentrations of these constituents of concern (COCs) posed a risk to human health or the environment. In order to address the questions raised by the recent tissue sampling, this study has been carefully designed to obtain accurate data to evaluate potential human health and ecological risks due to these COCs. Samples of crabs and forage fish will be collected from locations in the East White Lake Oil and Gas Field, nearby reference locations in Schooner Bayou and White Lake, as well as fish markets in the region (blue crabs only). Composite samples from the site, reference locations, and markets will be analyzed under a rigorous quality assurance/quality control (QA/QC) program.

A. PROJECT MANAGEMENT

1.0 Sampling, Analysis and Assessment Protocol - Purpose

The purpose of this document is to present a sampling and analysis plan and Quality Assurance Project Plan to measure concentrations of COCs (arsenic, barium, mercury, and total petroleum hydrocarbons [TPH]) in tissues of blue crabs (*Callinectes sapidus*) and forage fish (e.g., mosquito fish [*Gambusia affinis*]; topminnows [*Fundulus* spp.]) collected from the East White Lake Oil and Gas Field (Site) and reference locations. Laboratory analysis of COC concentrations in blue crabs from Louisiana markets in the region will also be performed. The overall objective of this study is to measure tissue concentrations of these COCs to evaluate potential exposures to:

- Blue crabs and forage fish, as well as wildlife (e.g., birds and mammals) that consume them; and
- Humans that consume blue crabs.

The laboratory analyses will be performed on a tissue-specific basis (blue crabs) and whole-body basis (forage fish) to support both the human health and ecological risk assessments. In addition to the above COCs, tissue lipid and moisture contents will also be analyzed in the laboratory.

The Site, located in Section 16, Township 15 South, Range 1 East in Vermillion Parish, Louisiana (Figure 1), is about five miles southwest of Forked Island in an area of intermediate marsh (Brupbacher et al. 1973, Visser et al. 2000; Sasser et al. 2007-8). The areas of interest are the canals and waterways within the East White Lake Oil and Gas Field, located on the eastern side of White Lake, south of Schooner Bayou. The specific area is primarily an intermediate marsh system, which is protected by water control

structures operated by the United States Army Corps of Engineers. This property has been used since approximately 1935 for oil and gas exploration and production. Approximately 85 wells have been drilled since initiation of the lease, although currently, only approximately 10 shut-in productive, 8 active producing, and 2 active injection wells remain. This study will serve to provide accurate information to follow up previous or ongoing studies in the area.

2.0 Project Management Overview

This document describes the quality assurance (QA) and quality control (QC) procedures that will be used to determine COC concentrations in blue crab and/or forage fish tissue from the Site, reference locations, and Louisiana markets in the region. The QAPP was prepared consistent with the documents, *EPA Requirements for Quality Assurance Project Plans*, EPA QA/R-5 (USEPA 2001) and *EPA Guidance for Quality Assurance Project Plans*, EPA QA/G-5 (USEPA 2002b), *Protocol for Issuing Public Health Advisories for Chemical Contaminants in Recreationally Caught Fish and Shellfish* (LDHH et al. 2010), and *Protocol for Issuing Health Advisories and Bans Based on Chemical Contamination of Fish/Shellfish in Louisiana* (LDHH et al. 1997). The collection methods, procedures and protocols follow the guidelines and recommendations of *Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories*, *Volume 1: Fish Sampling and Analysis*, Third Edition (USEPA 2000a).

3.0 Project Organization

This document was developed by Dr. John Rodgers in collaboration with Dr. Barbara Beck, Angela Levert, and David Lingle. Dr. Rodgers (Project Manager) will coordinate and schedule the field work, including collection of blue crab and forage fish, and submission of those organisms to Columbia Analytical Services, Inc, (CAS) of Kelso, Washington for processing and analytical testing for arsenic, barium, mercury, lipid content, and moisture content. CAS will provide tissue aliquots to Gulf Coast Analytical Laboratories, Inc. (GCAL) of Baton Rouge, Louisiana for TPH analysis. Angela Levert will serve as the project quality assurance officer. Analytical results will be used by Dr. Barbara Beck and David Lingle in support of the human health and ecological risk assessments, respectively.

4.0 Problem Definition and Background

A previous study (Barbee 2010) has indicated the presence of arsenic, mercury, barium, and TPH in some whole body crab samples from the East White Lake Oil and Gas Field. The authors of this document have identified significant concerns regarding the design and interpretation of that previous study. A more comprehensive and thorough study is therefore being initiated. The information gathered from this study will be used to assess potential human health and ecological risks that these may pose. Blue crabs are omnivores (consuming both plant and animal tissues) and range somewhat in their search for food and during reproduction. Blue crabs are a food source for both human and ecological receptors. Forage (prey) fish spend their entire life in a relatively small area of

a waterbody or wetland and they can be important indicators of local water and sediment quality. Forage fish also serve as food for higher trophic level ecological receptors. A rigorous analysis of both blue crabs and forage fish tissue is therefore being conducted to address the conclusions previously presented by Barbee (2010).

5.0 Project Description

The overall objective of this study is to measure tissue concentrations of COCs to evaluate potential exposures to:

- Blue crabs and forage fish, as well as wildlife that consume them; and
- Humans that consume blue crabs.

As part of this study, COC concentrations in blue crab and forage fish tissues collected from the Site (Figure 2) will be compared to tissue concentrations from reference locations (Figure 3) and Louisiana markets in the region (blue crabs only).

Details of the sampling plan are found in Section 9 of this document. The study involves synoptic sampling of blue crabs and forage fish from twelve (12) locations in the East White Lake Oil and Gas Field and nine (9) reference locations (five [5] in Schooner Bayou and four [4] in White Lake). Nine of the twelve Site sample locations correspond to the locations previously considered by Barbee (2010). Samples will be collected and managed by experienced personnel. Tissue samples will be analyzed by CAS (arsenic, barium, mercury, lipid content, and moisture content) and GCAL (TPH). The study targets blue crabs and forage fish that are caught and consumed by the public and predators. The goal is to collect sufficient blue crabs and forage fish to meet the tissue requirements of the laboratories.

6.0 Quality Objectives and Criteria for Measurement Data

6.1 Project Quality Objectives

The results from this study will allow project scientists to evaluate the extent to which certain COCs (arsenic, barium, mercury, and TPH) are present in blue crabs and forage fish samples from the Site and reference locations as well as market samples (blue crabs only). Sources of uncertainty inherent to the study are due to the following: 1) sampling specific species from each site; 2) limited information on the variability in analyte concentrations in blue crabs and forage fish; 3) unknown field exposures of blue crabs and forage fish; 4) compositing the samples; and 5) variability in the laboratory analysis process. The quality objectives of this project are related to the blue crab and forage fish tissue collection methods and to the laboratory procedures. Methods and procedures for the collection of blue crab and forage fish tissue described in this document are intended to reduce the magnitude and sources of uncertainty (and their frequency of occurrence) by applying the following approaches:

• use of standardized sample collection and handling procedures; and

• use of experienced scientists to perform the sample collection and handling activities.

The following approaches are intended to measure the measurement quality objectives as they relate to laboratory procedures:

- One (1) laboratory blank per batch, with a batch being up to 20 samples;
- One matrix spike (MS) and matrix spike duplicate (MSD) pair per batch; and
- One laboratory control sample per batch of known quality and concentration for laboratory comparison.

6.2 Measurement Quality Objectives

Measurement quality objectives (MQOs) are quantitative statistics that are used to interpret the degree of acceptability or utility of the data to the user for the intended purpose. The following defines the criteria for this study:

Precision

Precision is a measure of internal method consistency or variability in sample results. It is generally attributed to sampling activities and/or laboratory analysis. It can be expressed either as a range, a standard deviation or percentage of the mean of the measurements (relative range or relative standard deviation). In order to control for field-related variability, sampling activities will be standardized by adherence to the procedures and methods described in this sampling plan, and field sampling will be conducted by experienced professionals (this will also help prevent bias). For this study, because samples must be composited and subdivided in a strictly controlled, clean laboratory environment, duplicate composite samples will be prepared for approximately 10% of the samples to be analyzed. These duplicates are labeled with unique separate numbers and analyzed with the routine samples. The results from these duplicate samples are used to assess variability arising from sample compositing, aliquoting, and laboratory analysis processes. The study MQO requirements for analytical precision are that results from 90% of these duplicate composite samples agree within 50% relative percent difference (RPD) for values greater than 5 times the minimum level of quantification and that 90% of these duplicate composite samples agree within 100% RPD for values less than 5 times the minimum level. RPD is calculated as follows:

Relative		$((x_1-x_2))$
Percent	RPD	abs $\left \frac{x}{x} \right = \frac{2}{3} \times 100$
Difference		$((x_1 + x_2)/2)$

Where:

 X_1 is the first measurement; and X_2 is the duplicate measurement.

In addition to the duplicate composite samples, the laboratory will also employ a suite of laboratory quality control measures (initial precision and recovery samples, matrix spike

and matrix spike duplicate samples) that provide information about the precision associated with various components of the analytical process. Other quality control elements and associated requirements may be described in more detail in the laboratory's Quality Assurance Project Plan. The results will be provided to the project scientists for interpretation and development of their reports. Major criteria for laboratory data are summarized in Tables 1 and 2.

Bias

Bias is systematic and consistent distortion of a measurement process that causes errors in one direction. Bias within the sampling and processing is controlled by training of field personnel and of the sample preparation procedures in the laboratory and by adherence to protocols. Bias within the analytical process is measured by preparing and analyzing field samples spiked with COCs of interest (matrix spike samples) or by analyzing standard reference materials (SRMs) containing the analytes of interest to verify that the procedure is in control for the tissue matrix. Potential interferences can be addressed within the laboratory by dilution of samples or by additional cleanup steps, where appropriate.

Accuracy

Accuracy is the measure of the combination of bias and precision of an analytical procedure. It reflects the closeness of a measured, observed value to a true value. Accuracy is inferred from recovery data determined by sample spiking and/or analyses of reference standards. Accuracy requirements are summarized in Tables 1 and 2.

Percent recovery for a laboratory matrix is calculated using the following equation:

Percent Recovery	%R	$\frac{x_{meas}}{x_{true}} \ge 100$
---------------------	----	-------------------------------------

Percent recovery for a sample matrix is calculated using the following equation:

Percent Recovery	%R	value of value of spiked - unspiked sample sample x 100
		value of added spike

Analytical Sensitivity

Analytical sensitivity is included in the laboratory's Quality Assurance Project Plan and is reported to the project scientists in terms of the method detection limits and the minimum levels that are used to define the sensitivity of each measurement process. MQO requirements for detectability are presented in Table 3.

Representativeness

Representativeness expresses the degree to which data accurately and precisely represent a characteristic of a population, parameter, variations at a sampling site, a process condition or an environmental condition. In order to achieve this, a sufficient number of representative samples are planned for collection. Preservation of the representativeness

of the collected samples is assured by adhering to the sample handling protocols for storage, preservation and transportation, as described in this document. Proper documentation records that the protocols were followed and sample identification and integrity were assured.

Comparability

The objective of this parameter is to assure that data developed during this investigation are either directly comparable, or comparable with defined limitations, to literature data or other applicable criteria. Comparability is dependent on the proper design of the sampling plan and adherence to accepted sampling techniques, standard operating procedures and quality assurance guidelines. In order to fulfill the objectives of this study, all samples will be collected and prepared according to the procedures described in this project plan and any associated standard operating procedures. These procedures are consistent with the recommendations of U.S. EPA's *Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume I: Fish Sampling and Analysis*, Third Edition (USEPA 2000a). The procedures for this study are also consistent with the National Study of Chemical Residues in Lake Fish Tissue, conducted by the USEPA Office of Water, Office of Science and Technology and Engineering and Analysis Division (USEPA 2000c). All field personnel involved with sampling have adequate training, appropriate experience and will use this protocol for sample collection.

Completeness

Completeness is a measure of the amount of valid data collected and deemed to be acceptable for use in the study, as compared to the amount of data expected to be obtained. Three measures of completeness are defined:

- 1) Sampling completeness, defined as the number of valid samples collected relative to the number of samples planned for collection;
- 2) Analytical completeness, defined as the number of valid sample measurements relative to the number of valid samples collected; and
- 3) Overall completeness, defined as the number of valid sample measurements relative to the number of samples planned for collection.

The sampling and analytical completeness goal in this study is to obtain valid measurements from 90% of the valid samples collected. In case this percentage is lower than 90%, the effects on the study conclusions and recommendations will be re-evaluated during data analysis. Blue crab and forage fish tissue specimen archives will be kept frozen, in labeled vials, for 6 months, at the laboratory.

7.0 Special Training Requirements

The field sampling team will consist of experienced personnel, all of whom are trained on all field procedures detailed in this protocol. This protocol and any requisite standard operating procedures will be distributed to all personnel involved in the field activities. Project orientation sessions will be coordinated by the project manager, who also will provide instructions on all the field sampling and sample handling activities. Skills

required of the laboratory analysts performing work for this study are described in the laboratory's Quality Assurance Project Plan.

8.0 Documentation and Records

Thorough documentation of all field sample collection and handling activities is necessary for proper processing in the laboratory, for ensuring data integrity and, ultimately, for interpretation of study results. Field sample collection and handling will be documented in writing (for each sampling site) using the following forms and labels:

- Field Record data sheet that contains information about each sample and site;
- Sample Identification Label that accompanies and identifies each sample or labeled vials;
- Chain of Custody Form that provides tracking information for all samples; and
- Sample Preparation Record Form for each composite sample which will be prepared by the laboratory.

The Field Record data sheet will document the sampling date, time, sampling crew names, sampling site location/description and sample description, length or dimensions of each specimen, and the method of sample collection. The field record data sheet also will contain a unique tracking code for tracking each sample. The code will follow the format:

- The initial code for the project (EWL);
- Date of collection (MM-DD-YY);
- Sampling site identification code (letters and site number);
- Sample type identification code (C = crab; F = forage fish); and
- Numbering order of samples (001, 002, etc.).

Field record forms will be completed by the personnel in the field. All entries will be made in ink, with no erasures. If an incorrect entry is made, the information will be crossed out with a single strike mark and initialed and dated by the recorder. Two copies will be made of this form, one for the project scientists and one for the project manager. The originals will be kept in a project-dedicated binder.

Chain of custody forms will accompany each container of samples and will document sample identity (coincide with information on the field record), sampler relinquishment name, date and time and project manager receipt date and time. The field personnel responsible for quality control will also be responsible for the delivery of the samples to the laboratory. A sample preparation record form will be completed at the laboratory, for each site, and it includes information on every composite sample. It includes the name of the persons preparing the composite samples; information about the crab or fish included in each composite sample; composite sample number; the weight of each composite sample; any general comments or remarks. The table describing the compositing scheme, i.e., which tissues make up each composite sample, will be attached to the sample preparation record, and will also be kept in the project-dedicated binder. If any changes are necessary during the sample collection and handling activities, a note will be made in

the field record form, and the project manager will be notified as soon as practical, preferably prior to the change actually occurring. Every effort will be made for the project manager to be accessible, either by being on site or by cellular telephone.

8.1 Analytical Laboratory Records

The analytical laboratory will be required to submit summary reports of all analytical results in electronic format and hard copy. The laboratory will be required to provide a data package with QA/QC documentation as specified in the LDEQ Risk Evaluation/Corrective Action Program (RECAP) Section 2.4, at a minimum, which allows for evaluation relative to the requirements for *definitive data* per RECAP. The laboratory reports should include a description of any problems encountered and comments on the performance of any part of a method. The results should be reported consistently in regard to reporting units (e.g., μ g analyte/Kg wet weight).

B. DATA AQUISITION

9.0 Sampling Design

9.1 Rationale for Selection of Sample Locations or Sites

Blue crabs and/or forage fish will be collected if possible from the following locations:

- Twelve (12) locations in the East White Lake Oil and Gas Field (Figure 2). Nine of the twelve Site locations (T1 through T9) correspond to locations previously considered by Barbee (2010);
- Nine (9) reference locations (five [5] in Schooner Bayou and four [4] in White Lake; Figure 3);
- Market samples from locations in the region to determine the concentrations of COCs in crabs from commercial sources for comparative purposes.

Sufficient sampling locations are included in this study to permit valid comparisons and evaluations if blue crabs or forage fish are not caught at some locations. Sampling locations presented in Figures 2 and 3 are approximate and will be determined in the field using GPS equipment and consideration of local conditions such as flows and available habitat.

9.2 Rationale for Selection of Parameters

The COCs chosen for this study (arsenic, barium, mercury, and TPH) were measured in whole body crab samples from the Site in a previous study and cited by Barbee (2010) as containing concentrations of concern. Among other difficulties with the Barbee (2010) study, the crabs were analyzed as homogenized intact (shells and all) organisms. The COCs of concern as noted by Barbee are naturally occurring elements or compounds and have a variety of sources in coastal Louisiana. This study is intended to accurately measure concentrations of these COCs in blue crabs and forage fish.

Sixteen polycyclic aromatic hydrocarbons (PAHs) were previously analyzed in Site surface waters and sediment in May 2010. The PAHs are from RECAP Table D-1: acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 2-methylnaphthalene, naphthalene, phenanthrene, and pyrene. PAH results for all ten surface water samples locations were below the associated laboratory reporting limits (which ranged from <0.0000091 mg/L to <0000536 mg/L). PAH detections in the co-located sediment samples were primarily non-detect, with detections limited to 5 PAHs at three locations at concentrations well below 1 mg/kg-dry weight. Given the very limited detections of PAHs in sediments (and none in surface water), this SAP focuses on TPH analysis for evaluation of petroleum hydrocarbons in blue crab and forage fish tissues.

9.3 Sample Size

CAS and GCAL have minimum tissue (mass) requirements per composite for laboratory analysis of COCs, lipid content, and moisture content. The preferred total mass of homogenized wet tissue for analytical testing by CAS and GCAL is 50-60 grams (25-30 grams minimum).

9.4 Sample Types

To meet the study objective, this study will include samples of blue crabs (*Callinectes sapidus*) and forage fish (e.g., mosquito fish [*Gambusia affinis*]; topminnows [*Fundulus* spp.]) from the area. Samples of the crabs will be analyzed to provide data for both human health and ecological risk assessment.

Each blue crab will be separated into the following four components (and weighed) by CAS:

- Meat from the body and claws;
- Hepatopancreas;
- Other soft tissues (gills, heart, intestine, testes, and eyestalks); and
- Exoskeleton.

The human health risk assessment will use the analytical results (and respective weights) of the meat and hepatopancreas. The ecological risk assessment will use the analytical results (and respective weights) of all four components listed above to derive a whole-body crab concentration. The preferred total mass of homogenized wet tissue for analytical testing by CAS and GCAL is 50-60 grams (25-30 grams minimum).

Samples of forage fish will be analyzed as intact fish (whole body). Similar for crabs, forage fish will be composited to achieve adequate mass for accurate analyses (i.e., 50-60 grams preferred; 25-30 grams minimum). Fish will be composited within species if the variability of catch across the sampling sites requires use of more than one species

(Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume 1: Fish Sampling and Analysis, Second Edition [USEPA 2000a]). If the sampling crew is unable to collect all forage fish needed to prepare the composite sample on the same day, and the organisms used in the same composite sample will be collected on different days (no more than 1 week apart), individual fish will be frozen until all the organisms to be included in the composite sample are available for shipment to CAS. Since freezing the crabs prior to compositing makes dissection problematic, crabs will not be frozen prior to shipment to CAS. Crab samples will also be collected from commercial markets in Louisiana to assess the concentrations of the COCs. Water samples at the sites will be analyzed for standard field parameters (pH, temperature, conductivity, salinity, dissolved oxygen, turbidity). Field notes will be collected regarding weather, sampling effort, and other parameters that may be important for interpreting the results.

9.5 Sampling Period

Sampling will be conducted during December of 2010 to January of 2010 since water and weather conditions are conducive to safe and efficient field sampling, and blue crabs and forage fish are not spawning.

9.6 Evaluation of Objective

The analyte concentrations will be compared with appropriate screening values for human health (LA DEQ 2010) and ecological receptors.

10.0 Sampling Methods

10.1 Target Species

To meet the study objective, this study will include samples of blue crabs (*Callinectes sapidus*) and forage fish (e.g., mosquito fish (*Gambusia affinis*); topminnows [*Fundulus* spp.]).

10.2 Composite Sampling

The blue crab and forage fish tissues will be composited by CAS to minimize the opportunity for cross-contamination. The forage fish are prepared as whole body composites. Composite samples are effective for estimating average tissue concentrations of COCs in target species populations, and compositing ensures adequate sample mass for analysis of all target COCs. The preferred total mass of homogenized wet tissue (blue crab or forage fish) for analytical testing by CAS and GCAL is 50-60 grams (25-30 grams minimum). If insufficient tissue mass is able to be collected, CAS or GCAL will be consulted to identify the appropriate analytical strategy. Method modifications may include modified extraction techniques (e.g. adjusting the final extract volume), using a lower concentration for the lowest standard in the initial calibration, or adjusting the amount of extract injected into the instrument.

10.3 Sample Collection Methods

Collection methods for blue crabs and forage fish can be divided into two categories, passive and active. Passive collection methods for blue crabs include crab traps or pots. Passive collection devices (e.g., crab traps or pots) must be checked frequently to ensure a limited time lag between crab entrapment and sample preparation/preservation. For forage fish, active collection methods will involve sampling devices including seines and trawls. Although active collection requires greater fishing effort, it is usually more efficient than passive collection for covering a large number of sites and catching the number of individuals needed from each site for tissue analysis. The active collection methods generally require more field personnel and more complex equipment than passive collection methods.

Sampling for this study will involve an array of both active and passive gear to ensure collection of the desired target numbers of crabs and forage fish. Selection of the most appropriate gear type(s) for a particular sampling site will be at the discretion of the sampling team leader (Rodgers). A local contractor will be responsible for providing crab and forage fish sampling gear and sampling vessels. It is important that the sampling vessel(s) and equipment be clean and in good condition. Appropriate license or collection permits will be obtained prior to sampling, and sampling will be conducted in compliance with pertinent existing regulations. The analytical laboratory will provide sample packaging and shipping supplies.

10.4 Equipment and Supply List for Crab and Forage Fish Tissue Sampling

A list of equipment and expendable supplies is provided in Table 4. Sample collection, packaging, and shipment methods are presented in Section 11 of this document.

As soon as crabs or forage fish are obtained via active collection methods, or removed from passive collection devices, the species will be identified. Nontarget species collected in this study will be returned to the water. Individuals of the selected target species (blue crabs and forage fish) will be rinsed in ambient water to remove any foreign material from the external surface, will be handled using clean nitrile gloves, and placed in clean holding containers (livewell, buckets, etc.) to prevent contamination. Each blue crab and forage fish will be measured to determine length and width or total body length (mm), respectively. For blue crabs, data obtained will include sex, length, width and wet weight, For forage fish, maximum body length should be measured, i.e., the length from the anterior-most part of the fish to the tip of the longest caudal finray (when the lobes of the caudal fin are depressed dorsoventrally). When sufficient numbers of the target species have been identified to make up a suitable composite sample, the species name, specimen lengths, and all other site and sampling information should be recorded on the Field Record Form. The field objective is for sampling teams to obtain representative composite samples for both crabs and forage fish from each sample location. Each composite must consist of all the same species, and the composite must be able to deliver 50-60 grams (25-30 grams minimum) of tissue for chemical analysis.

11.0 Sample Handling and Custody Requirements

11.1 Sample Handling

Clean nitrile gloves will be worn during the entire sample handling process, beginning with removing the crabs and fish from the sampling gear. After individuals of the selected target species are rinsed in ambient water and the species and size are determined, each of the fish found to be suitable for the composite sample will be individually wrapped in extra heavy-duty aluminum foil (provided as solvent-rinsed, oven-baked sheets). A Sample Identification Label will be prepared for each aluminum foil-wrapped specimen. Each foil-wrapped fish will be placed into a plastic bag (i.e., heavy duty food grade plastic bag), and sealed with a plastic cable tie. The completed Sample Identification Label will be affixed to the cable tie, and the entire specimen package will be "double-bagged" (i.e., placed inside a large plastic bag with all the specimens of the same species from that site and sealed with another cable tie). Once packaged, samples should be immediately placed on ice for shipment. If samples will be carried back to a laboratory or other facility to be frozen before shipment (forage fish only), wet ice can be used to transport wrapped and bagged fish samples in the coolers to that laboratory or facility. If possible, all of the specimens in a composite sample should be kept together in the same shipping container (ice chest) for transport. Sampling Teams have the option, depending on site logistics, of:

- Shipping the samples packed on ice (in sufficient quantities to keep samples cold for up to 48 hours), via priority overnight delivery service (i.e., Federal Express), so that they arrive at the laboratory within less than 24 hours from the time of sample collection; or
- Freezing the forage fish (but not blue crab) within 24 hours of collection, and storing the frozen fish until shipment within 1 week of sample collection (frozen fish will subsequently be packed on dry ice and shipped to the laboratory via priority overnight delivery service to arrive within less than 24 hours from time of shipment).

The time of sample collection, relinquishment by the sample team, and time of their arrival at the laboratory must be recorded on the Chain-of-Custody Form. The field sampling teams should avoid shipping samples for weekend or holiday delivery to the laboratory unless prior plans for such a delivery have been agreed upon with the laboratory.

11.2 Sample Integrity

A critical requirement of this study is maintenance of sample integrity from the time of collection to the shipment and arrival at the final destination. Sample integrity will be maintained by preventing the loss of COCs that might be present in the sample and by taking precautions to avoid possible introduction of contaminants during handling. The loss of COCs can be prevented in the field by ensuring that the sample collected remains

intact. Once a sample is collected, sample integrity will be maintained through careful and controlled sample handling, storage, and preservation procedures. Preventable sources of extraneous contamination can include the sampling gear, oils and greases on boats, spilled fuel, skin contact, contact with soil or sand, boat motor exhaust, and other potential sources. Potential sources should be identified before the onset and during sample collection, and appropriate measures should be taken to minimize or eliminate them. Examples of preventative measures include the following:

- Collection nets should be free of any potential contaminants.
- The use of tarred collection nets is prohibited.
- Boats should be positioned so that engine exhaust does not fall on the deck area where samples are being handled.
- Ice chests and other sample storage containers should be cleaned with detergent and rinsed with clean water prior to use.
- Samples should not be placed directly on ice, but should be stored inside foil, plastic bags, and plastic garbage bags first.
- Proper gloves (clean nitrile gloves) should be used when handling samples.

11.3 Custody Requirements

Each sample will be identified and tracked with a unique numbering scheme as described in Section 8.0. The same unique number will be used in all documentation including the Field Record Form, the Sample Identification Label, and the Sample Preparation Record Form. Detailed information about the samples collected in the field and about the collection location will be recorded on the Field Record Form. Two copies will be made of this form: one will accompany the samples to the laboratory and one copy will be kept in a project-dedicated binder.

As soon as possible following collection, the sampling team will begin the process of identifying, labeling, packaging, and storing the sample(s). Each sample will be identified and tracked with a unique numbering scheme as described in Section 8.0. This composite code will identify each sample on all documentation and records including the following:

- Field Record Form,
- Sample Identification Label, and
- Chain-of-Custody Form.

Each sample will be labeled by affixing a Sample Identification Label as per the instructions in Section 8.0. All sample label entries will be made with black indelible ink. The sample label will accompany each sample throughout the chain-of-custody. Each sample label will include the following information:

- project name (EWL Tissue Study),
- site identification (number),
- sample number (01 through 06),
- composite code (as in Section 8.0),

- date of sample (month/day/year),
- time of collection (military time),
- preservative used (on ice or frozen), and
- collector's name (field team leader).

Detailed documentation of the samples collected in the field (for shipment to the laboratory) and information about the collection location will be recorded on a Field Record Form. One form must be completed for each sample composite. A copy of the form (Section 8.0) will be retained by the sampler, and another copy will be included with sample shipment to the laboratory. All entries will be made in black ink and no erasures will be made. Each form will have the proper entry requirements, which includes the following information:

- composite code (as per Section 8.0),
- sampling date (month/day/year),
- time of collection (military time),
- collection method (e.g., cast net),
- collector's name (printed and signed),
- collector's affiliation, address, and telephone number,
- site name.
- site number (location of site sampled),
- sample type (e.g., crab),
- estimated maximum depth (meters), and
- length (mm) and width (mm) of each specimen (if applicable).

All samples and composites will be transferred to the receiving laboratory under chain of custody. The Chain-of-Custody Form will act as a record of sample shipment and a catalog of the contents of each shipment (coinciding with information on the field record). The forms will be produced and copied as needed with one copy retained by the sampler and one for shipment to the laboratory. The Chain-of-Custody Form shipped will be placed in a waterproof plastic bag and sealed inside the shipping container. All Chain-of-Custody Form entries will be made in black ink and will include:

- the Project Manager's name, address and telephone number (refer to the QAPP cover page).
- sampler's name and telephone number,
- project name (EWL Tissue Study),
- page number (e.g., 1 of 1),
- sample location,
- collection date and time,
- composite code and sample number,
- preservative (ice [crab and forage fish] or frozen [forage fish only]),
- number of containers.
- type of analysis required (arsenic, barium, mercury, TPH, lipids; and moisture content),

- sampler's signature, sample date, and time,
- sampler relinquishment date and time,
- laboratory recipient signature, and
- laboratory receipt date and time.

Immediately following the packing of each shipping container, each container (ice chest) will be secured with packaging tape and sealed with a Chain-of-Custody Label. The Chain-of-Custody Label must contain the signature of the sampler and the date and time written in ink. The seal must be affixed such that the shipping container cannot be opened without breaking the seal (e.g., label adhered across the ice chest latch), so as to protect and document the integrity of the contents from field to laboratory.

12.0 Analytical Methods Requirements

Composite samples will be analyzed for Total Arsenic, Inorganic Arsenic, Total Barium, Total Mercury, Methylmercury, and TPH. The analytical laboratories CAS and GCAL will conduct the analyses, using EPA methods. The results will be reported in parts per million or parts per billion, as wet weight. Analytical methods and specific method requirements are addressed by the Quality Assurance Project Plans and Standard Operating Procedures developed by the laboratories and in conjunction with requirements presented in this study plan. Lipids will also be analyzed for the composite samples. Percent moisture (wet weight and dry weight) will also be measured and reported for composite tissue samples.

Samples will be shipped under chain of custody to CAS for processing and analytical testing of metals, lipid content, and moisture content. CAS will ship tissue aliquots to GCAL for TPH analysis. Samples will be analyzed for total petroleum hydrocarbons using the Texas 1005 (Total Petroleum Hydrocarbons) and potentially Texas 1006 methods. For both analyses, the extract step described in Section 8.2 or Section 8.3 of the Texas 1006 (Characterization of NC6 to NC35 Petroleum Hydrocarbons in Environmental Samples) method will be performed. The laboratory will use the reporting protocols specified in the Texas 1005 method modified to reflect RECAP-recommended ranges for total petroleum hydrocarbons.

Sample processing and analytical testing and methods are within the scope of this QAPP. Sample processing involves dissection and compositing of the requisite tissues: 1) crabs – meat, hepatopancreas, soft tissue, and shell (exoskeleton); 2) forage fish – whole body.

Analytical testing of tissue samples for will follow standard methods:

- Total Arsenic SW 6020;
- Inorganic Arsenic EPA 1632A;
- Total Barium SW 6020;
- Total Mercury EPA 1631;
- Methylmercury EPA 1630;
- TPH Texas 1005/1006.

13.0 Quality Control Requirements

Data quality is addressed, in part, by consistent performance of valid procedures documented in this study plan as well as those routinely employed by the analytical laboratory. It is enhanced by experience and training of project staff and documentation of project activities. This Quality Assurance Project Plan (QAPP) will be distributed to all project scientists for review, and, in turn, to sampling personnel involved in implementation of the project's field work as well as to the analytical laboratory. The project manager will ensure that personnel have the Quality Assurance Project Plan and that an orientation and training session is undertaken by all involved.

14.0 Instrument/Equipment Testing, Inspection, and Maintenance Requirements

All field equipment will be inspected prior to sampling activities to ensure that proper use requirements are met (e.g., boats are operating correctly, nets are without defects, pH and other field meters properly calibrated). Inspection of field equipment will occur well in advance of the field operation to allow time for replacement or repair of defective equipment, and the field team will be equipped with proper backup equipment to prevent lost time on site. One member of the field team will gather and inspect all equipment on the equipment and supply list (Table 4) prior to the sampling event. All pH and other meters used by field teams will be calibrated according to the manufacturer's operating instructions, on a daily basis, while in use. Careful and thorough planning will be necessary to ensure the efficient and effective completion of the field sample collection task. A checklist of field equipment and supplies is provided in Table 4 of this document. It will be the responsibility of the field team to gather and inspect the necessary sampling gear prior to the sampling event and to inspect the sample packaging and shipping supplies. Defective packaging and shipping supplies (e.g., torn or damaged bags) will be discarded, and, if necessary, the field team will obtain replacement supplies.

15.0 Data Acquisition Requirements (Non-direct Measurements)

Non-direct measurements will include identification and/or verification of each sample location (i.e., latitude and longitude). Coordinates of the sample sites will be provided as decimal degrees or conventional degrees, minutes, and seconds.

16.0 Data Management

Samples will be documented and tracked via Sample Identification Labels, Field Record Forms, and Chain-of-Custody Forms (Section 8.0). Diligence of the Field Sampling Team in completion of the proper records will be essential. The field team leader will be responsible for reviewing all completed field forms. Any corrections should be noted, initialed, and dated by the reviewer. As mentioned in Section 8.0, Field Record Forms and Chain-of-Custody Forms will each be prepared in the field. The sampler will retain one copy each of the Field Record and Chain-of-Custody Forms, and the original copies will be delivered to the laboratory with the samples. Shipment of samples to the

laboratory must be conducted by a delivery service that provides constant tracking of shipments (e.g., Federal Express). Laboratory sample log-in and data management procedures are beyond the scope of this QAPP and are covered by the laboratory QAPP. The laboratory will retain one copy of each Field Record Form and Chain-of- Custody Form. All form copies associated with this project will be maintained in a project file during the active phase of the project, and for a period of 6 months following completion of the project (unless otherwise directed). Upon completion of sampling activities, a field collection effort summary will be developed (i.e., a detailed listing of all sampling participants, sampling locations, and specimens collected) based on information recorded by all Sampling Teams on the Field Record Forms. Project data will be stored by project scientists, and will be copied to disks for archive for two years after project completion (unless otherwise directed). All data entries will be checked for errors in transcription and computer input by a minimum of two persons. If there is any indication that requirements for sample integrity or data quality have not been met, the project scientists will be notified immediately (with an accompanying explanation of the problems encountered).

C. ASSESSMENT / OVERSIGHT

17.0 Assessment and Response Actions

The project manager will be on-call throughout the duration of the sampling effort. In the event that quality problems or other difficulties arise in the field, the project manager will contact the quality assurance officer, attempt to resolve the difficulty, and determine the appropriate corrective action to be taken. The project manager will have the authority to stop work on the project if problems affecting data quality are identified that will require extensive efforts to resolve.

18.0 Reports to Project Scientists and the Study Sponsor

A summary of the work conducted will be prepared. The report will contain summaries of the field sampling and analytical results. Subsequent reports may be produced by the project scientists and others based on the results from this study.

D. DATA VALIDATION AND USABILITY

19.0 Data Review, Validation and Verification Requirements

All field record forms and chain of custody forms will be reviewed by the project manager for completeness and correctness. Data will be entered and assessed by comparing entered data with the original forms. The project manager will determine whether to accept, reject or qualify the entered data. A report will then be prepared for submittal to the project scientists.

20.0 Validation and Verification Methods

The project manager will conduct a review of the laboratory's data results and reports, verifying that methods and protocols were followed. A data quality review will be performed by qualified personnel experienced in data validation. The data quality and data usability review will be conducted based upon guidance provided in RECAP Sections 2.4 and 2.5, the USEPA Risk Assessment Guidance for Superfund (1989), and other relevant guidance. The data evaluation will include a review of analytical methods; QA/QC documentation; laboratory performance on matrix spikes, surrogate recoveries, and laboratory control samples; QC blank results (e.g. field, method, and rinsate); sample quantification limits and duplicate analyses. Specific deficiencies in the data, if any, will be identified, qualified as appropriate, and discussed in the report as they relate to data usability for exposure assessment and risk characterization.

21.0 Reconciliation with Data Quality Objectives

As soon as possible following completion of the sample collection and analyses for this project, precision, accuracy and completeness measures will be assessed by the project manager and compared with the criteria discussed in previous sections of this QAPP. This will represent the final determination of whether the data collected are of the correct type, quantity and quality to support the intended use for this project. Any problems encountered in meeting the performance criteria (or uncertainties and limitations in the use of the data) will be discussed with the project scientists, and will be reconciled, if possible.

22.0 LITERATURE CITED AND REVIEWED

Barbee, G.C. 2010. Supplemental Toxicological Evaluation Report for the Vermilion Parish School Board Property, Section 16, T.15 S.-R.1 E., Vermilion Parish, Louisiana. Prepared for Talbot, Carmouche & Marcello, Baton Rouge, LA. 15 pp. + appendix. Brupbacher, R.H., J.E. Sedberry, Jr. and W.H. Willis. 1973. The Coastal Marshes of Louisiana – Chemical Properties of the Soil Materials. Bulletin No. 672, LSU Agriculture Experiment Station.

CH2MHill. 2008. Calcasieu Estuary Biological Monitoring Program. Spring 2008 Semiannual Report. To: PPG Industries, Inc., Louisiana Department of Health and Hospitals, Louisiana Department of Environmental Quality.

Louisiana Department of Health and Hospitals, Louisiana Department of Environmental Quality, Louisiana Department of Agriculture and Forestry and Louisiana Department of Wildlife and Fisheries. 1997. Protocol for Issuing Public Health Advisories and Bans Based on Chemical Contamination of Fish and Shellfish in Louisiana. January 1997.

Louisiana Department of Health and Hospitals, Louisiana Department of Environmental Quality, Louisiana Department of Agriculture and Forestry and Louisiana Department of Wildlife and Fisheries. 2010. Protocol for Issuing Public Health Advisories for Chemical

Contaminants in Recreationally Caught Fish and Shellfish. Draft for Public Comment, January 2010.

Louisiana Department of Health and Hospitals, Louisiana Department of Environmental Quality, Louisiana Department of Agriculture and Forestry and Louisiana Department of Wildlife and Fisheries. 2010. Tissue Screening Level Guidelines for Issuance of Public Health Advisories for Selected Contaminants and Supporting Documentation (Draft). Obtained from the internet. 8pp.

Louisiana Department of Health and Hospitals. 2010. Louisiana Seafood Safety Surveillance Report 2010.

Sasser, C.E., Visser, J.M., Mouton, E., Linnscombe, and Hurley, S.B. 2007-8. Vegetation types in coastal Louisiana in 2007. USGS Ag Center, LSU Ag Center Research and Extension. Open file report 2008-1224.

US EPA. 2000a. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume 1: Fish Sampling and Analysis, Third Edition. US Environmental Protection Agency, Washington, DC, EPA 823-B-94-007.

U.S. EPA. 2000b. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume II: Risk Assessment and Fish Consumption Limits, Third Edition. U.S. Environmental Protection Agency, Washington, DC, EPA 823-B-94-008.

U.S. EPA. 2000c. National Study of Chemical Residues in Lake Fish Tissue QAPP Final.

U.S. EPA. 2001. Requirements for Quality Assurance Project Plans, EPA QA/R-5 (USEPA 2001)

U.S. EPA. 2002a. Quality Assurance Report for the National Study of Chemical Residues in Lake Fish Tissue: Year 1 Analytical Data. United States Environmental protection Agency, Office of Water, Office of Science and Technology, Engineering and Analysis Division. 38 pp.

U.S. EPA. 2002b. Guidance for Quality Assurance Project Plans, EPA QA/G-5 (USEPA 2002).

Visser, J.M., C.E. Sasser, R.H. Chabreck, and R.G. Linscombe. 2000. Marsh vegetation types of the Chenier Plain, Louisiana, USA. Estuaries 23(3): 318-327.

Table 1 **Quality Control Performance Criteria**

Quality Control Parameter	Total Arsenic; Total Barium	Inorganic Arsenic	Total Mercury	Methylmercury	Total Petroleum Hydrocarbons
Method	SW 6020	EPA 1632A	EPA 1631	EPA 1630	Texas 1005/1006
Method Quantitation Limit (MQL)	0.5 mg/kg (Arsenic) 0.05 mg/kg (Barium)	0.030 mg/kg	0.001 mg/kg	0.010 mg/kg	Not Available
Holding Times	Freeze or freeze-dry tissues (store at room temperature); holding time indefinite	Freeze or freeze-dry tissues (store at room temperature); holding time indefinite	Freeze or freeze-dry tissues (store at room temperature); holding time indefinite	Freeze or freeze-dry tissues (store at room temperature); holding time indefinite	Freeze, hold up to one year; extract within 24 hours of thawing
Equipment Blank	Daily per matrix and equipment type <mql< th=""><th>Daily per matrix and equipment type <mql< th=""></mql<></th></mql<></th></mql<></th></mql<></th></mql<>	Daily per matrix and equipment type <mql< th=""><th>Daily per matrix and equipment type <mql< th=""><th>Daily per matrix and equipment type <mql< th=""><th>Daily per matrix and equipment type <mql< th=""></mql<></th></mql<></th></mql<></th></mql<>	Daily per matrix and equipment type <mql< th=""><th>Daily per matrix and equipment type <mql< th=""><th>Daily per matrix and equipment type <mql< th=""></mql<></th></mql<></th></mql<>	Daily per matrix and equipment type <mql< th=""><th>Daily per matrix and equipment type <mql< th=""></mql<></th></mql<>	Daily per matrix and equipment type <mql< th=""></mql<>
Field Duplicate	1 every 10 samples ≤50 RPD if results greater than 5x MQL	1 every 10 samples ≤50 RPD if results greater than 5x MQL	1 every 10 samples ≤50 RPD if results greater than 5x MQL	1 every 10 samples ≤50 RPD if results greater than 5x MQL	1 every 10 samples ≤50 RPD if results greater than 5x MQL
Instrument Tune/Calibration	See Table 2	See Table 2	See Table 2	See Table 2	See Table 2
Preparation (Laboratory) Blank	Daily per digestion batch (maximum 20 samples) per matrix $< \pm MQL$	Daily per digestion batch (maximum 10 samples) per matrix < ± MQL	Three per batch (maximum 20 samples) per matrix $< \pm \mathrm{MQL}$	Three per batch (maximum 20 samples) per matrix < ± MQL	Daily per digestion batch (maximum 20 samples) per matrix < MQL
Initial Calibration and Continuing Calibration Blank	Analyze immediately after each ICV and CCV $< \pm \text{MDL}$	Analyze immediately after each ICV and CCV $<\pm$ MDL	NA (See bubble blanks below)	NA	NA
Surrogate	NA	NA	NA	NA	70-130 % Recovery 1-Chlorooctane or trifluoromethylbenzene (nC ₆ to nC ₁₂) 1-Chlorooctadecane, 2-fluorobiphenyl or o-terphenyl (>nC ₁₂)
Matrix Spike (MS) / Matrix Spike Duplicate (MSD)	One per 20 samples per matrix 70 – 130 %Recovery	One per 10 samples per matrix 50-150% Recovery (1632 Table 2)	One per 10 samples per matrix 70 - 130 %Recovery	One per 10 samples per matrix 65 – 135 %Recovery	One per 20 samples per matrix 60 – 140 %Recovery
	≤50 RPD if results greater than 5x MQL	≤50 RPD if results greater than 5x MQL	≤50 RPD if results greater than 5x MQL	≤50 RPD if results greater than 5x MQL	≤50 RPD if results greater than 5x MQL
Internal Standard Area	Each sample > 70-120% recovery.	NA	NA	NA	NA
Laboratory Control Sample (LCS) or Ongoing Precision and Recovery (OPR)	Daily per digestion batch per matrix 80 – 120 %Recovery	Daily per digestion batch (maximum 20 samples per matrix (1632 section 9.7.1) 50-150% Recovery (1632 Table 2)	Daily per digestion batch per matrix; Analyze at beginning and end of batch or each 12-hour shift 77 - 123 %Recovery	Daily per digestion batch per matrix; Analyze at end of batch or each 12-hour shift 67 - 133 %Recovery	Daily per extraction batch per matrix 60 - 140 %Recovery 25 RPD for LCSD
Identification Criteria	NA	NA	NA	NA	Within retention time windows
Confirmation Analysis	NA	NA	NA	NA	Gas chromatography/ mass spectrometry
Other CCV – continuing calibration verific	NA	QCS quarterly; Mean of three analyses within 10% of QCS value	Additional blanks: 3 system blanks or 3 bubbler blanks	QCS with each batch analyzed in the middle of the batch	The response factor for nC_{35} is \geq the response factor for nC_{28} ; Aliphatic and aromatic fractionation check per batch of silica gel (< $10-20\%$ crossover) and $60-140\%$ recovery

CCV – continuing calibration verification

ICV – initial calibration verification

MDL – method detection limit
MQL – method quantitation limit
NA – Not applicable
QCS – Quality control sample (independent source)

Table 2
Calibration Procedures Summary

	•		Calibration Summary
Parameter Measured	Method Description ¹	Activity	Requirements
		Initial Calibration	Blank and single point standardization as per method 6020.
Metals (Arsenic	SW 6020	Initial calibration Verification (ICV)	Analyze mid-level calibration standard. The %R for each analyte must be 90-110%.
and Barium)	3 W 0020	Continuing Calibration Verification (CCV)	Analyze mid-level calibration verification standard every 10 samples. The %R must be 90-110% of the true value.
		Interference Tests	Analyze interference check standard at the beginning of every analytical run. The %R for each analyte must be 80-120% of the true value.
		Initial Calibration	Analyze a minimum of a blank and five concentrations. The acceptance criteria are a maximum %RSD (≤15%) criteria and recovery of the lowest standard is in the 75 – 125% range.
Mercury (Total)	EPA 1631	Initial Calibration Verification	Analyze a mid-level calibration standard. The %R for each analyte must be 77-123% (QCS)
		Calibration Verification	See OPR requirements
		Initial Calibration	Analyze a minimum of a blank and three concentrations (one at ML and one at upper range). Maximum %RSD (≤25%) criteria before any investigative samples are analyzed.
Inorganic Arsenic	EPA 1632	Initial Calibration Verification	Analyze a mid-level calibration standard. The %R for each analyte must be 80-120% (Method 1632 Table 2).
		Calibration Verification	Analyze a mid-level calibration verification standard every 10 samples. The %R must be 76-116% of the true value.
Methyl Mercury	EPA 1630	Initial Calibration	Analyze a minimum of a blank and five concentrations prepared using distillation procedure. The acceptance criteria are a maximum $\% RSD$ ($\le 15\%$) criteria and recovery of the lowest standard is in the $65-135\%$ range.
		Calibration Verification	See QCS requirements
Total Petroleum Hydrocarbons	Texas 1005 / 1006	Initial Calibration	Analyze minimum five concentrations for each analyte. Maximum %RSD (≤25%) or minimum correlation coefficient (0.995) criteria before any investigative samples are analyzed. A calibration curve must be prepared for any compound for which the %RSD is greater than 25%. Take corrective action when criteria not met. The lowest calibration standard establishes the MQL based on laboratory standard operating procedures for initial volume of sample and final volume of extract.
		Calibration Verification	Verify calibration curve daily, every 24 hours, or every 20 samples, whichever is more frequent, with a check standard. Maximum %D ≤25%.

CCC - Calibration check compound

CCV – Continuing Calibration Verification

ICV – Initial Calibration Verification

MQL – Method Quantitation Limit

NA – Not applicable

RPD – Relative percent difference

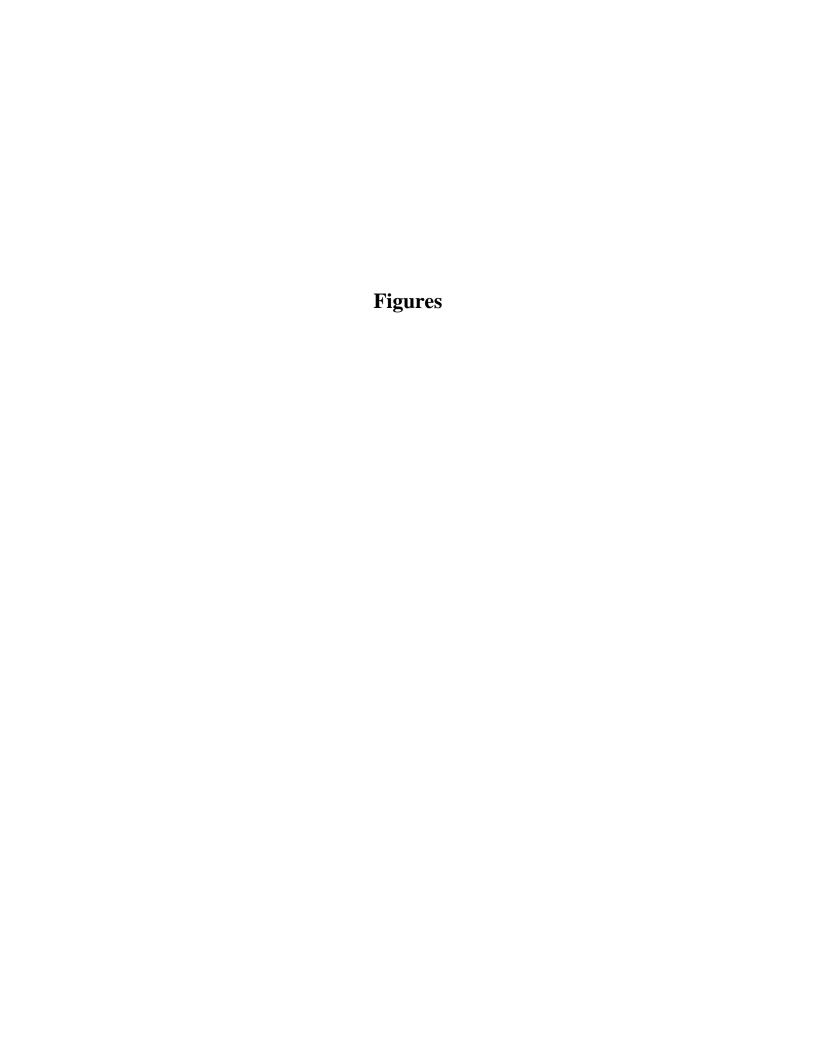
RRF – Relative Response Factor

%D – Percent Difference

%RSD – Percent Relative Standard Deviation

SPCC – System performance check compound

Table 3
Laboratory Methods


Parameter	CAS No	Method	MQL
Total Arsenic	7440-38-2	SW 6020	0.04 mg/kg DW
Inorganic Arsenic	7440-38-2	EPA 1632A	0.03 mg/kg DW
Total Barium	7440-39-3	SW 6020	0.05 mg/kg DW
Total Mercury	7439-97-6	EPA 1631	0.001 mg/kg DW
Methylmercury	22967-92-6	EPA 1630	0.010 mg/kg DW
Total Petroleum Hydrocarbons	NA	TX 1005/1006	N/A

MQL – Method Quantitation Limit (Method Detection Limit [MDL] for Total Arsenic).

Table 4

Equipment and Supply List for Crab and Forage Fish Tissue Sampling

- 1. Sampling vessel (including boat, motor, trailer, oars, gas, and all required safety equipment)
- 2. Nets (including trawls and/or seines, hoop or castnets)
- 3. Crab Traps and /or Pots (several per sampling site)
- 4. Coast Guard-approved personal floatation devices
- 5. Maps of sampling areas, sites and access routes
- 6. Global Positioning System (GPS) unit
- 7. pH meter (including associated calibration supplies)
- 8. Livewell and/or buckets
- 9. Measuring board (millimeter scale)
- 10. Ice chests
- 11. Aluminum foil (solvent-rinsed and baked)
- 12. Heavy-duty food grade polyethylene bags
- 14. Large plastic bags
- 15. Knife or scissors
- 16. Clean nitrile gloves
- 17. Field Record Forms
- 18. Sample Identification Labels
- 19. Chain-of-Custody Forms
- 20. Chain-of-Custody Labels
- 21. Scientific collection permit or fishing license
- 22. Ice
- 23. Black ballpoint pens and/or waterproof markers
- 24. Clipboard
- 25. Packing/strapping tape
- 26. Overnight courier airbill and laboratory shipping address
- 27. Plastic cable ties
- 28. Plastic bubble-wrap
- 29. First aid kit and emergency telephone numbers

LegendSection 16

USGS High Resolution State Orthoimagery for the Louisiana Coastal Area, 2008

	Site Location Map
ect:	Crab and Forage Fish Tissue Sampling


East White Lake Oil and Gas Field

Vermilion Parish, Louisiana

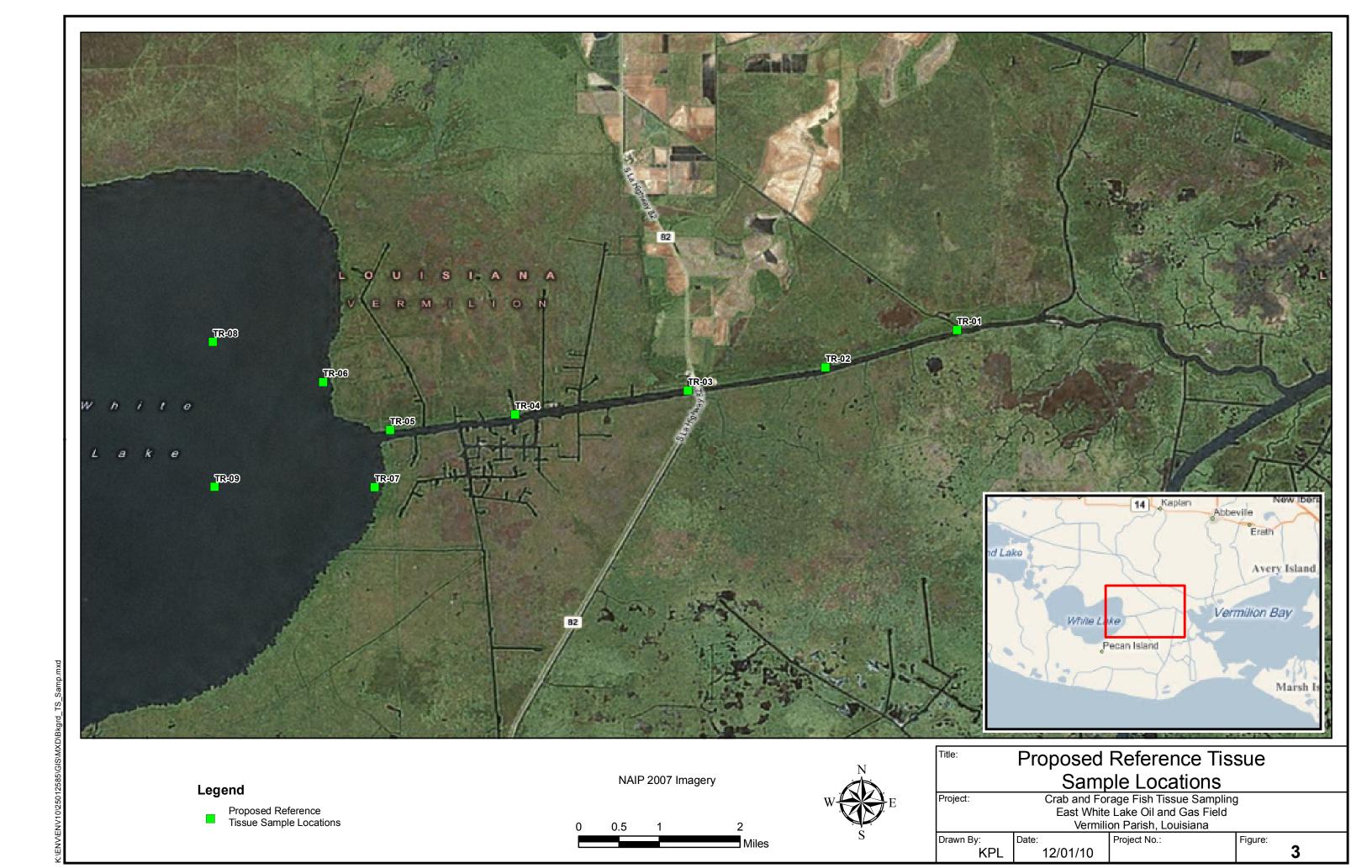
Drawn By: Date: Project No.:

KPL

11/24/10 Figure.

1,500

Project No.:


11/24/10

Drawn By:

KPL

Proposed Site Tissue Sample Locations

Section 16

Crab and Fish Collection Report

Appendix D

Project No. 0116008 UNOCAL Vermilion Parish, Louisiana

Environmental Resources Management Southwest, Inc.

3838 North Causeway Boulevard, Suite 3000 Metairie, Louisiana 70002 (504) 831-6700

Crab and Fish Collection Report

Section 16 T 15S R 01E

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

February 27, 2014

Prepared by:

MICHAEL PISANI & ASSOCIATES, INC.

Environmental Consulting Services

13313 Southwest Freeway Suite 221 Sugar Land, Texas 77478 1100 Poydras Street 1430 Energy Centre New Orleans, Louisiana 70163 11409 Pennywood Avenue Baton Rouge, Louisiana 70809

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Table of Contents

	Executive Summary					
1.0	Introdu	Introduction				
	1.1	Site Lo	cation	1		
	1.2		Species			
	1.3	_	Team			
	1.4		cal Laboratory			
	1.5	Sampling Location Plan				
2.0	Project	Goals		3		
3.0	Project	Goal 1: Co	ollect Sufficient Numbers of Crabs and Fish	4		
	3.1	Crab Co	ollection Method	4		
	3.2		ollection Methods			
		3.2.1	Cast Net			
		3.2.2	Hoop Net			
		3.2.3	Trawling Net			
	3.4	Collect	ion Effort			
	3.5	Collecting Sufficient Quantity of Samples for the				
		Laborat	tory	7		
4.0			ccurately Record and Document the Crab and Fish	0		
	Collecti	ion Event		8		
	4.1	Field L	ogbook	8		
	4.2	Digital Photography		8		
	4.3	Field Record Forms		8		
	4.4	Labelin	g Samples and Recording Measurements	9		
		4.4.1	Labeling Fish Samples and Recording			
			Measurements	9		
		4.4.2	Labeling Crab Samples and Recording			
			Measurements			
		4.4.3	Recorded Crab Weights and Measurements			
	4.5	Chain c	of Custody	10		

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Table of Contents

5.0			eliver Samples to the Laboratory of Acceptable Quality	•
	5.1	•	Assurance Project Plan/Sampling Analysis and	
	Assessment Plan for Crab and Forage Fish Tissue			
		5.1.1	Contamination	12
		5.1.2	Integrity	13
		5.1.3	Documentation	13
		5.1.4	Instrumentation	14
6.0	Project	Goal 4: Fo	llow the Written Sampling Plan	15
	6.1	Standar	d Procedure	15
	6.2	Deviati	ng from Standard Procedure	15
7.0	Refere	nces		16

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Table of Contents (Continued)

List of Figures

1	Site Map
2	Sampling Locations
3	Site Sampling Locations
4	Reference Sampling Locations
5	Number of Crabs Collected per Location
6	Average Crab Weight by Location
7	Average Crab Fullness per Location

List of Tables

1	Water Chemistry Measurements
2	Summary of Crab Measurements
3	Fish Collection Data
4	Field Activity Log
5	Crab Counts and Measurements
6	Equipment Supply List for Crab and Forage Fish Tissue Sampling

List of Appendices

A	Quality Assurance Plan/Sampling Analysis and Assessment Plan for Crab
	and Forage Fish Tissue
В	Field Notes
C	Photo Log
D	Field Record Forms
E	Chain of Custody and Chain of Custody Corrections
F	Scientific Fish Collection Permit

Executive Summary

In December 2010 and January 2011, fish and crabs were collected from 23 locations in the White Lake water shed. The project team included Dr. John Rodgers, Patrick Ritchie, and Dr. Helen Connelly. The site is located in Section 16, Township 15 South, Range 1 East in Vermilion Parish, Louisiana, about five miles southwest of Forked Island.

Crabs and fish were collected from 13 locations in the vicinity of the East White Lake Oil and Gas Field, from six reference locations in Schooner Bayou Canal, and from four reference locations in White Lake. Cast netting for fish was attempted at 15 locations and trawl netting for fish was accomplished at 17 locations. Crabs were collected by crab traps from all 23 locations. A total of 307 blue crabs (*Callinectes sapidus*) were collected from all locations and shad forage fish (*Dorosoma cepedianum*) were collected from all locations. Sufficient numbers of crabs and fish were collected from all locations to meet minimum lab requirements for tissue analysis.

All samples collected were documented and shipped under chain of custody overnight on ice each day of the collection project to Columbia Analytical Labs in Kelso, Washington for preparation and for analyses. Samples arrived at the lab in a good condition and acceptable for analysis.

Records of the sampling event such as field notes, field record forms, and photos are included and described in this report. Methods and procedures used during the sampling event were in accordance with the December 2010 sampling plan *Quality Assurance Project Plan/Sampling Analysis and Assessment Plan for Crab and Forage Fish Tissue*, which is attached as an appendix to this document. Presentation and evaluation of the laboratory results are presented in a separate report under separate cover by others.

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

1.0 Introduction

This report documents the methods and materials used to collect crabs and fish in a sampling event that occurred in December 2010/January 2011. Crabs and fish were collected during the sampling event from the White Lake water shed including the East White Lake Oil and Gas Field in Vermilion Parish, Louisiana. Collected crabs and fish were sent to an independent commercial laboratory for preparation and analyses. The analytical results of the tissue analysis are not included in this report but are presented in a separate report by others.

Crabs and fish were collected from canals in the East White Lake Oil and Gas Field, from Schooner Bayou Canal as a reference location, from White Lake as a reference location, and from retail fish markets in the Gulf Coast region for analyses. Crabs and fish were collected according to a protocol outlined in a *Quality Assurance Project Plan/Sampling Analysis and Assessment Plan for Crab and Forage Fish Tissue* dated December 6, 2010 that was prepared specifically for this sampling event (Appendix A).

1.1 Site Location

The site, located in Section 16, Township 15 South, Range 1 East in Vermilion Parish, Louisiana (Figure 1), is about five miles southwest of Forked Island. The areas of interest are the canals and waterways located on the eastern side of White Lake, including Section 16 of the East White Lake Oil and Gas Field.

1.2 Target Species

Blue crabs (*Callinectes sapidus*) and small forage fish such as shad (*Dorosoma cepedianum*) were collected as the target species for the tissue study. December 2010 and January 2011 was a good time to collect these organisms because they do not spawn at that time.

1.3 Project Team

Blue crabs and forage fish were collected by a field team that included Dr. John Rodgers (project director and project manager), Patrick Ritchie, and Dr. Helen Connelly.

1.4 Analytical Laboratory

Samples were shipped to Columbia Analytical Services, Inc., (CAS) of Kelso, Washington for sample preparation and analytical testing. Tissue analytical results are not presented in this report.

1.5 Sampling Location Plan

Crabs and fish were collected from 23 locations (Figure 2) in the White Lake water shed. Twelve sampling locations were described in the plan for Section 16 of the East White Lake Oil and Gas Field canals area and one additional location was added during field collection. These twelve locations are T-01 through T-12 (T is for "tissue") and the additional location is T-01A (Figure 3).

Crabs and fish were collected from five reference locations described in the plan in Schooner Bayou Canal and at one additional sampling location, which was added during field collection. These sampling locations are TR-01 through TR-05 (TR is for "tissue reference") and the additional location is TR-03A (Figure 4).

Crabs and fish were collected from four reference locations in White Lake. These locations are TR-06 through TR-09 (Figure 4).

Crabs were purchased from six retail fish markets in the Gulf Coast region:

Baton Rouge Area:
Addis Seafood
7926 6th Street
Addis, Louisiana 70710

Lake Charles Area:
Dugas Landing
700 Joe Dugas Road
Hackberry, Louisiana 76045

New Orleans Area: Fisherman's Cove Seafood 3201 Williams Boulevard Kenner, Louisiana 70065 Des Allemands Area:
Cajun Crab Connection
123 West Bayou Road
Des Allemands, Louisiana 70030

Biloxi Area:
Desporte & Sons Seafood
1075 Division Street
Biloxi, Mississippi 39530

Houston Area:
Hong Kong Food Market
11205 Bellaire Boulevard
Houston, TX 77072

Purchased crabs from retail markets were packaged on ice and shipped to the analytical laboratory.

2.0 Project Goals

The purpose for collecting crabs and fish during the December 2010/January 2011 sampling event was to provide biological tissue for analyses. The four daily goals for the field team during the crab and fish collection event were as follows:

- 1. Collect sufficient numbers of crabs and fish: The field team needed to collect enough crabs and fish from each sampling location to send the laboratory the amount of biological tissue required to do the analyses.
- 2. Accurately record and document the crab and fish collection event: The field team needed to accurately record and document the events, facts, activities and details of the samples collected. This documentation record provides support for conclusions that will be made later concerning the analytical results.
- 3. Deliver samples to the laboratory of acceptable quality for analysis: The field team needed to collect, package and ship the crabs and fish according to protocol so that the samples would arrive at the laboratory in acceptable condition. This would ensure that the end result of the data collection effort is a set of analytical results that is considered of acceptable quality to the scientific and academic community.
- 4. *Follow the written sampling plan:* The field team needed to follow the written plan for field methods and procedures and use best professional judgment, based on education, training and experience to alter the protocol when field conditions warranted change.

Efforts, procedures, and protocols followed to accomplish these goals are presented in subsequent sections of this report.

3.0 Project Goal 1: Collect Sufficient Numbers of Crabs and Fish

It was a project goal to collect enough crabs and fish from each sampling location to send the laboratory the amount of biological tissue they required to do analytical testing. The limiting factor in every organism collection study is the ability to collect sufficient numbers of samples. The following sections describe the field team's successful collection methods for both fish and crabs.

3.1 Crab Collection Method

The field team successfully collected crabs using crab traps at all sampling locations.

At the beginning of the project, the crab traps were loaded onto the boat by seasoned local contract fisherman, Julian Gajan. Gajan drove the boat with the field team and the baited crab traps to each predetermined sample location, directed by the team with sampling maps. Once a sampling location was selected by the field team, based on the sample location map in the plan, the GPS coordinates were identified by the field team using a DeLorme Earthmate PN-40 GPS and recorded in the field logbook.

At each location, Gajan would throw the crab trap into the water, and it would remain there to be checked for crabs in the next days. A weight attached to the bottom of the crab trap anchored the trap in place. Each crab trap had an identifiable marker buoy that marked the trap as part of the project.

All traps used were constructed according to Louisiana Department of Wildlife and Fisheries (LDWF) regulations. The crab traps are wire mesh boxes approximately 30 inches by 30 inches by 15 inches with hinged lids. The wire mesh resembles chicken wire with 1.5-inch square openings. The crab trap has an entrance for crabs and a bait box inside containing catfish parts but no way for a larger crab to exit the trap. The crab trap has small exit holes to let small crabs escape.

To collect the crabs from the trap, Gajan would lift the crab trap up to the side ledge of the boat using a hooked gaffe. The crabs were removed by opening a hinged lid on top of the trap that had been secured by a bungee cord. The crabs were shaken out of the trap or removed with clean tongs.

Immediately upon being collected, the crabs were counted and recorded on the field record forms as male or female and then put into labeled clean five-gallon buckets. The buckets were labeled with the sample location ID (e.g. T-02) and each bucket had a small amount of ambient water in it with a loosely applied lid.

At each location where crabs were collected, water chemistry data was measured using an In-Situ Troll 9500 that had been calibrated that day using In-Situ Inc., Quik Cal Solution. Ambient water chemistry measurements taken at each location included: rugged dissolved oxygen (RDO), temperature, pH, conductivity, oxidation reduction potential (ORP), turbidity, depth, and time of collection. Water chemistry data was recorded in the field logbook and on the field record form. Table 1 lists the water chemistry data collected during the project.

Crab traps were checked at each location approximately every day or two until enough crabs were collected from the location to satisfy the laboratory requirement of approximately five crabs per location. Some traps had enough crabs after being checked once, other traps accumulated fewer crabs, and had to be checked and harvested more than once (Table 2). All crab traps in the White Lake reference locations only had to be checked once to collect a sufficient number of crabs. Crab traps in the site canals and in Schooner Bayou Canal had to be checked anywhere from one time to five times in order to collect a sufficient number of crabs. Once sufficient numbers of crabs were collected, the trap was removed, unless the location was utilized by Gajan for his commercial fishing.

Figure 5 and Table 2 show the numbers of crabs collected per location. The number of crabs collected per location ranged from five crabs (TR-06 and T-09) to 28 crabs (T-02). A total of 307 crabs were collected from all 23 sampling locations during the collection project.

3.2 Fish Collection Methods

Three different methods were attempted for collecting a sufficient amount of fish. The first two methods tested did not capture enough fish quickly enough; the last method tested was extremely successful. The three methods tested for collecting fish included (in order): cast net, hoop net on the bottom of the waterway, and trawling nets pulled through the water by a trawling boat.

3.2.1 Cast Net

The first fish collection method attempted, throwing a cast net, was labor intensive and only captured small numbers of fish for any one cast. The cast net used in this project was a synthetic circular net with a four foot radius and small weights around its outside edge. Gajan would stand in the boat and throw the net by hand so that it would fall in a circular pattern on the surface of the water and then sink. After the net settled, he pulled a cord attached to the net's weighted edge so that the net would form a bag. Some fish were caught as the net was pulled by hand back to the boat.

Cast netting for fish was attempted at 15 locations, and resulted in enough fish at six locations to collect and ship for analysis. The method, although somewhat successful, was unpredictable and time consuming.

3.2.2 Hoop Net

The second method attempted for capturing fish was by staking a hoop net to the bottom surface of the waterway. The hoop net, when set up, takes on the shape of a column or a tube. The net has a series of hoops spaced along the length of the net to keep it open, with a second net inside that has a narrow entrance for fish. The net is staked to the bottom of the bayou and bait is placed in the closed end of the net. Fish swim in to eat the bait but cannot exit the net. The fish can be collected when the net is lifted out of the water.

The hoop nets tested in this project were effective in capturing larger fish such as catfish but were not effective in capturing the smaller forage fish that were the target species for collection.

3.2.3 Trawling Net

The third and final method tested for collecting fish was by dragging nets through the water from a trawling boat. This method was very successful and was used for collecting fish at a total of 17 locations, including locations in the canals, the lake and in Schooner Bayou.

The field team and two local fishermen successfully used a double-rigged trawling boat to collect fish at each location attempted. The boat had rigid booms with nets extending from both sides of the boat. When the boat moved forward, the booms were lowered into the water to drag mesh trawl nets. Fish entered the wide open end of the cone shaped net, and then accumulated in the tail end of the net, which tapered to a narrow end. The tail end of the trawling net, filled with fish, was pulled onto the boat by an attached line. The full end of the net, kept closed by a rope, was released to dump fish into a collection basket or onto a sorting table in the back of the boat.

The trawling boat was navigated to each sampling location by using the GPS coordinates for each location where crabs had already been collected. The nets were lowered into the water and dragged for approximately 200 yards. The net containing fish was brought onto the boat and the field team sorted the fish by throwing back into the water all fish by-catch and shad that were smaller than seven centimeters long. The fish were collected into labeled clean five-gallon buckets with a small amount of ambient water and a loosely applied lid. Fish were immediately put on ice at the landing, and then weighed and measured or packaged for shipping to the laboratory. Field record forms that documented the location, time, and quantity of fish collected were completed for each fish sampling location. Table 3 shows a summary of the fish collection effort.

3.4 Collection Effort

The sampling team worked ten days in order to collect a sufficient number of crabs and fish to satisfy the requirements for tissue analyses. This involved checking crab traps a total of 51 times, attempting to cast net for fish at 15 locations and trawling for fish at 17

locations. Table 4 is an activity log that shows the effort required to collect fish and crabs for the project.

3.5 Collecting Sufficient Quantity of Samples for the Laboratory

The field team had a goal of providing the laboratory with sufficient crab and fish tissue to perform analyses. The guidance in the plan was that each sample composite consist of the same species, and the composite must be able to deliver 50 to 60 grams (25 to 30 grams minimum) of tissue for chemical analysis.

The analytical laboratory, Columbia Analytical Services (CAS) provided their preferred and minimum tissue mass requirement for the project.

4.0 Project Goal 2: Accurately Record and Document the Crab and Fish Collection Event

The accurate record that is generated during the sampling effort is important because it becomes the document of information that supports the analytical results. The following section describes the written documentation generated by the field team to record the events that occurred while collecting crabs and fish. The field sampling event was documented by these records generated in the field: field logbook, digital photography, field record forms, labeling of samples, and chain of custody.

4.1 Field Logbook

The field logbook was used to record the sequence and times of events that occurred each day of the sampling project. Water chemistry measurements, crab and fish counts and measurements, GPS coordinates, and field efforts are recorded in the field logbook. The field logbook has been scanned and saved in electronic format (Appendix B).

4.2 Digital Photography

Sampling efforts and events were photographed and saved in electronic format and are reproduced in a photo log at the end of this document. Photographs were made of the field team collecting, weighing, and measuring crabs and fish, and of the habitat and general appearance of the surrounding ecosystem. Notes were made in the field logbook of photos taken. The photo log is attached as Appendix C.

4.3 Field Record Forms

Field record forms were filled out for each sample location where crabs or fish were collected. The field team began filling out the field record form on the boat while the samples were being collected.

Each time crabs or fish were successfully collected a field record form was initiated. The form includes the sample location ID, time, date, collection method (such as trap or net), GPS coordinates, estimated maximum water depth, sample type (such as crabs or fish), date the trap was set, type of bait used, a count or estimate of volume of crabs or fish collected, determination of gender (crabs only), and any comments. For sampling locations being visited for the first time, water chemistry measurements were recorded on the field record form including: rugged dissolved oxygen (RDO) (mg/L), temperature (°C), pH, conductivity (μ S/cm), oxygen reducing potential (ORP) (V), turbidity (NTU), and depth (ft). The field record form was initiated on the boat when the samples were collected, and completed at the landing where weights and measurements could be taken and recorded. The field record form was copied and one copy accompanied the samples to the laboratory in a sealed plastic bag. The other copy has been scanned and saved in electronic format. The information recorded on the field record form was also recorded in ink in the project field logbook. The field record forms are attached as Appendix D.

4.4 Labeling Samples and Recording Measurements

At each location where crabs or fish were collected, crabs or fish collected from that location were put into a clean five-gallon bucket dedicated to that sample location and type of sample (crab or fish). The bucket was labeled using indelible ink with the sample location ID and the time. The information recorded on the labeled bucket was also recorded on the field record form and in the field logbook (see previous Section 4.1 on Field Logbook and Section 4.3 on Field Record Forms).

4.4.1 Labeling Fish Samples and Recording Measurements

Immediately upon returning to the landing, the fish from each labeled bucket were processed one sample location bucket at a time. For the first three locations where fish were collected (TR-02, TR-03, and TR-04), 20 to 30 fish per location were measured for length (maximum body length was measured from the anterior-most part of the fish to the tip of the longest caudal fin) and width, and weighed on a tabletop digital scale by a field team member wearing clean nitrile gloves. These fish measurements were recorded in the field logbook and on the field record form that had already been prepared in the field for that sample location. The weighing and measuring process for the fish from these first three locations proved to be time consuming due to the number of forage fish collected, and the team made a judgment call to estimate volumes of forage fish rather than to weigh and measure each individual fish.

For the 20 other sampling locations from which fish were collected, the field record forms were filled out with an estimate of total volume of fish rather than a measured length and width for each individual fish. All fish from a single sample location were recorded on the field record form that had been filled out in the field for that sample ID location, as well as in the field logbook.

To package fish for shipping, all fish from one sample location were wrapped in foil with their bodies touching the non-shiny or dull side of heavy duty aluminum foil. The exterior of the foil packet of fish was labeled with indelible ink with the project name (EWL Tissue Study), the site ID number, the letter F for fish, the date of sample (month/day/year), the time of collection (military time), and the collector's initials. The labeled foil fish packet was placed inside of a heavy duty plastic zip locked freezer bag and the plastic freezer bag was also labeled in indelible ink with the same label information that was on the foil packet of fish (project name, site ID number, the letter F for fish, date, time, and collector's initials). The labeled packet of fish was placed immediately on ice in a clean ice chest along with the field record form and the chain of custody, which were sealed inside of a plastic zip lock bag to protect against getting wet. Upon arriving at the Fed Ex location to ship the fish to the laboratory, the ice was replaced with dry ice, so that the fish were shipped frozen.

4.4.2 Labeling Crab Samples and Recording Measurements

Immediately upon returning to the landing, the crabs from each labeled bucket were processed one sample location bucket at a time by field team members wearing clean nitrile gloves. One field team member would get a crab out of the bucket and call out the sample location ID and whether the crab was male or female. Another field team member would weigh the crab on a tabletop digital scale, measure the crab's length (the lateral distance across the carapace from tip of spine to tip of spine) and width, and call out these measurements. Another team member would record the measurements on the field record form that had been filled out in the field for that sample ID location, as well as in the field logbook. The crab, now recorded was placed on ice in a clean cooler dedicated to one sample location. The ice was double bagged in heavy duty zip locked baggies so that excess water would not drown the crabs, and the crabs would arrive alive at the laboratory. The field record form and the chain of custody were placed inside of a sealed Ziplock® baggie and placed in the cooler with the crabs from one location.

4.4.3 Recorded Crab Weights and Measurements

Table 2 is a summary of average crab weights and measurements documented in this collection project. The crabs collected in White Lake and in the East White Lake Oil and Gas Field canals were generally larger crabs and the crabs collected in Schooner Bayou were generally smaller crabs by comparison. Figure 6 is a map showing the average weight of crabs collected by location.

A calculation was done that combined crab weight, length and width, and is described as crab fullness. It is average crab weight divided by the length times the width of the crab [gm/(cm x cm)]. This metric showed that the crabs in all habitats were of similar fullness. The crabs collected in the Lake and in the vicinity of the East White Lake Oil and Gas Field were of the same average fullness (1.9 gm/cm²) and the crabs from Schooner Bayou Canal had slightly lower average fullness of 1.8 gm/cm². Figure 7 shows the average crab fullness by location.

Table 5 shows the length, width, weight and gender of each crab collected during the project.

4.5 Chain of Custody

A completed chain of custody accompanied the crabs and fish that were shipped overnight to Columbia Analytical Services Laboratory in Kelso, Washington. The chain of custody was copied, scanned and saved electronically for each shipment that left Fed-Ex in Lafayette, Louisiana during the sampling event.

The chain of custody listed each sample location ID that was shipped on a given day for all sample locations shipped, using this format: project name (EWL), Sample ID number, and C for crab or F for fish. Also recorded on the chain of custody were the sampling

date, sampling time, project manager signature (John Rodgers), date of shipping, time of shipping, analytical methods required, and any comments.

The completed chain of custody was placed along with the field record form inside of a Ziplock[®] baggie inside of the ice chest and the whole ice chest was wrapped many times with packing tape. Appendix E has the chain of custody forms from the project and corrections made to the chain of custody.

5.0 Project Goal 3: Deliver Samples to the Laboratory of Acceptable Quality for Analysis

Field efforts were directed towards collecting, packaging and shipping the samples in such a way that the samples would be of sufficient quantity and of acceptable quality to be analyzed and the results usable for scientific risk assessment. Steps were taken to ensure this quality of data from the time the samples were collected to the time the samples arrived at the laboratory.

5.1 Quality Assurance Project Plan/Sampling Analysis and Assessment Plan for Crab and Forage Fish Tissue

The field efforts to achieve the ultimate goal of usable analytical results were numerous and were directed by the *Quality Assurance Project Plan/Sampling Analysis and Assessment Plan for Crab and Forage Fish Tissue* dated December 6, 2010 and prepared specifically for this sampling event. The plan for achieving quality in sampling and analysis is attached to this document as Appendix A.

The attached plan document (Appendix A) describes the quality assurance (QA) and quality control (QC) procedures to be used to determine COC concentrations in blue crab and/or forage fish tissue from the site, reference locations, and retail fish markets in the region. The QAPP was prepared consistent with the following documents: *EPA Requirements for Quality Assurance Project Plans*, EPA QA/R-5 (USEPA 2001) and *EPA Guidance for Quality Assurance Project Plans*, EPA QA/G-5 (USEPA 2002b), and *Protocol for Issuing Public Health Advisories for Chemical Contaminants in Recreationally Caught Fish and Shellfish* (LDHH et al. 2011). The collection methods, procedures and protocols follow the guidelines and recommendations of *Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume1: Fish Sampling and Analysis*, Third Edition (USEPA 2000a).

5.1.1 Contamination

Protecting against contamination is part of any protocol for generating acceptable data. Steps were taken during the sampling event to avoid introducing contaminants to the samples during handling. Some of the steps taken to prevent contamination included:

- Rinsing the fish and crabs collected in a small amount of ambient water.
- Placing samples in clean holding buckets, one dedicated bucket per location, to prevent contamination.
- Sealing the shipping container to prevent introduction of contaminants during travel from the field to the laboratory.
- Placing lids on the samples after collection.

- Cleaning ice chests and five gallon buckets with detergent and rinsing with clean water prior to use.
- Placing samples in foil and plastic bags, prior to placing them on ice.

5.1.2 Integrity

The effort to generate data of acceptable quality and to maintain sample integrity began at the time the samples were collected to the shipment and arrival at the laboratory. Sample integrity was maintained to prevent the loss of any COCs that might be present in the sample. The loss of COCs was prevented by some of the following actions:

- Ensuring that once collected, the fish and crabs remained intact without breaks or tears.
- Shipping crabs on sufficient quantities of ice to keep them cold for up to 48 hours, via priority overnight delivery service, so that they arrived at the laboratory within less than 24 hours from the time of sample collection.
- Shipping fish on dry ice via priority overnight delivery service to arrive at the laboratory within less than 24 hours from time of shipment.
- Shipping samples by Federal Express, which provides constant tracking of shipments.

5.1.3 Documentation

Field efforts directed towards the end result of acceptable analytical data included documentation of field sample collection and handling. Documentation demonstrates data integrity and allows for accurate interpretation of results. Some of the documentation efforts to achieve acceptable data quality included:

- Recording the time of all sample collection, relinquishment by the sample team, and time of sample arrival at the laboratory on the chain of custody Form.
- Documenting all sample collection and handling in writing
- Making any corrections to written documents and initialing and dating the corrections.
- Generating chain of custody forms and field record forms that have coinciding data and sample identification so that accuracy can be verified.

5.1.4 Instrumentation

Practical steps to ensure collecting valid data included following equipment procedures and being prepared with the appropriate supplies:

- All field equipment was inspected prior to sampling.
- The discrete water measurements meter and other instruments used by the field team were calibrated according to the manufacturer's operating instructions, on a daily basis.
- Field supplies and equipment were assembled prior to the sampling event and supplemented as needed (Table 6).

6.0 Project Goal 4: Follow the Written Sampling Plan

Following a standardized sample collection and handling procedures reduces the magnitude and sources of uncertainty and their frequency of occurrence. The field team followed the procedures outlined in the plan and made decisions to deviate from the plan only when necessary.

6.1 Standard Procedure

The field team used standardized sample collection and handling procedures. The field sampling team consisted of experienced personnel trained on all field procedures detailed in the plan. The field team worked together to ensure that the field sampling and sample handling activities were in accordance with the plan.

6.2 Deviating from Standard Procedure

When necessary, the field team made decisions to deviate from the written protocol. These events are listed below:

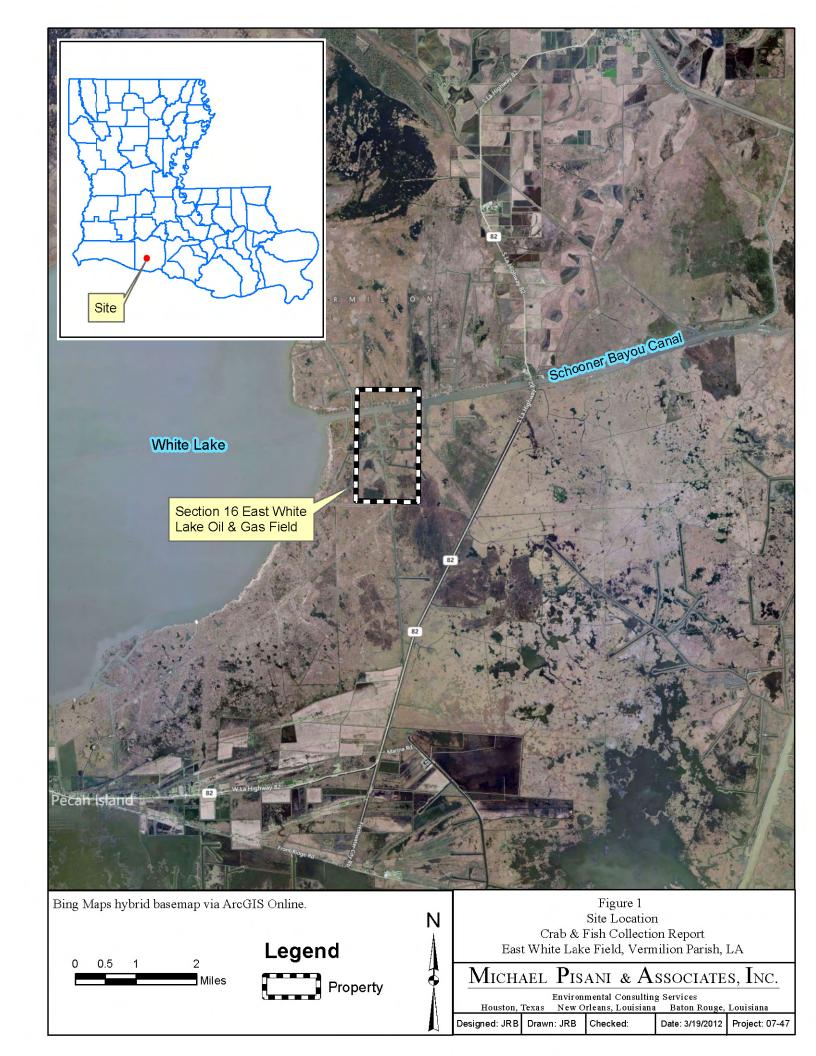
- Two additional sample locations were authorized in the field by Dr. Rodgers. They were TR-03A in the Schooner Bayou Canal and T-01A in the East White Lake Oil and Gas Field canals.
- After measuring and weighing shad fish from three locations, the decision was made to cease measuring individual fish and shift to estimating total volume of fish collected.

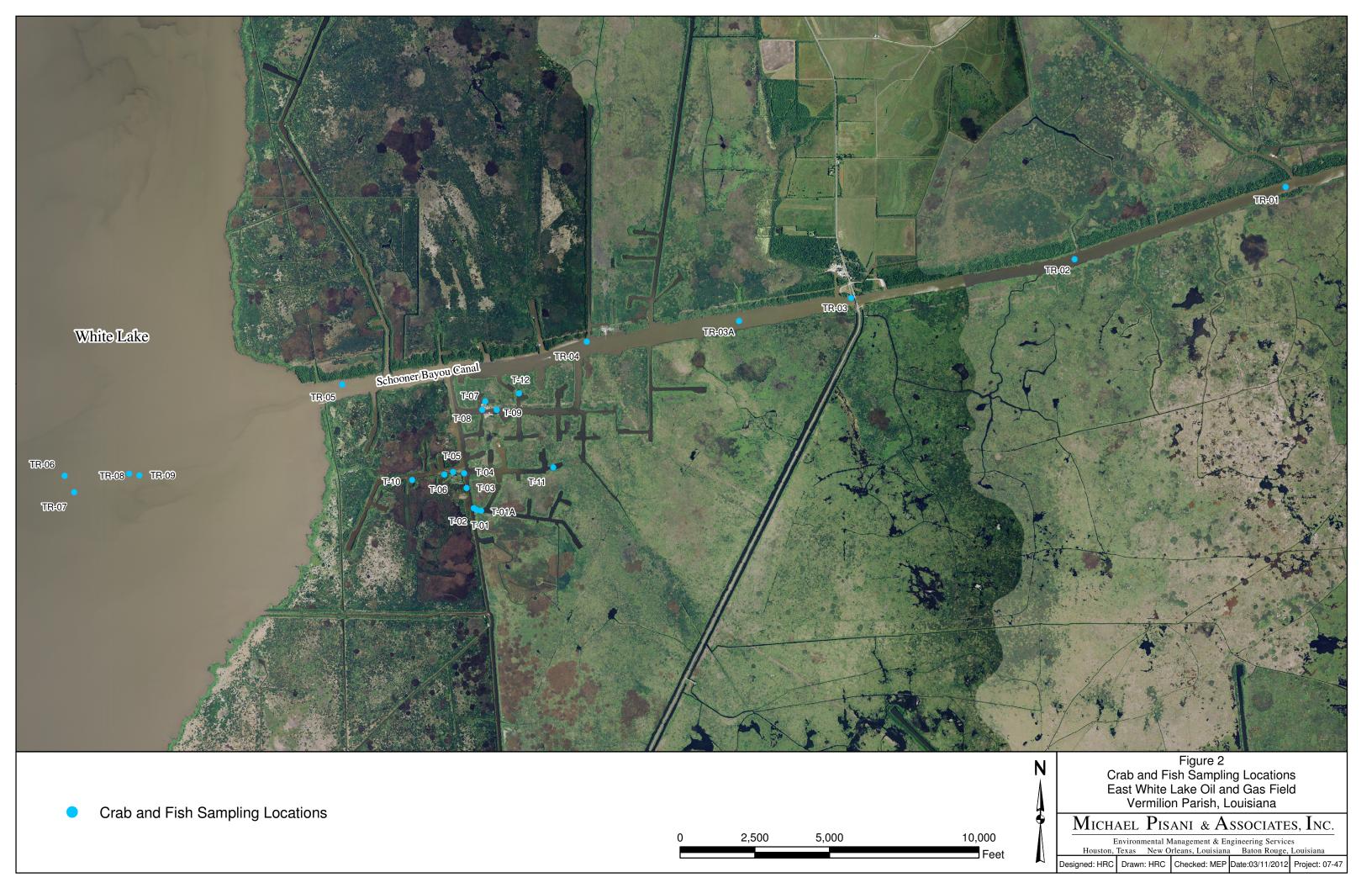
7.0 References

Louisiana Department of Health and Hospitals, Louisiana Department of Environmental Quality, Louisiana Department of Agriculture and Forestry and Louisiana Department of Wildlife and Fisheries. Protocol for Issuing Public Health Advisories for Chemical Contaminants in Recreationally Caught Fish and Shellfish Chemical Contamination of Fish and Shellfish in Louisiana. May 2011.

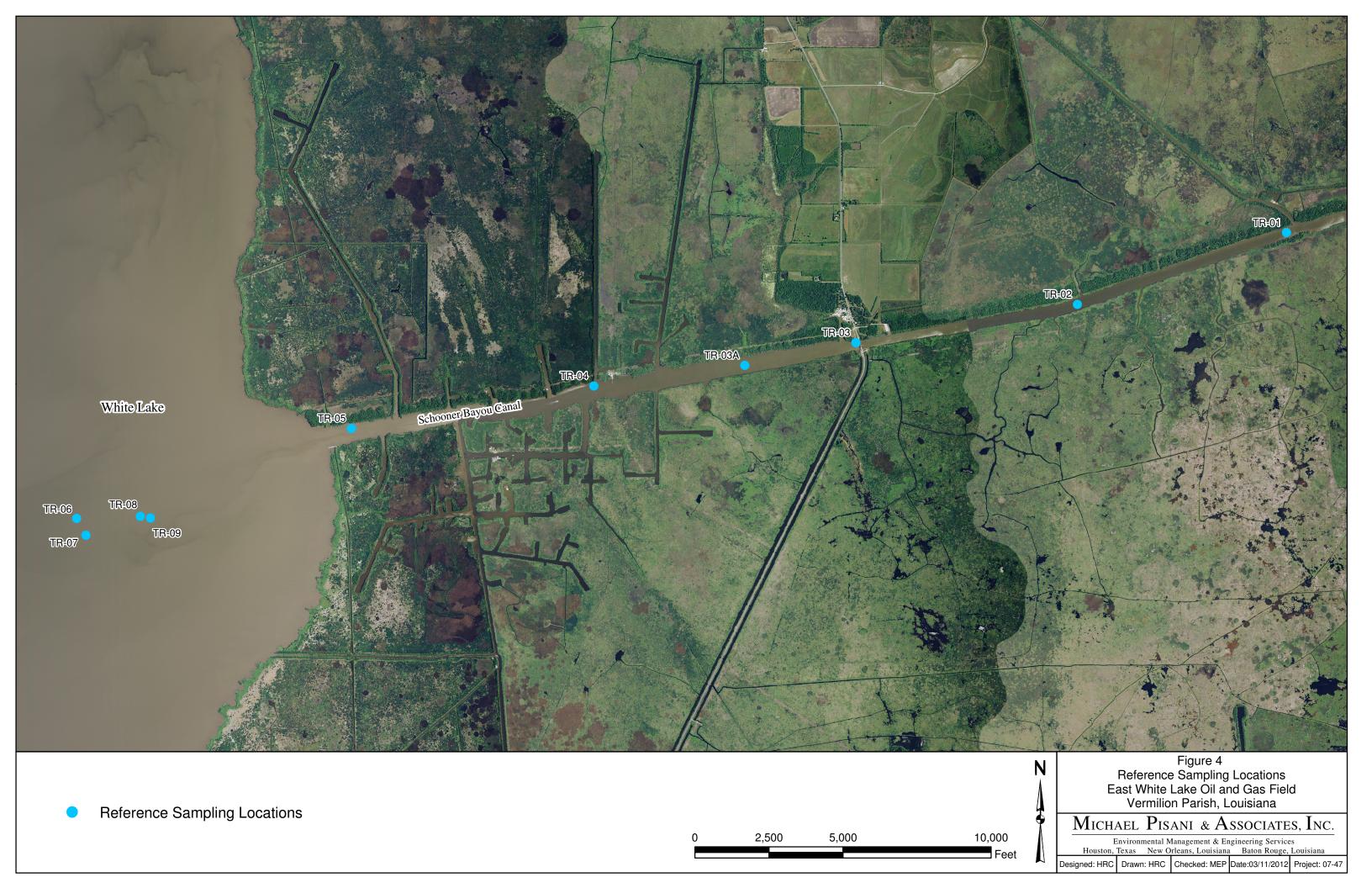
U.S. EPA. November 2000. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume I: Fish Sampling and Analysis, Third Edition. U.S. Environmental Protection Agency, Washington, DC, EPA 823-B-00-007.

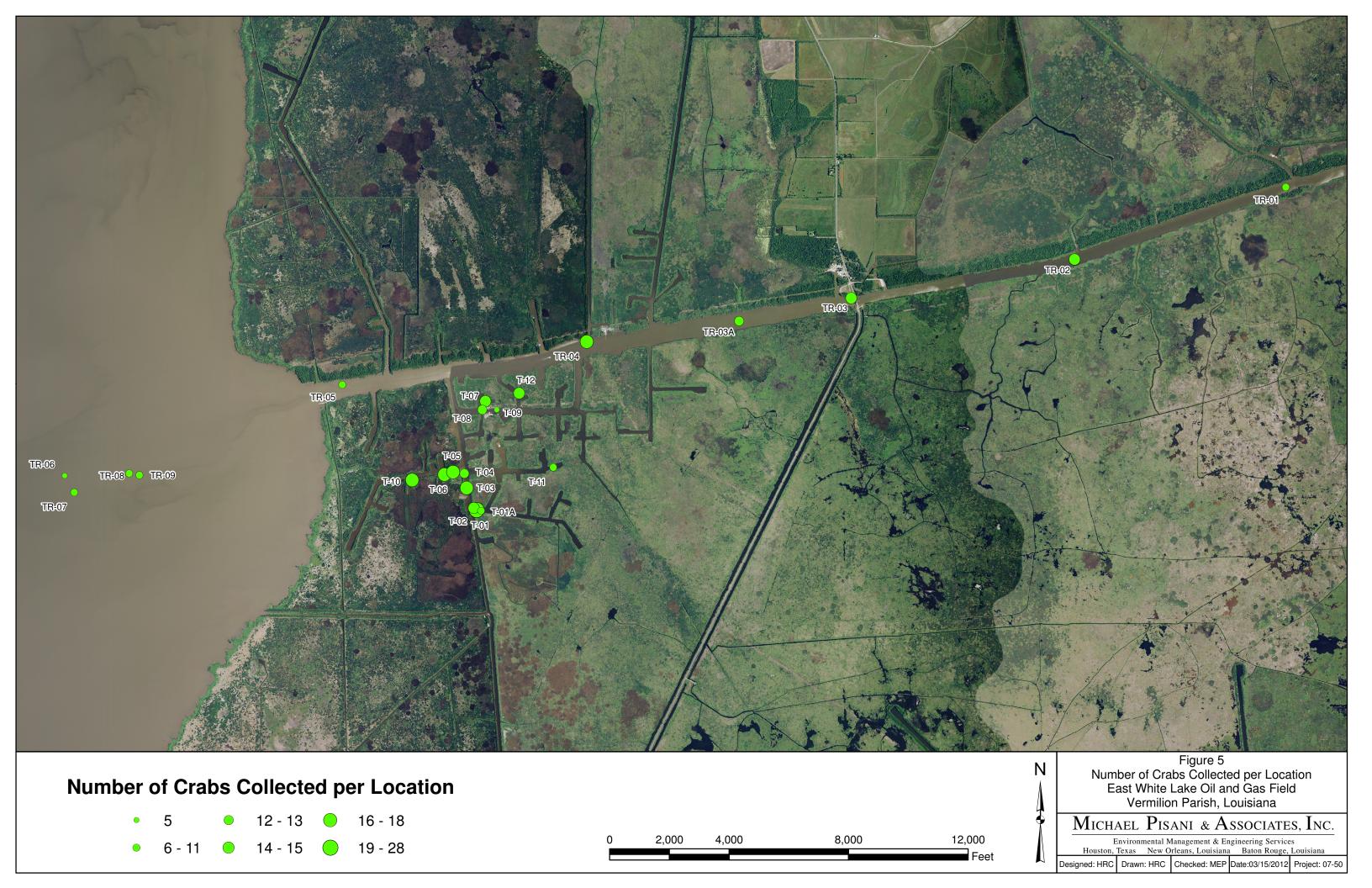
U.S. EPA. 2000c. National Study of Chemical Residues in Lake Fish Tissue QAPP Final.

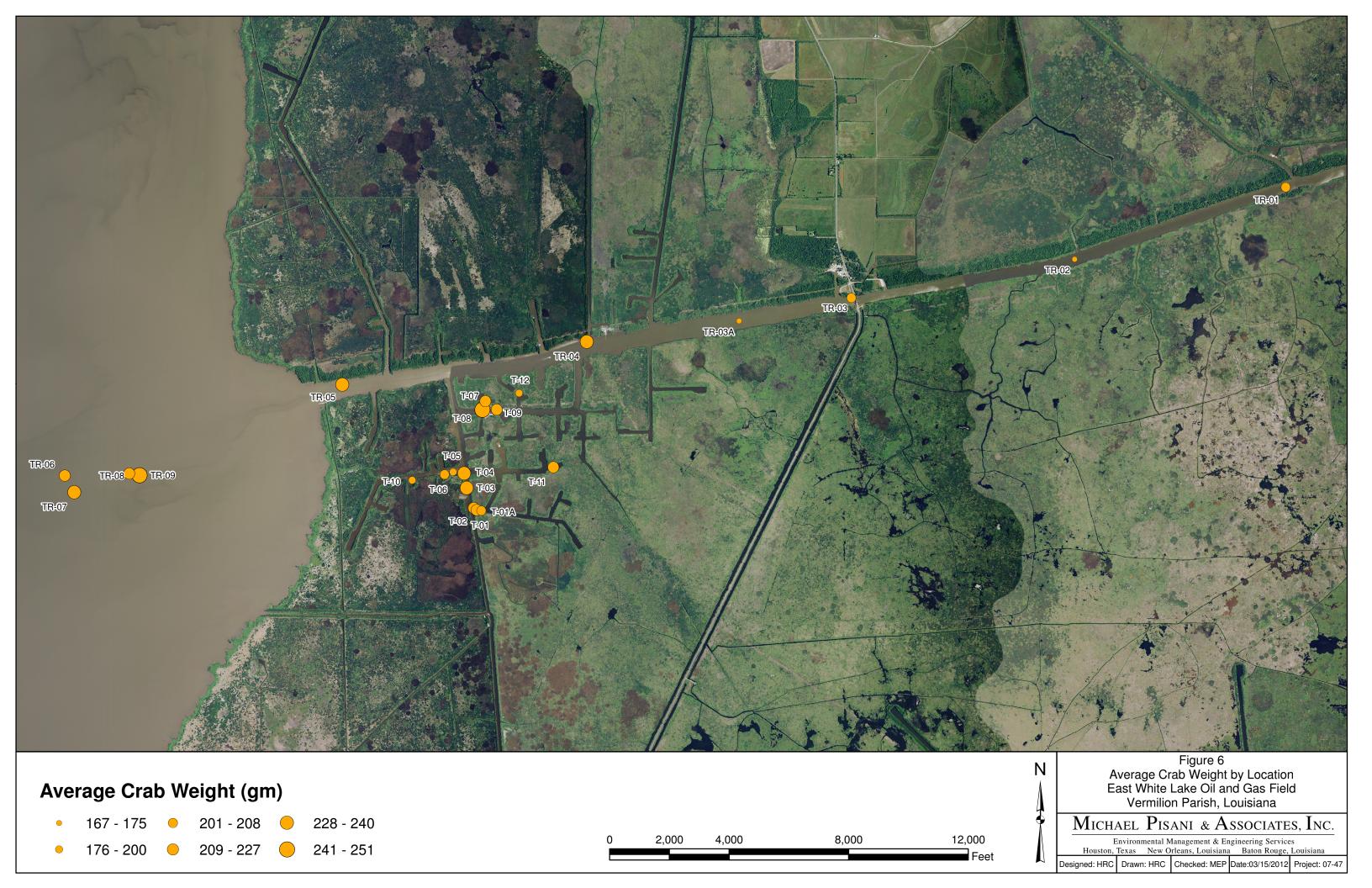

U.S. EPA. 2001. Requirements for Quality Assurance Project Plans, EPA QA/R-5 (USEPA 2001)

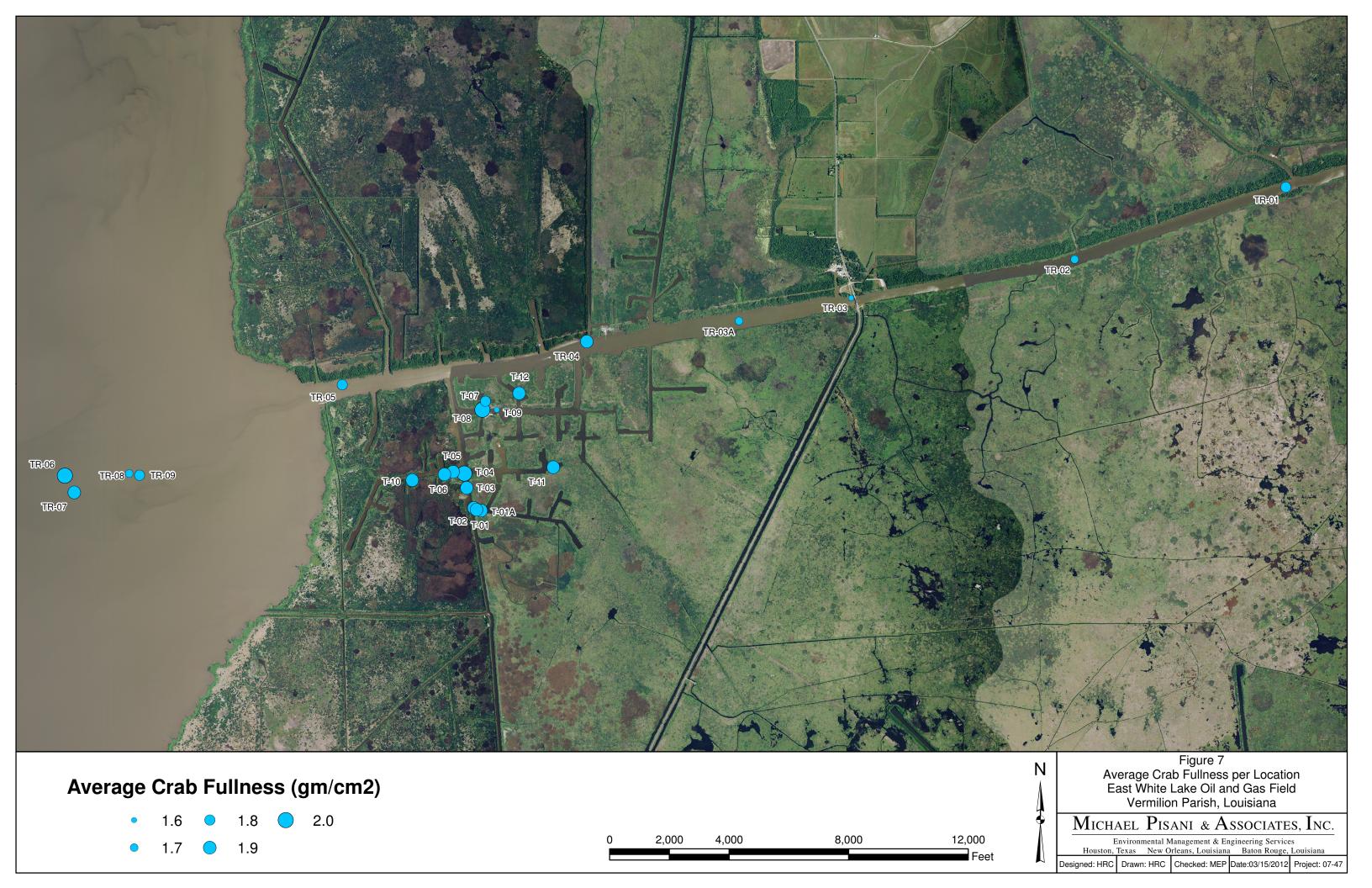

U.S. EPA. 2002a. Quality Assurance Report for the National Study of Chemical Residues in Lake Fish Tissue: Year 1 Analytical Data. United States Environmental protection Agency, Office of Water, Office of Science and Technology, Engineering and Analysis Division. 38 pp.

U.S. EPA. 2002b. Guidance for Quality Assurance Project Plans, EPA QA/G-5 (USEPA 2002).


Figures


East White Lake Oil and Gas Field Vermilion Parish, Louisiana





Tables

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Table 1
Water Chemistry Measurements

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

			Water Sample			Cond	Turb	RDO	
Site ID	Date	Time	Depth [ft]	Temp [C]	pH [pH]	[µS/cm]	[NTU]	[mg/L]	ORP [V]
T-01A	12/15/2010	1237	2.200	11.33	7.09	2871	367.0	9.24	0.16
T-01	12/20/2010	1236	1.000	12.15	7.40	3930	51.3	7.48	0.05
T-02	12/20/2010	1228	1.100	12.58	7.50	3946	48.1	8.37	0.11
T-02	12/21/2010	1104	1.100	13.84	7.40	4019	45.2	8.05	0.01
T-03	12/16/2010	1238	2.000	13.81	7.41	3154	70.1	9.45	0.09
T-04	12/16/2010	1237	1.200	13.61	7.47	3120	110.0	9.27	0.13
T-04	12/20/2010	1222	1.000	12.35	7.45	3965	45.9	8.05	0.14
T-05	12/20/2010	1208	1.100	12.11	7.46	3170	46.4	9.48	0.12
T-05	12/21/2010	1033	1.300	13.40	7.26	3512	46.5	8.95	0.07
T-06	12/16/2010	1215	1.000	13.79	7.25	3145	65.6	9.32	0.26
T-06	12/20/2010	1204	1.170	12.57	7.48	3185	48.2	9.83	0.13
T-07	12/21/2010	1018	1.100	12.97	6.91	2856	88.1	9.12	0.22
T-08	12/20/2010	1147	1.500	11.81	7.53	2768	95.2	9.72	0.15
T-09	12/16/2010	1143	1.500	12.73	6.82	2673	233.0	12.29	0.2
T-10	12/20/2010	1157	1.300	12.34	7.44	3200	48.5	9.30	0.18
T-11	12/21/2010	1053	1.300	13.49	7.41	3358	59.0	8.64	0.02
T-12	12/20/2010	1128	0.890	11.77	7.72	2755	92.3	9.29	0.18
TR-01	12/15/2010	1126	1.400	9.84	6.76	2523	52.0	11.56	0.21
TR-02	12/20/2010	1120	1.900	10.74	7.02	5239	18.2	7.25	0.19
TR-03A	12/14/2010	1507	1.000	8.84	7.49	2303	134.0	11.03	0.19
TR-03	12/20/2010	1107	1.000	11.66	6.99	2944	52.1	11.72	0.22
TR-04	12/14/2010	1450	1.400	9.89	7.45	2361	154.0	10.97	0.19
TR-05	12/14/2010	1440	0.833	8.81	7.50	2263	137.0	11.30	0.22
TR-06	12/14/2010	1347	0.910	8.60	7.40	2267	110.0	11.21	0.24
TR-07	12/14/2010	1350	1.170	8.56	7.44	2249	177.5	11.42	0.21
TR-08	12/14/2010	1425	1.600	8.75	7.44	2243	165.0	11.42	0.24
TR-09	12/14/2010	1400	0.500	8.47	7.44	2198	179.0	11.35	0.18

Notes:

Readings obtained using the In-Situ Troll 9500

Daily calibration conducted using In-Situ Inc, Quik Cal Solution

Table 2 Summary of Crab Measurements

East White Lake Field Vermilion Parish, LA

	SC	CHOO	NER B		J CAN ATION		EFERENCE	EAS	EAST WHITE LAKE REFERENCE LOCATIONS				FORMER OIL AND GAS CANALS													
Crab Habitat				BA	YOU					L	AKE								•	CANAI	LS					
Sample Location ID	TR-01	TR-02	TR-03	TR-03A	TR-04	TR-05	Totals and Averages for TR-01 through TR-05 (BAYOU)	TR-06	TR-07	TR-08	TR-09	Totals and Averages for TR- 06 through TR- 09 (LAKE)	T-01	T-01A	T-02	T-03	T-04	T-05	T-06	T-07	T-08	T-09	T-10	T-11	T-12	Totals and Averages for T- 01 through T- 12 (CANALS)
Total Number of Crabs Collected per Location	11	15	14	12	18	11	81	5	11	10	11	37	11	15	28	17	12	17	18	14	13	5	17	8	14	189.0
Number of Times Trap Was Checked per Location ⁽¹⁾	2	5	3	1	3	1	15	1	1	1	1	4	2	1	3	2	2	3	2	4	3	1	3	3	3	32
Average Crab Weight (gm)	207.0	169.0	171.0	186.0	207.0	235.0	194.0	231.0	240.0	218.0	245.0	233.5	206.0	223.0	222.0	214.0	228.0	210.0	204.0	212.0	255.0	184.0	212.0	226.0	190.0	216
Average Crab Width (cm)	16.0	15.1	15.4	16.0	15.8	18.0	16.0	16.2	17.2	17.3	17.5	17.1	15.6	16.6	16.5	16.4	15.8	16.0	15.9	16.2	17.0	16.2	15.9	16.5	15.4	16.2
Average Crab Length (cm)	7.0	6.4	6.5	6.7	6.7	7.3	6.7	7.1	7.1	7.2	7.5	7.3	6.8	7.2	7.1	6.9	7.1	6.9	6.8	7.1	7.3	6.8	6.9	7.2	6.6	7.0
Average Crab Fullness (gm/cm²)	1.8	1.7	1.6	1.7	1.9	1.8	1.8	2.0	1.9	1.7	1.8	1.9	1.9	1.9	1.9	1.9	2.0	1.9	1.9	1.8	2.0	1.6	1.9	1.9	1.8	1.9

⁽¹⁾ Crab traps were checked and harvested for crabs until a minimum of 5 crabs were collected, as required for lab tissue analysis

cm - centimeter

(gm/cm)² - gram per centimeter squared

07-47East White Lake Summary Table of Crab Measurements Table 2

^{(2) &}quot;Crab fullness" combines crab size and weight, and is calculated as (crab weight in grams)/(crab length x crab width in centimeters) gm - gram

Table 3 Fish Collection Data

East White Lake Field Vermilion Parish, Louisiana

Fish Sampling Location	Fish Collection Date	Time Collected	Method of Collection	Type of Fish	Volume Collected or Number Collected
TR-01	12/15/10	11:26	Hoop net	Lepomis macrochirus	4
TR-02	12/21/10	13:15	Cast net	Dorosoma cepedianum	22
TR-03	12/21/10	14:00	Cast net	Dorosoma cepedianum	30
TR-04	12/21/10	14:20	Cast net	Dorosoma cepedianum	12
TR-04A	12/21/10	14:20	Cast net	Lepomis macrochirus	2
TR-05	1/4/11	9:30	Trawling net	Dorosoma cepedianum	1/2 bucket
TR-06	1/4/11	9:45	Trawling net	Dorosoma cepedianum	approximately 50
TR-07	1/4/11	10:50	Trawling net	Dorosoma cepedianum	1/2 bucket
TR-08	1/4/11	10:05	Trawling net	Dorosoma cepedianum	1/4 bucket
TR-09	1/4/11	10:28	Trawling net	Dorosoma cepedianum	not recorded
T-01	1/5/11	12:30	Trawling net	Dorosoma cepedianum	1/8 of bucket
T-02	1/5/11	12:30	Trawling net	Dorosoma cepedianum	1/8 of bucket
T-03	1/5/11	13:30	Trawling net	Dorosoma cepedianum	1/4 of bucket
T-04	1/5/11	13:40	Trawling net	Dorosoma cepedianum	not recorded
T-05	1/5/11	13:20	Trawling net	Dorosoma cepedianum	1/4 of bucket
T-06	1/5/11	13:50	Trawling net	Dorosoma cepedianum	1/4 of bucket
T-07	1/5/11	15:10	Trawling net	Dorosoma cepedianum	1/3 of bucket
T-08	1/5/11	15:05	Trawling net	Dorosoma cepedianum	1/3 of bucket
T-09	1/5/11	14:55	Trawling net	Dorosoma cepedianum	1/2 of bucket
T-10	1/5/11	13:55	Trawling net		1/2 of bucket
T-11	1/5/11	14:05	Trawling net		1/4 of bucket
T-12	1/5/11	14:45	Trawling net		1/4 of bucket

Lepomis machrochirus - bream/bluegill

Dorosoma cepedianum - shad

A 5-gallon bucket was used for collection and measuring when referencing bucket volume

Table 4 Field Activity Log

East White Lake Field Vermilion Parish, Louisiana

Date	Field Personel	Photograph procedures and sampling area	s Set crab traps at sample locations	Calibrate water quality instrument and record water chemistry	Field planning and safety meeting Assemble supplies and equipment	Check traps for crabs and re-bait traps	Collect crabs from traps Check hoop net for fish	Collect fish from cast net or hoop net	Weigh/measure/package crabs/fish/bait for shipping	Collect fish by trawlling from boat	Additional activities conducted	Complete field documentation and chain of custody forms - Ship samples overnight to lab
12/13/10	Gajan, Helen, Patrick, Mitchell	√	Set crab traps at TR-01 through TR-09, and T-01 through T-12		٧			Tested cast net technique at 2 locations chosen by Gajan and at locations T-07, T-08, T-02, T-06, T-10, and TR-05 and TR-04			Recorded GPS coordinates of all crab trap locations	
12/14/10	Gajan, Helen, Patrick, John	٧		Recorded water chemistry at locations: TR-01, TR-02, TR- 03, TR-03A, TR-04, TR-05, TR-06, TR-07, TR-08, TR-09		Checked traps for crabs at locations: TR-01, TR-02, TR- 03, TR-03A, TR-04 (twice), TR-05, TR-06, TR-07, TR-08, and TR-09	Collected crabs at locations: TR-03A, TR-04, TR-05, TR- 06, TR-07, TR-08, and TR-09		٨		Picked John up from the airport	Recorded and shipped crabs from locations: TR-03A, TR- 04, TR-05, TR-06, TR-07, TR- 08, and TR-09
12/15/10	Gajan, Helen, Patrick, John	٧		Recorded water chemistry at locations TR-01, TR-02, T-01A		Checked traps for crabs at locations TR-01, TR-02, T-01A	Checked hoop net for fish at location TR-01	Collected a bream fish at location TR-01	V			Recorded and shipped crabs from locations: TR-01 and T- 01A, fish from TR-01, and catfish bait
12/16/10	Gajan, Helen, Patrick, John	٧	Set hoop nets at locations: T 07, between T-05 and T-06, and T-12	-Recorded water chemistry at locations T-09, T-06, T-04, T- 03		Checked traps for crabs at locations T-12, T-09, T-08, T- 07, T-05, T-06, T-10, T-04, T- 03, T-02, T-01, T-11, and TR- 02	Collected crabs from T-09, T-06, T-04, and T-03		٧		Had lunch on barge	Recorded and shipped crabs from locations: T-03, T-04, T- 06, and T-09
12/20/10	Gajan, Helen, Patrick, John	√		Measured water chemistry at locations: TR-03, TR-02, T-12, 08, 10, 06, 05, 04, 02, 01	√√ (two meetings)	Checked traps for crabs at: TR 03, TR-02, T-12, 08, 07, 10, 06, 05, 11, 04, 02, 01	-Collected crabs from locations: TR-03, TR-02, T-12, 08, 10, 06, 05, 04, 02, 01		٨			Recorded and shipped crabs from locations: TR-03, TR-02, T-12, T-08, T-10, T-06, T-05, T-04, T-02, and T-01
12/21/10	Gajan, Helen, Patrick, John	V		Recorded water chemistry at locations: T-07, T-05, T-11, T-02		Checked traps for crabs at: T-07, T-05, T-11, and T-02	Collected crabs from locations: T-07, T-05, T-11, and T-02 Checked hoop nets for fish at T-12 and T-09	Collected fish from TR-02, TR 03, TR-04, and TR-04A, and T-02 and T-05	٨			Recorded and shipped crabs from locations: T-02, T-05, T- 07, T-11 and fish from locations TR-02, TR-03, TR- 04, TR-04A, T-02, T-05
1/3/11	Gajan, Helen, Patrick, John	V			٧	Checked traps for crabs at: TR 02, TR-03, TR-04 and T-03,T- 07, T-08, T-10, and T-12	Collected crabs from locations: TR-02, TR-03, TR-04 and T-03, T-07, T-08, T-10, and T-12		٧			Recorded and shipped crabs from locations: TR-02, TR-03, TR-04 and T-03, T-07, T-08, T-10, and T-12
1/4/11	Gajan, Helen, Patrick, John, Robert	V			٧					Collected fish by trawling nets at locations: TR-05, TR-06, TR-08, TR-09, and TR-07	Suspended fish trawling to update scientific fish collection permit with Louisiana Department of Wildlife and Fisheries	
1/5/11	Helen, Patrick, John, Robert, Deckhand	√			٧				٨	Collected fish by trawling nets at locations: T-01, T-02, T-05, T-03, T-04, T-06, T-10, T-11, T-12, T-09, T-08, and T-07	Obtained updated scientific fish collection permit from Louisiana Department of Wildlife and Fisheries	-
1/6/11												Shipped fish collected at locations: T-01, T-02, T-05, T-03, T-04, T-06, T-10, T-11, T-12, T-09, T-08, T-07, and TR-05, TR-06, TR-08, TR-09, and TR-07

07-47 EWL Field Activity Log Table 4 1 of 1

GPS coordinates were measured using a handheld DeLorme Earthmate PN-40
Field personnel included Helen Connelly (Michael Pisani & Associates), Patrick Ritchie (Michael Pisani & Associates), John Rodgers (Clemson University), Julian Gajan (fisherman), Mitchell (deckhand), Robert (trawling boat captain)
Weight of crabs and fish was measured using a digital tabletop scale in grams
Water chemistry measurements were made using an In-Situ Troll 9500. Daily calibration was performed using In-Situ Inc, Quik Cal Solution. Measurements included: RDO, Temp, pH, Conductivity, ORP, Turbidity, Depth, and Time

Crab Sampling Location	Crab Collection Date	Gender (M/F)	Length (cm)	Width (cm)	Weight (gm)	Fullness [Weight/(length x width)] (gm/cm²)
Crab Sampling Location	Date	(NI/F)	(CIII)	(CIII)	(giii)	(gni/cni)
TR-01	12/15/10	M	7.0	17.0	258	2.2
	12/15/10	M	7.5	16.0	243	2.0
	12/15/10	M	7.0	14.5	162	1.6
	12/15/10	M	6.0	13.5	125	1.5
	12/15/10	F	7.5	17.5	209	1.6
	12/15/10	M	7.5	17.0	267	2.1
	12/15/10	M	7.5	17.0	213	1.7
	12/15/10	M	7.5	17.0	211	1.7
	12/15/10	M	6.5	16.0	202	1.9
	12/15/10	M	5.5	13.0	101	1.4
	12/15/10	M	8.0	17.0	283	2.1
TR-01 - Totals and Averages		11	7.0	16.0	207	1.8
TR-02	12/20/10	M	6.0	14.0	146	1.7
111 02	12/20/10	M	6.5	14.5	172	1.8
	12/20/10	M	6.0	14.5	160	1.8
	12/20/10	M	7.0	16.5	217	1.9
	12/20/10	M	6.5	15.5	204	2.0
	01/03/11	M	6.0	13.5	143	1.8
	01/03/11	F	6.0	15.0	128	1.4
	01/03/11	F	7.5	17.0	186	1.5
	01/03/11	M	5.5	13.0	116	1.6
	01/03/11	F	7.5	18.0	201	1.5
	01/03/11	M	6.5	15.0	174	1.8
	01/03/11	M	7.5	18.5	256	1.8
	01/03/11	M	6.0	14.0	148	1.8
	01/03/11	F	6.0	15.0	139	1.5
	01/03/11	M	5.5	12.5	139	2.0
TR-02 - Totals and Averages		15	6.4	15.1	169	1.7
TR-03	12/20/10	M	6.0	14.5	135	1.6
1 K-03	12/20/10	F	6.0	15.5	108	1.2
	12/20/10	M	6.5	15.0	162	1.7
	12/20/10	F	6.0	13.5	124	1.5
	12/20/10	F	6.0	14.5	121	1.4
	12/20/10	F	6.5	17.0	194	1.8
	12/20/10	M	8.5	20.0	383	2.3
	01/03/11	M	7.5	17.5	138	1.1
	01/03/11	M	7.5	15.0	318	2.8
	01/03/11	F	5.5	13.0	107	1.5
	01/03/11	F	6.0	14.5	135	1.6
	01/03/11	F	7.5	18.0	229	1.7
	01/03/11	M	6.0	13.0	118	1.5
	01/03/11	M	6.0	15.0	127	1.4
TR-03 - Totals and Averages	-	14	6.5	15.4	171	1.6

Crab Sampling Location	Crab Collection Date	Gender (M/F)	Length (cm)	Width (cm)	Weight (gm)	Fullness [Weight/(length x width)] (gm/cm²)
TR-03A	12/14/10	M	8.0	17.0	298	2.2
111 00.1	12/14/10	M	6.0	14.5	141	1.6
	12/14/10	F	6.0	15.5	146	1.6
	12/14/10	F	7.0	17.0	181	1.5
	12/14/10	M	5.5	14.0	152	2.0
	12/14/10	M	7.0	16.0	209	1.9
	12/14/10	F	7.0	19.0	191	1.4
	12/14/10	M	6.5	16.0	201	1.9
	12/14/10	M	6.0	14.5	149	1.7
	12/14/10	F	6.0	14.5	132	1.5
	12/14/10	F	7.0	16.5	167	1.4
	12/14/10	M	8.0	18.0	259	1.8
TR-03A - Totals and Averages	3	12	6.7	16.0	186	1.7
TR-04	12/14/10	M	6.0	16.0	167	1.7
18.04	12/14/10	M	8.0	20.0	305	1.9
	12/14/10	M	5.5	14.0	122	1.6
	12/14/10	M	5.5	13.5	116	1.6
	12/14/10	M	6.0	12.5	127	1.7
	12/14/10	M	5.5	13.5	118	1.6
	12/14/10	M	6.0	15.0	161	1.8
	12/14/10	F	6.0	13.0	98	1.3
	01/03/11	M	8.5	19.0	424	2.6
	01/03/11	M	8.0	20.0	403	2.5
	01/03/11	M	5.5	13.0	130	1.8
	01/03/11	M	6.5	13.5	149	1.7
	01/03/11	M	7.5	17.5	291	2.2
	01/03/11	F	7.5	19.0	267	1.9
	01/03/11	F	7.5	17.0	219	1.7
	01/03/11	F	7.5	18.0	224	1.7
	01/03/11	F	6.5	15.0	125	1.3
	01/03/11	M	7.5	15.5	274	2.4
TR-04 - Totals and Averages	3	18	6.7	15.8	207	1.9
TR-05	12/14/10	M	7.0	17.0	262	2.2
1K 00	12/14/10	F	7.5	18.5	127	0.9
	12/14/10	F	7.0	18.0	189	1.5
	12/14/10	F	7.0	17.0	194	1.6
	12/14/10	F	8.0	20.0	344	2.2
	12/14/10	F	8.0	18.5	289	2.0
	12/14/10	M	8.0	19.5	373	2.4
	12/14/10	F	6.0	15.5	134	1.4
	12/14/10	M	7.5	18.5	273	2.0
	12/14/10	M	7.0	17.5	227	1.9
	12/14/10	F	7.0	18.0	172	1.4
TR-05 - Totals and Averages	- S	11	7.3	18.0	235	1.8

East White Lake Field Vermilion Parish, Louisiana

Crab Sampling Location	Crab Collection Date	Gender (M/F)	Length (cm)	Width (cm)	Weight (gm)	Fullness [Weight/(length x width)] (gm/cm²)
TR-06	12/14/10	M	7.5	16.5	269	2.2
1 K-00	12/14/10	M	7.0	16.0	232	2.1
	12/14/10	F	7.5	17.0	222	1.7
	12/14/10	M	6.5	15.0	179	1.8
	12/14/10	M	7.0	16.5	253	2.2
TR-06 - Totals and Averages	3	5	7.1	16.2	231	2.0
TR-07	12/14/10	М	7.5	17.0	200	2.3
1 K-0/	12/14/10 12/14/10	M M	7.5 7.5	17.0 18.0	288 258	2.3 1.9
	12/14/10	M	6.5	16.5	186	1.7
	12/14/10	F	7.5	19.5	256	1.8
	12/14/10	M	7.5	17.5	283	2.2
	12/14/10	M	8.0	18.0	323	2.2
	12/14/10	F	6.5	16.0	162	1.6
	12/14/10	M	7.5	18.0	254	1.9
	12/14/10	M	8.5	20.0	358	2.1
	12/14/10	F	5.5	14.5	128	1.6
	12/14/10	M	6.0	14.0	140	1.7
TR-07 - Totals and Averages	-	11	7.1	17.2	240	1.9
TR-08	12/14/10	F	7.0	16.5	187	1.6
1K-00	12/14/10	M	6.5	16.0	187	1.8
	12/14/10	F	7.5	18.0	228	1.7
	12/14/10	F	6.5	17.5	147	1.3
	12/14/10	F	7.0	16.5	207	1.8
	12/14/10	F	8.5	19.5	292	1.8
	12/14/10	M	7.5	17.5	217	1.7
	12/14/10	M	8.0	18.5	302	2.0
	12/14/10	M	6.0	14.5	152	1.7
	12/14/10	M	7.5	18.0	263	1.9
TR-08 - Totals and Averages	3	10	7.2	17.3	218	1.7
TR-09	12/14/10	F	7.5	18.0	231	1.7
1K-07	12/14/10	M	8.0	19.0	293	1.9
	12/14/10	F	7.0	16.0	199	1.8
	12/14/10	F	7.0	17.0	174	1.5
	12/14/10	M	7.5	17.0	279	2.2
	12/14/10	F	8.0	19.0	298	2.0
	12/14/10	F	7.5	17.5	221	1.7
	12/14/10	F	9.0	18.5	347	2.1
	12/14/10	M	6.5	15.0	143	1.5
	12/14/10	M	7.0	15.5	173	1.6
	12/14/10	M	8.0	19.5	339	2.2
TR-09 - Totals and Averages	- S	11	7.5	17.5	245	1.8

 $Note: One \ female \ crab \ was \ dead \ and \ not \ shipped \ from \ TR-06 \ on \ 12/14/10. \ A \ total \ of \ 5 \ crabs \ were \ shipped \ from \ TR-06 \ on \ 12/14/10.$

Crab Sampling Location	Crab Collection Date	Gender (M/F)	Length (cm)	Width (cm)	Weight (gm)	Fullness [Weight/(length x width)] (gm/cm²)
T-01	12/20/10	M	7.0	16.0	171	1.5
	12/20/10	M	6.5	14.5	180	1.9
	12/20/10	M	6.5	14.0	177	1.9
	12/20/10	M	7.0	16.5	234	2.0
	12/20/10	M	7.5	17.0	255	2.0
	12/20/10	M	7.0	16.5	222	1.9
	12/20/10	M	7.5	18.0	273	2.0
	12/20/10	M	7.0	16.0	213	1.9
	12/20/10	M F	5.5	12.0	139	2.1
	12/20/10 12/20/10	M	6.0 7.5	14.5 16.5	148 253	1.7 2.0
TR-01 - Totals and Averages	-	11	6.8	15.6	206	1.9
TR-01 - Totals and Averages	'	11	0.8	13.0	200	1.9
T-01A	12/15/10	M	6.5	14.0	186	2.0
	12/15/10	M	7.0	16.0	219	2.0
	12/15/10	M	7.0	16.5	175	1.5
	12/15/10 12/15/10	M M	7.5 7.0	17.0 17.0	263 205	2.1 1.7
	12/15/10	M	7.5	18.0	240	1.8
	12/15/10	M	7.0	15.5	213	2.0
	12/15/10	M	7.0	16.0	234	2.1
	12/15/10	F	7.5	18.5	219	1.6
	12/15/10	M	7.0	15.0	205	2.0
	12/15/10	M	6.5	15.0	181	1.9
	12/15/10	M	6.5	16.0	197	1.9
	12/15/10	M	8.0	18.0	294	2.0
	12/15/10	M	7.5	18.0	247	1.8
	12/15/10	F	8.0	18.5	263	1.8
T-01A - Totals and Averages		15	7.2	16.6	223	1.9
T-02	12/20/10	M	5.5	13.0	115	1.6
	12/20/10	M	7.5	16.0	258	2.2
	12/20/10	F	8.0	18.0	276	1.9
	12/20/10	M	6.5	16.0	180	1.7
	12/20/10	M	7.0	16.0	229	2.0
	12/20/10	M	7.0	18.0	238 276	1.9 1.9
	12/20/10 12/20/10	M M	7.5 6.5	19.0 15.5	174	1.7
	12/20/10	M	6.5	15.0	196	2.0
	12/20/10	M	7.0	17.5	244	2.0
	12/20/10	M	7.5	16.0	284	2.4
	12/21/10	M	6.0	14.5	129	1.5
	12/21/10	M	7.5	16.0	232	1.9
	12/21/10	M	8.0	19.0	328	2.2
	12/21/10	M	7.0	16.5	219	1.9
	12/21/10	M	7.0	16.5	212	1.8
	12/21/10	M	7.5	18.0	246	1.8
	12/21/10 12/21/10	M M	7.5 6.5	17.0 15.5	270	2.1 1.4
	12/21/10	M M	6.5	15.5 16.0	145 179	1.4
	12/21/10	M	7.0	16.5	213	1.8
	12/21/10	M	8.0	18.5	238	1.6
	12/21/10	M	7.0	15.0	186	1.8
	12/21/10	M	8.0	18.0	292	2.0
	12/21/10	M	6.5	16.0	207	2.0
	12/21/10	M	7.0	15.0	168	1.6
	12/21/10	M	7.5	16.0	211	1.8
	12/21/10	M	8.0	17.0	260	1.9
T-02 - Totals and Averages	1	28	7.1	16.5	222	1.9

Crab Sampling Location	Crab Collection Date	Gender (M/F)	Length (cm)	Width (cm)	Weight (gm)	Fullness [Weight/(length x width)] (gm/cm²)
T-03	12/16/10	M	6.5	15.5	178	1.8
	12/16/10	M	7.0	15.0	212	2.0
	12/16/10	M	7.0	16.0	194	1.7
	12/16/10	M	5.5	13.5	130	1.8
	12/16/10	M	6.0	13.5	156	1.9
	01/03/11	M	7.0	17.0	195	1.6
	01/03/11	M	7.5	18.0	249	1.8
	01/03/11	M	6.5	15.0	201	2.1
	01/03/11	F	7.5	19.0	263	1.8
	01/03/11	M	6.5	15.5	183	1.8
	01/03/11	M	7.5	17.5	261	2.0
	01/03/11	M	7.0	17.5	229	1.9
	01/03/11	M	6.5	14.5	168	1.8
	01/03/11	F	7.5	18.5	203	1.5
	01/03/11	M	7.0	16.0	287	2.6
	01/03/11	F	7.5	18.5	265	1.9
T.02 T. 1	01/03/11	F	8.0	19.0	268	1.8
T-03 - Totals and Averages		17	6.9	16.4	214	1.9
T-04	12/16/10	M	7.0	16.0	201	1.8
1 04	12/16/10	M	7.5	17.5	289	2.2
	12/16/10	M	6.5	14.5	172	1.8
	12/16/10	M	6.5	15.0	182	1.9
	12/16/10	M	8.0	18.0	298	2.1
	12/20/10	M	6.0	11.5	176	2.6
	12/20/10	M	6.5	13.5	148	1.7
	12/20/10	M	7.0	16.5	281	2.4
	12/20/10	M	7.5	16.0	237	2.0
	12/20/10	M	7.5	17.5	239	1.8
	12/20/10	M	7.5	15.5	209	1.8
	12/20/10	M	8.0	18.0	301	2.1
T-04 - Totals and Averages	1	12	7.1	15.8	228	2.0
T-05	12/20/10	F	7.5	18.5	217	1.6
1 02	12/20/10	M	7.0	16.0	211	1.9
	12/20/10	M	6.5	14.5	151	1.6
	12/20/10	M	7.0	17.0	262	2.2
	12/20/10	M	7.5	17.5	251	1.9
	12/20/10	M	8.5	20.0	362	2.1
	12/20/10	M	6.0	13.5	169	2.1
	12/20/10	M	5.5	13.0	127	1.8
	12/21/10	M	6.5	15.0	174	1.8
	12/21/10	M	6.5	14.0	173	1.9
	12/21/10	M	7.0	15.5	188	1.7
	12/21/10	M	8.0	18.0	292	2.0
	12/21/10	F	7.5	17.5	227	1.7
	12/21/10	M	6.5	14.5	161	1.7
	12/21/10	M	6.5	15.0	177	1.8
	12/21/10 12/21/10	M M	7.0 7.0	16.5 16.0	211 222	1.8 2.0
T-05 - Totals and Averages	-	17	6.9	16.0	210	1.9

T-06 12/16/10 M 7.0 16.0 214 1.9 1.21/16/10 M 6.5 16.0 199 1.9 1.9 1.21/16/10 M 6.5 14.5 139 1.5 1.21/16/10 M 7.0 17.5 221 1.8 1.21/16/10 M 6.5 16.0 193 1.9 1.5 12/16/10 F 7.0 15.5 184 1.7 1.21/16/10 M 7.0 16.5 233 2.0 1.21/16/10 M 7.0 16.5 233 2.0 1.21/16/10 M 6.5 14.0 198 2.2 1.22/20/10 M 7.0 16.5 233 2.0 1.22/20/10 M 7.0 17.0 192 1.6 1.22/20/10 M 7.0 17.0 192 1.6 1.22/20/10 M 7.0 15.5 172 1.6 1.22/20/10 M 7.0 15.5 172 1.6 1.22/20/10 M 7.0 15.5 215 1.9 1.22/20/10 M 7.0 15.5 215 1.9 1.22/20/10 M 8.0 19.5 309 2.0 1.22/20/10 M 6.5 14.5 174 1.8 1.22/20/10 M 6.5 14.5 174 1.8 1.22/20/10 M 6.5 14.5 174 1.8 1.22/20/10 M 6.0 15.0 154 1.7 1.22/20/10 M 6.0 15.0 154 1.7 1.22/20/10 M 6.5 16.5 231 2.2 1.5	Crab Sampling Location	Crab Collection Date	Gender (M/F)	Length (cm)	Width (cm)	Weight (gm)	Fullness [Weight/(length x width)] (gm/cm²)
12/16/10 M 6.5 16.0 199 1.9 12/16/10 M 6.5 16.0 193 1.5 12/16/10 M 7.0 17.5 221 1.8 12/16/10 F 7.0 15.5 184 1.7 12/16/10 M 7.0 16.5 233 2.0 12/16/10 M 7.0 16.5 233 2.0 12/16/10 M 7.0 16.5 233 2.0 12/16/10 M 6.5 14.0 198 2.2 12/20/10 M 7.0 17.0 192 1.6 12/20/10 M 7.0 15.5 172 1.6 12/20/10 M 7.0 15.5 172 1.6 12/20/10 M 7.0 15.5 172 1.6 12/20/10 M 8.0 16.5 298 2.3 12/20/10 M 8.0 19.5 309 2.0 12/20/10 M 8.0 19.5 309 2.0 12/20/10 M 6.5 14.5 174 1.8 12/20/10 M 6.5 14.5 174 1.8 12/20/10 M 6.5 16.5 231 2.2 T-06 - Totals and Averages 18 6.8 15.9 204 1.9 T-07 12/21/10 F 7.0 16.0 171 1.5 12/21/10 M 7.0 15.5 197 1.8 12/21/10 M 8.0 18.0 275 1.9 12/21/10 M 8.0 18.0 275 1.9 12/21/10 M 8.0 17.5 288 2.1 01/03/11 M 8.0 17.5 288 2.1 01/03/11 M 6.0 14.0 132 1.6 01/03/11 M 6.0 14.0 132 1.6 01/03/11 M 6.0 14.5 156 1.8 01/03/11 M 6.0 14.5 156 1.8 01/03/11 M 6.0 14.5 156 1.8 01/03/11 M 7.0 16.0 246 2.2 01/03/11 M 7.0 16.0 246 2.2 01/03/11 M 7.0 16.0 224 2.0 12/20/10 F 7.0 16.5 214 1.9 12/20/10 F 7.0 16.5 244 2.9 12/20/10 F 7.5 16.0 167 1.4 T-07 - Totals and Averages 14 7.1 16.2 212 1.8 T-08 12/20/10 M 7.0 16.5 244 2.2 12/20/10 F 6.5 16.0 171 1.6 01/03/11 M 7.5 16.0 208 1.7 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 7.5 1							
1216/10	T-06						
12/16/10 M 7,0 17,5 221 1.8 12/16/10 F 7,0 15,5 184 1.7 12/16/10 M 7,0 16,5 233 2.0 12/16/10 M 7,0 16,5 233 2.0 12/16/10 M 6,5 14,0 198 2.2 12/20/10 M 6,5 14,5 178 1.9 12/20/10 M 6,5 14,5 178 1.9 12/20/10 M 7,0 17,0 192 1.6 12/20/10 M 7,0 15,5 172 1.6 12/20/10 M 8,0 19,5 309 2.0 12/20/10 M 6,0 14,0 167 2.0 12/20/10 M 6,0 14,0 167 2.0 12/20/10 M 6,0 14,0 167 2.0 12/20/10 M 6,5 16,5 231 2.2 T-06 - Totals and Averages 18 6.8 15,9 204 1.9 T-07 12/21/10 M 7,0 15,5 197 1.8 12/21/10 M 7,0 15,5 240 1.8 01/03/11 M 6,5 15,0 166 1.7 01/03/11 M 7,0 16,0 246 2.2 01/03/11 M 7,0 16,0 246 2.2 12/20/10 M 7,5 1,0 287 2.3 12/20/10 M 7,5 1,0 287 2.3 12/20/10 F 7,0 16,5 244 2.0 12/20/10 F 7,0 16,5 244 2.2 12/20/10 F 7,0 16,5 244 2.3 12/20/10 M 7,5 15,0 296 2.2							
12/16/10							
1216/10							
12/16/10 M 7.0 16.5 233 2.0 12/16/10 M 6.5 14.0 198 2.2 12/20/10 M 6.5 14.5 178 1.9 12/20/10 M 6.5 14.5 178 1.9 12/20/10 M 8.0 16.5 298 2.3 12/20/10 M 7.0 15.5 172 1.6 12/20/10 M 7.0 15.5 172 1.6 12/20/10 M 7.0 16.5 215 1.9 12/20/10 M 8.0 19.5 309 2.0 12/20/10 M 6.5 14.5 174 1.8 12/20/10 M 6.0 14.0 167 2.0 12/20/10 M 6.0 15.0 154 1.7 12/20/10 M 6.0 15.0 154 1.7 12/20/10 M 6.8 15.9 204 1.9 T-06 - Totals and Averages 18 6.8 15.9 204 1.9 T-07 12/21/10 M 7.0 15.0 191 1.8 12/21/10 M 7.0 15.5 197 1.8 12/21/10 M 7.5 17.5 240 1.8 01/03/11 M 8.0 19.0 297 2.0 01/03/11 M 8.0 19.0 297 2.0 01/03/11 M 8.0 17.5 288 2.1 01/03/11 M 8.0 17.5 288 2.1 01/03/11 M 6.0 14.0 132 1.6 01/03/11 M 7.0 16.5 226 2.0 01/03/11 M 7.0 16.0 210 1.9 01/03/11 M 7.0 16.0 246 2.2 01/03/11 M 7.0 16.0 246 2.2 01/03/11 M 7.0 16.0 246 2.2 01/03/11 M 7.0 16.0 244 2.0 12/20/10 F 7.5 16.0 167 1.4 T-07 - Totals and Averages 14 7.1 16.2 212 1.8 T-08 12/20/10 M 7.5 17.0 287 2.3 12/20/10 F 7.5 16.0 208 1.7 01/03/11 M 7.5 16.0 254 2.3 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 7.5 15.0 296 2.2							
12/16/10							
12/20/10 M 6.5 14.5 178 1.9 12/20/10 M 7.0 17.0 192 1.6 12/20/10 M 8.0 16.5 298 2.3 12/20/10 M 7.0 15.5 172 1.6 12/20/10 M 7.0 15.5 172 1.6 12/20/10 M 7.0 16.5 215 1.9 12/20/10 M 8.0 19.5 309 2.0 12/20/10 M 6.0 14.5 174 1.8 12/20/10 M 6.0 14.0 167 2.0 12/20/10 M 6.0 15.0 154 1.7 12/20/10 M 6.0 15.0 154 1.7 12/20/10 M 6.8 15.9 204 1.9 T-06 - Totals and Averages 18 6.8 15.9 204 1.9 T-07 12/21/10 M 7.0 15.0 191 1.8 12/21/10 M 7.0 15.5 197 1.8 12/21/10 M 7.5 17.5 240 1.8 01/03/11 M 8.0 19.0 297 2.0 01/03/11 M 8.0 19.0 297 2.0 01/03/11 M 8.0 17.5 288 2.1 01/03/11 M 8.0 17.5 288 2.1 01/03/11 M 6.0 14.0 132 1.6 01/03/11 M 6.0 14.0 132 1.6 01/03/11 M 7.0 16.0 210 1.9 01/03/11 M 7.0 16.0 246 2.2 20 10/03/11 M 7.0 16.0 246 2.2 20 12/20/10 F 7.5 16.0 167 1.4 T-07 - Totals and Averages 14 7.1 16.2 212 1.8 T-08 12/20/10 M 7.5 16.0 167 1.4 T-07 - Totals and Averages 14 7.1 16.2 212 1.8 T-08 12/20/10 F 7.5 16.0 167 1.4 T-07 - Totals and Averages 14 7.1 16.2 212 2.8 T-08 12/20/10 M 7.5 16.0 208 1.7 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 8.0 18.0 296 2.2							
12/20/10 M 7.0 17.0 192 1.6 12/20/10 M 8.0 16.5 298 2.3 12/20/10 M 7.0 15.5 172 1.6 12/20/10 M 7.0 16.5 215 1.9 12/20/10 M 8.0 19.5 309 2.0 12/20/10 M 6.5 14.5 174 1.8 12/20/10 M 6.0 14.0 167 2.0 12/20/10 M 6.0 15.0 154 1.7 12/20/10 M 6.5 16.5 231 2.2 T-06 - Totals and Averages 18 6.8 15.9 204 1.9 T-07 12/21/10 M 7.0 15.0 191 1.8 12/21/10 F 7.0 16.0 171 1.5 12/21/10 M 7.0 15.5 197 1.8 12/21/10 M 8.0 18.0 275 1.9 12/21/10 M 7.5 17.5 240 1.8 01/03/11 M 8.0 19.0 297 2.0 01/03/11 M 6.5 15.0 166 1.7 01/03/11 M 6.5 15.0 166 1.7 01/03/11 M 7.0 16.5 226 2.0 01/03/11 M 7.0 16.5 226 2.0 01/03/11 M 7.0 16.5 226 2.0 01/03/11 M 7.0 16.0 210 1.9 01/03/11 M 7.0 16.0 224 2.0 01/03/11 M 7.0 16.0 246 2.2 12/20/10 M 7.5 17.0 287 2.3 12/20/10 M 7.5 17.0 287 2.3 12/20/10 M 7.0 16.0 246 2.2 12/20/10 F 7.5 16.0 167 1.4 T-07 - Totals and Averages 14 7.1 16.2 212 1.8 T-08 12/20/10 M 7.0 17.5 264 2.2 12/20/10 F 7.5 16.0 167 1.4 T-07 - Totals and Averages 14 7.1 16.2 212 1.8 T-08 12/20/10 M 7.0 17.5 264 2.2 12/20/10 F 7.5 16.0 208 1.7 12/20/10 F 7.5 15.0 254 2.3 12/20/10 F 7.5 15.0 254 2.							
12/20/10 M 8.0 16.5 298 2.3 12/20/10 M 7.0 15.5 172 1.6 12/20/10 M 7.0 16.5 215 1.9 12/20/10 M 8.0 19.5 309 2.0 12/20/10 M 6.5 14.5 174 1.8 12/20/10 M 6.0 14.0 167 2.0 12/20/10 M 6.0 15.0 154 1.7 12/20/10 M 6.5 16.5 231 2.2 T-06 - Totals and Averages 18 6.8 15.9 204 1.9 T-07 12/21/10 M 7.0 15.0 191 1.8 12/21/10 M 7.0 15.5 197 2.0 12/21/10 M 7.0 15.5 197 2.0 01/03/11 M 8.0 19.0 297 2.0 01/03/11 M 8.0 19.0 297 2.0 01/03/11 M 8.0 17.5 240 1.8 01/03/11 M 6.5 15.0 166 1.7 01/03/11 M 7.0 16.5 226 2.0 01/03/11 M 7.0 16.5 226 2.0 01/03/11 M 7.0 16.0 210 1.9 01/03/11 M 7.0 16.0 210 1.9 01/03/11 M 7.0 16.0 246 2.2 12/20/10 M 7.5 17.0 287 2.3 12/20/10 M 7.5 17.0 287 2.3 12/20/10 F 7.0 16.0 214 1.9 12/20/10 F 7.0 16.0 224 2.0 12/20/10 F 7.0 16.5 214 1.9 12/20/10 F 7.0 16.5 244 2.0 12/20/10 F 7.5 16.0 296 2.2 01/03/11 M 8.0 18.0 256 1.8 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 7.5 15.0 296 2.2							
12/20/10 M 7.0 15.5 172 1.6 12/20/10 M 8.0 19.5 309 2.0 12/20/10 M 6.5 14.5 174 1.8 12/20/10 M 6.0 14.0 167 2.0 12/20/10 M 6.0 14.0 167 2.0 12/20/10 M 6.5 16.5 231 2.2 1.7 12/20/10 M 6.5 16.5 231 2.2 1.9 1.5							
12/20/10 M 7.0 16.5 215 1.9 12/20/10 M 8.0 19.5 309 2.0 12/20/10 M 6.5 14.5 174 1.8 12/20/10 M 6.0 14.0 167 2.0 12/20/10 M 6.0 15.0 154 1.7 12/20/10 M 6.5 16.5 231 2.2 T-06 - Totals and Averages 18 6.8 15.9 204 1.9 T-07 12/21/10 M 7.0 15.0 191 1.8 12/21/10 M 7.0 15.5 197 1.8 12/21/10 M 7.0 15.5 197 1.8 12/21/10 M 8.0 18.0 275 1.9 12/21/10 M 8.0 18.0 275 1.9 12/21/10 M 8.0 19.0 297 2.0 01/03/11 M 8.0 19.0 297 2.0 01/03/11 M 8.0 17.5 288 2.1 01/03/11 M 7.0 16.5 226 2.0 01/03/11 M 7.0 16.5 226 2.0 01/03/11 M 7.0 16.0 210 1.9 01/03/11 M 7.0 16.0 210 1.9 01/03/11 M 7.0 16.0 246 2.2 01/03/11 M 7.0 16.5 214 1.9 12/20/10 F 7.5 16.0 167 1.4 T-07 - Totals and Averages 14 7.1 16.2 212 1.8 T-08 12/20/10 M 7.5 17.0 287 2.3 12/20/10 F 7.5 16.0 206 171 1.6 01/03/11 M 8.0 18.0 256 1.8 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 7.5 15.0 256 2.2 01/03/11 M 7.5 15.0 256 2.2 01/03/11 M 7.5 15.0 256 2.2							
12/20/10 M 8.0 19.5 309 2.0 12/20/10 M 6.5 14.5 174 1.8 12/20/10 M 6.0 14.0 167 2.0 12/20/10 M 6.0 15.0 154 1.7 12/20/10 M 6.5 16.5 231 2.2 T-06 - Totals and Averages 18 6.8 15.9 204 1.9 T-07 12/21/10 M 7.0 15.0 191 1.8 12/21/10 F 7.0 16.0 171 1.5 12/21/10 M 7.0 15.5 197 1.8 12/21/10 M 8.0 18.0 275 1.9 12/21/10 M 7.5 17.5 240 1.8 01/03/11 M 8.0 19.0 297 2.0 01/03/11 M 8.0 17.5 288 2.1 01/03/11 M 8.0 17.5 288 2.1 01/03/11 M 7.0 16.5 226 2.0 01/03/11 M 7.0 16.5 226 2.0 01/03/11 M 7.0 16.0 210 1.9 01/03/11 M 7.0 16.0 246 2.2 01/03/11 M 7.5 16.0 167 1.4 T-08 12/20/10 M 7.0 17.5 264 2.2 12/20/10 F 7.0 16.5 214 1.9 12/20/10 F 7.5 16.0 205 1.8 01/03/11 M 8.0 18.0 256 1.8 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 7.0 17.5 240 2.0 01/03/11 M 7.5 15.0 256 2.2							
12/20/10 M 6.5 14.5 174 1.8 12/20/10 M 6.0 14.0 167 2.0 12/20/10 M 6.0 15.0 154 1.7 12/20/10 M 6.5 16.5 231 2.2 1.8 1.7 1.8 1.8 1.7 1.8 1.7 1.8 1.8 1.7 1.8							
12/20/10 M 6.0 14.0 167 2.0 12/20/10 M 6.0 15.0 154 1.7 12/20/10 M 6.5 16.5 231 2.2 T-06 - Totals and Averages 18 6.8 15.9 204 1.9 T-07 12/21/10 M 7.0 15.0 191 1.8 12/21/10 F 7.0 16.0 171 1.5 12/21/10 M 7.0 15.5 197 1.8 12/21/10 M 8.0 18.0 275 1.9 12/21/10 M 8.0 17.5 240 1.8 01/03/11 M 8.0 17.5 288 2.1 01/03/11 M 8.0 17.5 288 2.1 01/03/11 M 7.0 16.5 226 2.0 01/03/11 M 7.0 16.5 226 2.0 01/03/11 M 7.0 16.0 210 1.9 01/03/11 M 7.0 16.0 246 2.2 01/03/11 M 7.0 16.0 246 2.2 01/03/11 F 7.5 16.0 167 1.4 T-07 - Totals and Averages 14 7.1 16.2 212 1.8 T-08 12/20/10 M 7.0 17.5 264 2.2 12/20/10 F 7.0 16.5 214 1.9 12/20/10 F 7.0 16.5 214 1.9 12/20/10 F 7.0 16.5 214 1.9 12/20/10 F 7.5 16.0 208 1.7 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 8.0 19.0 351 2.3 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 7.5 15.0 296 2.2							
12/20/10							
T-06 - Totals and Averages 18							
T-06 - Totals and Averages 18 6.8 15.9 204 1.9 T-07 12/21/10 M 7.0 15.0 191 1.8 12/21/10 F 7.0 16.0 171 1.5 12/21/10 M 7.0 15.5 197 1.8 12/21/10 M 8.0 18.0 275 1.9 12/21/10 M 8.0 18.0 275 1.9 12/21/10 M 7.5 17.5 240 1.8 01/03/11 M 8.0 19.0 297 2.0 01/03/11 M 8.0 17.5 288 2.1 01/03/11 M 8.0 17.5 288 2.1 01/03/11 M 7.0 16.5 226 2.0 01/03/11 M 7.0 16.5 226 2.0 01/03/11 M 7.0 16.0 210 1.9 01/03/11 M 7.0 16.0 210 1.9 01/03/11 M 7.0 16.0 210 1.9 01/03/11 F 7.5 16.0 167 1.4 T-07 - Totals and Averages 14 7.1 16.2 212 1.8 T-08 12/20/10 M 7.0 16.5 214 1.9 12/20/10 F 7.0 16.5 214 1.9 12/20/11 M 8.0 18.0 256 1.8 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 8.0 19.0 351 2.3							
T-07		-					
12/21/10	T-06 - Totals and Averages	3	18	6.8	15.9	204	1.9
12/21/10	T. 07	12/21/10	M	7.0	15.0	101	1.0
12/21/10 M 7.0 15.5 197 1.8 12/21/10 M 8.0 18.0 275 1.9 12/21/10 M 7.5 17.5 240 1.8 01/03/11 M 8.0 19.0 297 2.0 01/03/11 M 8.0 17.5 288 2.1 01/03/11 M 8.0 17.5 288 2.1 01/03/11 M 7.0 16.5 226 2.0 01/03/11 M 7.0 16.5 226 2.0 01/03/11 M 7.0 16.0 210 1.9 01/03/11 M 7.0 16.0 246 2.2 01/03/11 M 7.0 16.0 246 2.2 01/03/11 F 7.5 16.0 167 1.4 T-07 - Totals and Averages	1-0/						
12/21/10 M 8.0 18.0 275 1.9 12/21/10 M 7.5 17.5 240 1.8 01/03/11 M 8.0 19.0 297 2.0 01/03/11 M 6.5 15.0 166 1.7 01/03/11 M 8.0 17.5 288 2.1 01/03/11 M 7.0 16.5 226 2.0 01/03/11 M 7.0 16.5 226 2.0 01/03/11 M 7.0 16.0 210 1.9 01/03/11 M 7.0 16.0 246 2.2 01/03/11 M 7.0 16.0 246 2.2 01/03/11 M 7.0 16.0 246 2.2 01/03/11 F 7.5 16.0 167 1.4 T-07 - Totals and Averages							
12/21/10							
No.							
O1/03/11							
O1/03/11 M 8.0 17.5 288 2.1							
O1/03/11 M 7.0 16.5 226 2.0 O1/03/11 M 6.0 14.0 132 1.6 O1/03/11 M 7.0 16.0 210 1.9 O1/03/11 M 6.0 14.5 156 1.8 O1/03/11 M 7.0 16.0 246 2.2 O1/03/11 F 7.5 16.0 167 1.4 T-07 - Totals and Averages 14 7.1 16.2 212 1.8 T-08 12/20/10 M 7.0 17.5 264 2.2 12/20/10 M 7.0 16.0 224 2.0 12/20/10 F 7.0 16.5 214 1.9 12/20/10 F 6.5 16.0 171 1.6 O1/03/11 M 7.5 16.0 208 1.7 O1/03/11 M 8.0 18.0 256 1.8 O1/03/11 M 8.0 18.5 352 2.4 O1/03/11 M 8.0 18.5 352 2.4 O1/03/11 M 8.0 19.0 351 2.3 O1/03/11 M 8.0 19.0 351 2.3 O1/03/11 M 8.0 19.0 351 2.3 O1/03/11 M 7.5 15.5 196 1.9 O1/03/11 M 7.5 15.5 240 2.0 O1/03/11 M 7.5 18.0 296 2.2							
O1/03/11 M O.0 14.0 132 1.6							
O1/03/11 M O1/03/11 M O1/03/11 M O1/03/11 M O1/03/11 M O1/03/11 M O1/03/11 F O1/03/11 F O1/03/11 F O1/03/11 F O1/03/11 F O1/03/11							
O1/03/11							
O1/03/11							
T-07 - Totals and Averages 14 7.1 16.2 212 1.8 T-08 12/20/10 M 7.0 17.5 264 2.2 12/20/10 M 7.0 16.0 287 2.3 12/20/10 M 7.0 16.0 224 2.0 12/20/10 F 7.0 16.5 214 1.9 12/20/10 F 6.5 16.0 171 1.6 01/03/11 M 7.5 16.0 208 1.7 01/03/11 M 8.0 18.0 256 1.8 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 8.0 19.0 351 2.3 01/03/11 01/03/11 M 7.5 15.0 296 2.2							
T-07 - Totals and Averages 14 7.1 16.2 212 1.8 T-08 12/20/10 M 7.0 17.5 264 2.2 12/20/10 M 7.0 16.0 224 2.0 12/20/10 F 7.0 16.5 214 1.9 12/20/10 F 7.0 16.5 214 1.9 12/20/10 F 6.5 16.0 171 1.6 01/03/11 M 7.5 16.0 208 1.7 01/03/11 M 8.0 18.0 256 1.8 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 8.0 19.0 351 2.3 01/03/11 M 8.0 19.0 351 2.3 01/03/11 M 7.5 15.5 196 1.9 01/03/11 M 7.0 17.5 240 2.0 01/03/11 M 7.5 18.0 296 2.2							
T-08 12/20/10 M 7.0 17.5 264 2.2 12/20/10 M 7.5 17.0 287 2.3 12/20/10 M 7.0 16.0 224 2.0 12/20/10 F 7.0 16.5 214 1.9 12/20/10 F 6.5 16.0 171 1.6 01/03/11 M 7.5 16.0 208 1.7 01/03/11 M 8.0 18.0 256 1.8 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 8.0 19.0 351 2.3 01/03/11 M 8.0 19.0 351 2.3 01/03/11 M 6.5 15.5 196 1.9 01/03/11 M 7.0 17.5 240 2.0 01/03/11 M 7.5 18.0 296 2.2	T 07 T 1 1 A	-					
12/20/10 M 7.5 17.0 287 2.3 12/20/10 M 7.0 16.0 224 2.0 12/20/10 F 7.0 16.5 214 1.9 12/20/10 F 6.5 16.0 171 1.6 01/03/11 M 7.5 16.0 208 1.7 01/03/11 M 8.0 18.0 256 1.8 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 8.0 19.0 351 2.3 01/03/11 M 6.5 15.5 196 1.9 01/03/11 M 7.0 17.5 240 2.0 01/03/11 M 7.5 18.0 296 2.2	1-07 - Totals and Averages	3	14	7.1	16.2	212	1.8
12/20/10 M 7.0 16.0 224 2.0 12/20/10 F 7.0 16.5 214 1.9 12/20/10 F 6.5 16.0 171 1.6 01/03/11 M 7.5 16.0 208 1.7 01/03/11 M 8.0 18.0 256 1.8 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 8.0 19.0 351 2.3 01/03/11 M 6.5 15.5 196 1.9 01/03/11 M 7.0 17.5 240 2.0 01/03/11 M 7.5 18.0 296 2.2	T-08	12/20/10	M	7.0	17.5	264	2.2
12/20/10 F 7.0 16.5 214 1.9 12/20/10 F 6.5 16.0 171 1.6 01/03/11 M 7.5 16.0 208 1.7 01/03/11 M 8.0 18.0 256 1.8 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 8.0 19.0 351 2.3 01/03/11 M 6.5 15.5 196 1.9 01/03/11 M 7.0 17.5 240 2.0 01/03/11 M 7.5 18.0 296 2.2		12/20/10	M	7.5	17.0	287	2.3
12/20/10 F 6.5 16.0 171 1.6 01/03/11 M 7.5 16.0 208 1.7 01/03/11 M 8.0 18.0 256 1.8 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 8.0 19.0 351 2.3 01/03/11 M 6.5 15.5 196 1.9 01/03/11 M 7.0 17.5 240 2.0 01/03/11 M 7.5 18.0 296 2.2		12/20/10	M	7.0	16.0	224	2.0
01/03/11 M 7.5 16.0 208 1.7 01/03/11 M 8.0 18.0 256 1.8 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 8.0 19.0 351 2.3 01/03/11 M 6.5 15.5 196 1.9 01/03/11 M 7.0 17.5 240 2.0 01/03/11 M 7.5 18.0 296 2.2		12/20/10	F	7.0	16.5	214	1.9
01/03/11 M 8.0 18.0 256 1.8 01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 8.0 19.0 351 2.3 01/03/11 M 6.5 15.5 196 1.9 01/03/11 M 7.0 17.5 240 2.0 01/03/11 M 7.5 18.0 296 2.2		12/20/10	F	6.5	16.0	171	1.6
01/03/11 M 8.0 18.5 352 2.4 01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 8.0 19.0 351 2.3 01/03/11 M 6.5 15.5 196 1.9 01/03/11 M 7.0 17.5 240 2.0 01/03/11 M 7.5 18.0 296 2.2		01/03/11	M	7.5	16.0	208	1.7
01/03/11 M 7.5 15.0 254 2.3 01/03/11 M 8.0 19.0 351 2.3 01/03/11 M 6.5 15.5 196 1.9 01/03/11 M 7.0 17.5 240 2.0 01/03/11 M 7.5 18.0 296 2.2		01/03/11	M	8.0	18.0	256	1.8
01/03/11 M 8.0 19.0 351 2.3 01/03/11 M 6.5 15.5 196 1.9 01/03/11 M 7.0 17.5 240 2.0 01/03/11 M 7.5 18.0 296 2.2		01/03/11	M	8.0	18.5		2.4
01/03/11 M 6.5 15.5 196 1.9 01/03/11 M 7.0 17.5 240 2.0 01/03/11 M 7.5 18.0 296 2.2		01/03/11	M	7.5	15.0	254	2.3
01/03/11 M 7.0 17.5 240 2.0 01/03/11 M 7.5 18.0 296 2.2		01/03/11	M	8.0	19.0	351	2.3
01/03/11 M 7.5 18.0 296 2.2		01/03/11	M	6.5	15.5	196	1.9
		01/03/11	M	7.0	17.5	240	2.0
T-08 - Totals and Averages 13 7.3 17.0 255 2.0		01/03/11	M	7.5	18.0	296	2.2
	T-08 - Totals and Averages	•	13	7.3	17.0	255	2.0

Crab Sampling Location	Crab Collection Date	Gender (M/F)	Length (cm)	Width (cm)	Weight (gm)	Fullness [Weight/(length x width)] (gm/cm²)
T-09	12/16/10	M	7.0	16.0	227	2.0
1 0	12/16/10	M	7.0	16.0	138	1.2
	12/16/10	M	7.0	17.0	223	1.9
	12/16/10	M	6.0	14.5	127	1.5
	12/16/10	F	7.0	17.5	203	1.7
T-09 - Totals and Averages	-	5	6.8	16.2	184	1.6
T 10	12/20/10		7.5	10.0	206	2.1
T-10	12/20/10	M	7.5	18.0	286	2.1
	12/20/10	M	7.0	16.5	234	2.0
	12/20/10	M	6.5	13.5	161	1.8 2.2
	12/20/10	M M	7.5 6.0	17.5 15.5	284 155	1.7
	12/20/10	M		18.5	293	2.0
	01/03/11 01/03/11	M	8.0 7.0	14.5	195	1.9
	01/03/11	M	6.0	15.0	157	1.7
	01/03/11	M	7.0	14.5	220	2.2
	01/03/11	M	7.0	16.0	224	2.0
	01/03/11	M	7.0	16.0	196	1.8
	01/03/11	M	6.5	15.0	192	2.0
	01/03/11	M	8.0	17.0	289	2.1
	01/03/11	M	6.5	16.0	205	2.0
	01/03/11	M	6.5	14.5	187	2.0
	01/03/11	M	7.0	17.5	207	1.7
	01/03/11	F	6.0	15.0	125	1.4
T-10 - Totals and Averages	-	17	6.9	15.9	212	1.9
1 10 Totals and Averages	,	1,	0.7	13.5	212	1.7
T-11	12/21/10	M	7.0	15.5	169	1.6
	12/21/10	M	7.0	16.5	201	1.7
	12/21/10	M	6.5	14.0	167	1.8
	12/21/10	M	7.0	17.0	220	1.8
	12/21/10	M	8.0	18.0	304	2.1
	12/21/10	M	7.5	18.0	266	2.0
	12/21/10	M	7.5	17.5	269	2.0
	12/21/10	M	7.0	16.0	228	2.0
T-11 - Totals and Averages	3	8	7.2	16.5	226	1.9
T-12	12/20/10	M	6.5	15.0	178	1.8
	12/20/10	M	6.0	14.5	135	1.6
	12/20/10	M	7.0	16.0	231	2.1
	01/03/11	M	8.0	19.0	357	2.3
	01/03/11	M	7.0	16.5	249	2.2
	01/03/11	M	6.5	15.0	202	2.1
	01/03/11	M	7.0	15.5	178	1.6
	01/03/11	M	6.5	14.5	182	1.9
	01/03/11	M	6.0	14.5	130	1.5
	01/03/11	M	7.0	16.0	214	1.9
	01/03/11	M	6.0	15.0	131	1.5
	01/03/11	M	7.0	15.0	198	1.9
	01/03/11	M	6.0	14.0	154	1.8
	01/03/11	F	6.0	14.5	124	1.4
T-12 - Totals and Averages	T-12 - Totals and Averages			15.4	190	1.8

Table 6

Equipment Supply List for Crab and Forage Fish Tissue Sampling

- 1 Sampling boat for collecting crabs (including boat, motor, oars, gas, and all required safety equipment)
- 2 Trawling boat for collecting fish (including boat, motor, oars, gas, and all required safety equipment)
- Nets (including trawls, hoop nets or cast nets)
- 3 Crab Traps
- 4 Coast Guard-approved personal floatation devices
- 5 Maps of sampling areas, sites and access routes
- 6 Global Positioning System (GPS) unit/batteries
- 7 pH meter (including associated calibration supplies)
- 8 Livewell and/or buckets
- 9 Metric ruler
- 10 Ice chests
- 11 Heavy duty aluminum foil
- Heavy-duty food grade polyethylene bags
- 13 Large plastic bags
- 14 Knife or scissors
- 15 Clean nitrile gloves
- 16 Field Record Forms
- 17 Chain-of-Custody Forms
- Scientific collection permit or fishing license
- 19 Ice
- 20 Dry ice
- 21 Black ballpoint pens and/or waterproof markers
- 22 Clipboard
- 23 Packing/strapping tape
- Overnight courier airbill and laboratory shipping address
- First aid kit and emergency telephone numbers
- Tongs for picking up crabs
- Hooked gaffe for picking traps up out of the water
- 28 Digital camera/batteries

Quality Assurance Plan/Sampling Analysis and Assessment Plan for Crab and Forage Fish Tissue Appendix A

East White Lake Oil and Gas Field Vermilion Parish, Louisiana December 6, 2010

Mr. Chris Piehler, Administrator Louisiana Department of Environmental Quality Office of Environmental Compliance, Inspection Division 602 North Fifth Street Baton Rouge, LA 70802

Mr. Glenn Cambre Louisiana Department of Health and Hospitals 628 North 4th Street Baton Rouge, Louisiana 70802

Mr. James H. Welsh Commissioner of Conservation Louisiana Department of Natural Resources (LDNR) 617 North Third Street, Ninth Floor Baton Rouge, Louisiana 70802

Mr. Robert Barham Secretary Louisiana Department of Wildlife and Fisheries 2000 Quail Dr. Baton Rouge, La 70808

> RE: Quality Assurance Project Plan/Sampling Analysis and Assessment Plan for Crab and Forage Fish Tissue -- East White Lake Oilfield, Vermilion Parish, Louisiana Vermilion Parish School Board Property, Section 16 T15S, R01E

Dear Madame and Sirs:

Enclosed please find a Quality Assurance Project Plan/Sampling Analysis and Assessment Plan for Crab and Forage Fish Tissue at the East White Lake Oilfield, Vermilion Parish, Louisiana (the "Plan"). This plan has been prepared on behalf of UNOCAL in response to questions that have been raised regarding whether the historic oil and gas operations in this field have adversely impacted the crabs in the area.

In summary, pursuant to this Plan the project team will collect and analyze tissue from blue crabs and forage fish in the East White Lake Oilfield, certain reference sites identified in the Plan, and, for crab, seafood markets in the region. The tissue will be analyzed for arsenic (inorganic and total), total barium, mercury (methylmercury and total) and total petroleum hydrocarbons. We will provide a summary of the field sampling and analytical results to the agencies upon completion.

Environmental Resources Management

3838 North Causeway Boulevard Suite 2725 Metairie, Louisiana 70002 (504) 831-6700 (504) 831-6742 (fax)

Mr. Chris Piehler, LDEQ Mr. Glenn Cambre, LDHH Mr. James Welch, LDNR Mr. Robert Barham, LDWF December 6, 2010 Page 2

Environmental Resources Management

We plan to start setting crab traps on Monday, December 13, 2010, with fishing and crab collection to occur in the following days. You or your representatives are welcome to observe or participate in the collection process. In the meantime, should you have any questions or comments on the attached plan, please feel free to contact me.

Sincerely,

Environmental Resources Management Southwest, Inc.

Angela M. Levert Senior Associate

cc: John Rodgers David Lingle Barbara Beck

Enclosures

QUALITY ASSURANCE PROJECT PLAN AND SAMPLING ANALYSIS AND ASSESSMENT PLAN FOR CRAB AND FORAGE FISH TISSUE – EAST WHITE LAKE OIL AND GAS FIELD VERMILLION PARISH, LOUISIANA

Barbara D. Beck, Ph.D., DABT

Gradient 20 University Road Cambridge, MA 02138 Phone (617) 395-5000 Fax (617) 395-5001

Email: bbeck@gradientcorp.com

Angela Levert

Environmental Resources Management 3838 N. Causeway Blvd, Suite 2725 Metairie, LA 70002 Phone (504) 831-6700 Fax (504) 831-6742

Email: angela.levert@erm.com.

David Lingle

URS Corporation 10550 Richmond Avenue, Suite 155 Houston, Texas 77042 Phone (713) 914-6503 Email: david lingle@urscorp.com

John H. Rodgers, Jr., Ph.D.

Clemson University
Department of Forestry and Natural Resources
P.O. Box 340317
261 Lehotsky Hall
Clemson, SC U.S.A. 29634-0317
Phone 864.656.0492
Fax 864.656.1034

E-mail: jrodger@clemson.edu

TABLE OF CONTENTS

Project Summary	1
A. Project Management	1
1.0 Sampling, Analysis and Assessment Protocol – Purpose	1
2.0 Project Management Overview	
3.0 Project Organization	2
4.0 Problem Definition and Background	2
5.0 Project Description	
6.0 Quality Objectives and Criteria for Measurement Data	3
6.1 Project Quality Objectives	3
6.2 Measurement Quality Objectives	4
7.0 Special Training Requirements	6
8.0 Documentation and Records	7
8.1 Analytical Laboratory Records	8
B. Data Acquisition	8
9.0 Sampling Design	
9.1 Rationale for Selection of Sample Locations or Sites	8
9.2 Rationale for Selection of Parameters	8
9.3 Sample Size	9
9.4 Sample Types	9
9.5 Sampling Period	10
9.6 Evaluation of Objectives	10
10.0 Sampling Methods	
10.1 Target Species	10
10.2 Composite Sampling	10
10.3 Sample Collection Methods	
10.4 Equipment and Supply List for Crab and Forage Fish Tissue Sampling	
11.0 Sample Handling and Custody Requirements	12
11.1 Sample Handling	12
11.2 Sample Integrity	12
11.3 Custody Requirements	13
12.0 Analytical Methods Requirements	15
13.0 Quality Control Requirements	
14.0 Instrument/Equipment Testing, Inspection and Maintenance Requirements	
15.0 Data Acquisition Requirements (Non-direct Measurements)	
16.0 Data Management	
C. Assessment / Oversight	
17.0 Assessment and Response Actions	
18.0 Reports to Project Scientists and Study Sponsor	
D. Data Validation and Usability	
19.0 Data Review, Validation and Verification Requirements	
20.0 Validation and Verification Methods	
21.0 Reconciliation with Data Quality Objectives	
22.0 Literature Cited and Reviewed	18

PROJECT SUMMARY

This Quality Assurance Project Plan (QAPP) and Sampling Analysis and Assessment Plan (SAP) for crab and forage fish tissue was prepared for the East White Lake Oil and Gas Field, Vermilion Parish, Louisiana. Based on recent blue crab tissue analysis (of whole animal samples), conducted on behalf of the landowner, questions have been raised concerning concentrations of arsenic, barium, mercury, and total petroleum hydrocarbons in the crabs in this area. Previous sampling and analyses of surface water and sediments from the area did not indicate that concentrations of these constituents of concern (COCs) posed a risk to human health or the environment. In order to address the questions raised by the recent tissue sampling, this study has been carefully designed to obtain accurate data to evaluate potential human health and ecological risks due to these COCs. Samples of crabs and forage fish will be collected from locations in the East White Lake Oil and Gas Field, nearby reference locations in Schooner Bayou and White Lake, as well as fish markets in the region (blue crabs only). Composite samples from the site, reference locations, and markets will be analyzed under a rigorous quality assurance/quality control (QA/QC) program.

A. PROJECT MANAGEMENT

1.0 Sampling, Analysis and Assessment Protocol - Purpose

The purpose of this document is to present a sampling and analysis plan and Quality Assurance Project Plan to measure concentrations of COCs (arsenic, barium, mercury, and total petroleum hydrocarbons [TPH]) in tissues of blue crabs (*Callinectes sapidus*) and forage fish (e.g., mosquito fish [*Gambusia affinis*]; topminnows [*Fundulus* spp.]) collected from the East White Lake Oil and Gas Field (Site) and reference locations. Laboratory analysis of COC concentrations in blue crabs from Louisiana markets in the region will also be performed. The overall objective of this study is to measure tissue concentrations of these COCs to evaluate potential exposures to:

- Blue crabs and forage fish, as well as wildlife (e.g., birds and mammals) that consume them; and
- Humans that consume blue crabs.

The laboratory analyses will be performed on a tissue-specific basis (blue crabs) and whole-body basis (forage fish) to support both the human health and ecological risk assessments. In addition to the above COCs, tissue lipid and moisture contents will also be analyzed in the laboratory.

The Site, located in Section 16, Township 15 South, Range 1 East in Vermillion Parish, Louisiana (Figure 1), is about five miles southwest of Forked Island in an area of intermediate marsh (Brupbacher et al. 1973, Visser et al. 2000; Sasser et al. 2007-8). The areas of interest are the canals and waterways within the East White Lake Oil and Gas Field, located on the eastern side of White Lake, south of Schooner Bayou. The specific area is primarily an intermediate marsh system, which is protected by water control

structures operated by the United States Army Corps of Engineers. This property has been used since approximately 1935 for oil and gas exploration and production. Approximately 85 wells have been drilled since initiation of the lease, although currently, only approximately 10 shut-in productive, 8 active producing, and 2 active injection wells remain. This study will serve to provide accurate information to follow up previous or ongoing studies in the area.

2.0 Project Management Overview

This document describes the quality assurance (QA) and quality control (QC) procedures that will be used to determine COC concentrations in blue crab and/or forage fish tissue from the Site, reference locations, and Louisiana markets in the region. The QAPP was prepared consistent with the documents, EPA Requirements for Quality Assurance Project Plans, EPA QA/R-5 (USEPA 2001) and EPA Guidance for Quality Assurance Project Plans, EPA QA/G-5 (USEPA 2002b), Protocol for Issuing Public Health Advisories for Chemical Contaminants in Recreationally Caught Fish and Shellfish (LDHH et al. 2010), and Protocol for Issuing Health Advisories and Bans Based on Chemical Contamination of Fish/Shellfish in Louisiana (LDHH et al. 1997). The collection methods, procedures and protocols follow the guidelines and recommendations of Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume 1: Fish Sampling and Analysis, Third Edition (USEPA 2000a).

3.0 Project Organization

This document was developed by Dr. John Rodgers in collaboration with Dr. Barbara Beck, Angela Levert, and David Lingle. Dr. Rodgers (Project Manager) will coordinate and schedule the field work, including collection of blue crab and forage fish, and submission of those organisms to Columbia Analytical Services, Inc, (CAS) of Kelso, Washington for processing and analytical testing for arsenic, barium, mercury, lipid content, and moisture content. CAS will provide tissue aliquots to Gulf Coast Analytical Laboratories, Inc. (GCAL) of Baton Rouge, Louisiana for TPH analysis. Angela Levert will serve as the project quality assurance officer. Analytical results will be used by Dr. Barbara Beck and David Lingle in support of the human health and ecological risk assessments, respectively.

4.0 Problem Definition and Background

A previous study (Barbee 2010) has indicated the presence of arsenic, mercury, barium, and TPH in some whole body crab samples from the East White Lake Oil and Gas Field. The authors of this document have identified significant concerns regarding the design and interpretation of that previous study. A more comprehensive and thorough study is therefore being initiated. The information gathered from this study will be used to assess potential human health and ecological risks that these may pose. Blue crabs are omnivores (consuming both plant and animal tissues) and range somewhat in their search for food and during reproduction. Blue crabs are a food source for both human and ecological receptors. Forage (prey) fish spend their entire life in a relatively small area of

a waterbody or wetland and they can be important indicators of local water and sediment quality. Forage fish also serve as food for higher trophic level ecological receptors. A rigorous analysis of both blue crabs and forage fish tissue is therefore being conducted to address the conclusions previously presented by Barbee (2010).

5.0 Project Description

The overall objective of this study is to measure tissue concentrations of COCs to evaluate potential exposures to:

- Blue crabs and forage fish, as well as wildlife that consume them; and
- Humans that consume blue crabs.

As part of this study, COC concentrations in blue crab and forage fish tissues collected from the Site (Figure 2) will be compared to tissue concentrations from reference locations (Figure 3) and Louisiana markets in the region (blue crabs only).

Details of the sampling plan are found in Section 9 of this document. The study involves synoptic sampling of blue crabs and forage fish from twelve (12) locations in the East White Lake Oil and Gas Field and nine (9) reference locations (five [5] in Schooner Bayou and four [4] in White Lake). Nine of the twelve Site sample locations correspond to the locations previously considered by Barbee (2010). Samples will be collected and managed by experienced personnel. Tissue samples will be analyzed by CAS (arsenic, barium, mercury, lipid content, and moisture content) and GCAL (TPH). The study targets blue crabs and forage fish that are caught and consumed by the public and predators. The goal is to collect sufficient blue crabs and forage fish to meet the tissue requirements of the laboratories.

6.0 Quality Objectives and Criteria for Measurement Data

6.1 Project Quality Objectives

The results from this study will allow project scientists to evaluate the extent to which certain COCs (arsenic, barium, mercury, and TPH) are present in blue crabs and forage fish samples from the Site and reference locations as well as market samples (blue crabs only). Sources of uncertainty inherent to the study are due to the following: 1) sampling specific species from each site; 2) limited information on the variability in analyte concentrations in blue crabs and forage fish; 3) unknown field exposures of blue crabs and forage fish; 4) compositing the samples; and 5) variability in the laboratory analysis process. The quality objectives of this project are related to the blue crab and forage fish tissue collection methods and to the laboratory procedures. Methods and procedures for the collection of blue crab and forage fish tissue described in this document are intended to reduce the magnitude and sources of uncertainty (and their frequency of occurrence) by applying the following approaches:

use of standardized sample collection and handling procedures; and

 use of experienced scientists to perform the sample collection and handling activities.

The following approaches are intended to measure the measurement quality objectives as they relate to laboratory procedures:

- One (1) laboratory blank per batch, with a batch being up to 20 samples;
- One matrix spike (MS) and matrix spike duplicate (MSD) pair per batch; and
- One laboratory control sample per batch of known quality and concentration for laboratory comparison.

6.2 Measurement Quality Objectives

Measurement quality objectives (MQOs) are quantitative statistics that are used to interpret the degree of acceptability or utility of the data to the user for the intended purpose. The following defines the criteria for this study:

Precision

Precision is a measure of internal method consistency or variability in sample results. It is generally attributed to sampling activities and/or laboratory analysis. It can be expressed either as a range, a standard deviation or percentage of the mean of the measurements (relative range or relative standard deviation). In order to control for field-related variability, sampling activities will be standardized by adherence to the procedures and methods described in this sampling plan, and field sampling will be conducted by experienced professionals (this will also help prevent bias). For this study, because samples must be composited and subdivided in a strictly controlled, clean laboratory environment, duplicate composite samples will be prepared for approximately 10% of the samples to be analyzed. These duplicates are labeled with unique separate numbers and analyzed with the routine samples. The results from these duplicate samples are used to assess variability arising from sample compositing, aliquoting, and laboratory analysis processes. The study MOO requirements for analytical precision are that results from 90% of these duplicate composite samples agree within 50% relative percent difference (RPD) for values greater than 5 times the minimum level of quantification and that 90% of these duplicate composite samples agree within 100% RPD for values less than 5 times the minimum level. RPD is calculated as follows:

Relative		$((x_1-x_2))$
Percent	RPD	abs $\left \frac{(x_1 + x_2)}{(x_1 + x_2)/2} \right \times 100$
Difference		$((x_1 + x_2)/2)$

Where:

 X_1 is the first measurement; and

 X_2 is the duplicate measurement.

In addition to the duplicate composite samples, the laboratory will also employ a suite of laboratory quality control measures (initial precision and recovery samples, matrix spike

and matrix spike duplicate samples) that provide information about the precision associated with various components of the analytical process. Other quality control elements and associated requirements may be described in more detail in the laboratory's Quality Assurance Project Plan. The results will be provided to the project scientists for interpretation and development of their reports. Major criteria for laboratory data are summarized in Tables 1 and 2.

Bias

Bias is systematic and consistent distortion of a measurement process that causes errors in one direction. Bias within the sampling and processing is controlled by training of field personnel and of the sample preparation procedures in the laboratory and by adherence to protocols. Bias within the analytical process is measured by preparing and analyzing field samples spiked with COCs of interest (matrix spike samples) or by analyzing standard reference materials (SRMs) containing the analytes of interest to verify that the procedure is in control for the tissue matrix. Potential interferences can be addressed within the laboratory by dilution of samples or by additional cleanup steps, where appropriate.

Accuracy

Accuracy is the measure of the combination of bias and precision of an analytical procedure. It reflects the closeness of a measured, observed value to a true value. Accuracy is inferred from recovery data determined by sample spiking and/or analyses of reference standards. Accuracy requirements are summarized in Tables 1 and 2.

Percent recovery for a laboratory matrix is calculated using the following equation:

Percent Recovery	%R	$\frac{x_{meas}}{x_{true}} \ge 100$
---------------------	----	-------------------------------------

Percent recovery for a sample matrix is calculated using the following equation:

Percent Recovery	%R	value of value of spiked - unspiked sample sample x 100
		value of added spike

Analytical Sensitivity

Analytical sensitivity is included in the laboratory's Quality Assurance Project Plan and is reported to the project scientists in terms of the method detection limits and the minimum levels that are used to define the sensitivity of each measurement process. MQO requirements for detectability are presented in Table 3.

Representativeness

Representativeness expresses the degree to which data accurately and precisely represent a characteristic of a population, parameter, variations at a sampling site, a process condition or an environmental condition. In order to achieve this, a sufficient number of representative samples are planned for collection. Preservation of the representativeness

of the collected samples is assured by adhering to the sample handling protocols for storage, preservation and transportation, as described in this document. Proper documentation records that the protocols were followed and sample identification and integrity were assured.

Comparability

The objective of this parameter is to assure that data developed during this investigation are either directly comparable, or comparable with defined limitations, to literature data or other applicable criteria. Comparability is dependent on the proper design of the sampling plan and adherence to accepted sampling techniques, standard operating procedures and quality assurance guidelines. In order to fulfill the objectives of this study, all samples will be collected and prepared according to the procedures described in this project plan and any associated standard operating procedures. These procedures are consistent with the recommendations of U.S. EPA's *Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume I: Fish Sampling and Analysis*, Third Edition (USEPA 2000a). The procedures for this study are also consistent with the National Study of Chemical Residues in Lake Fish Tissue, conducted by the USEPA Office of Water, Office of Science and Technology and Engineering and Analysis Division (USEPA 2000c). All field personnel involved with sampling have adequate training, appropriate experience and will use this protocol for sample collection.

Completeness

Completeness is a measure of the amount of valid data collected and deemed to be acceptable for use in the study, as compared to the amount of data expected to be obtained. Three measures of completeness are defined:

- 1) Sampling completeness, defined as the number of valid samples collected relative to the number of samples planned for collection;
- 2) Analytical completeness, defined as the number of valid sample measurements relative to the number of valid samples collected; and
- 3) Overall completeness, defined as the number of valid sample measurements relative to the number of samples planned for collection.

The sampling and analytical completeness goal in this study is to obtain valid measurements from 90% of the valid samples collected. In case this percentage is lower than 90%, the effects on the study conclusions and recommendations will be re-evaluated during data analysis. Blue crab and forage fish tissue specimen archives will be kept frozen, in labeled vials, for 6 months, at the laboratory.

7.0 Special Training Requirements

The field sampling team will consist of experienced personnel, all of whom are trained on all field procedures detailed in this protocol. This protocol and any requisite standard operating procedures will be distributed to all personnel involved in the field activities. Project orientation sessions will be coordinated by the project manager, who also will provide instructions on all the field sampling and sample handling activities. Skills

required of the laboratory analysts performing work for this study are described in the laboratory's Quality Assurance Project Plan.

8.0 Documentation and Records

Thorough documentation of all field sample collection and handling activities is necessary for proper processing in the laboratory, for ensuring data integrity and, ultimately, for interpretation of study results. Field sample collection and handling will be documented in writing (for each sampling site) using the following forms and labels:

- Field Record data sheet that contains information about each sample and site;
- Sample Identification Label that accompanies and identifies each sample or labeled vials;
- Chain of Custody Form that provides tracking information for all samples; and
- Sample Preparation Record Form for each composite sample which will be prepared by the laboratory.

The Field Record data sheet will document the sampling date, time, sampling crew names, sampling site location/description and sample description, length or dimensions of each specimen, and the method of sample collection. The field record data sheet also will contain a unique tracking code for tracking each sample. The code will follow the format:

- The initial code for the project (EWL);
- Date of collection (MM-DD-YY);
- Sampling site identification code (letters and site number);
- Sample type identification code (C = crab; F = forage fish); and
- Numbering order of samples (001, 002, etc.).

Field record forms will be completed by the personnel in the field. All entries will be made in ink, with no erasures. If an incorrect entry is made, the information will be crossed out with a single strike mark and initialed and dated by the recorder. Two copies will be made of this form, one for the project scientists and one for the project manager. The originals will be kept in a project-dedicated binder.

Chain of custody forms will accompany each container of samples and will document sample identity (coincide with information on the field record), sampler relinquishment name, date and time and project manager receipt date and time. The field personnel responsible for quality control will also be responsible for the delivery of the samples to the laboratory. A sample preparation record form will be completed at the laboratory, for each site, and it includes information on every composite sample. It includes the name of the persons preparing the composite samples; information about the crab or fish included in each composite sample; composite sample number; the weight of each composite sample; any general comments or remarks. The table describing the compositing scheme, i.e., which tissues make up each composite sample, will be attached to the sample preparation record, and will also be kept in the project-dedicated binder. If any changes are necessary during the sample collection and handling activities, a note will be made in

the field record form, and the project manager will be notified as soon as practical, preferably prior to the change actually occurring. Every effort will be made for the project manager to be accessible, either by being on site or by cellular telephone.

8.1 Analytical Laboratory Records

The analytical laboratory will be required to submit summary reports of all analytical results in electronic format and hard copy. The laboratory will be required to provide a data package with QA/QC documentation as specified in the LDEQ Risk Evaluation/Corrective Action Program (RECAP) Section 2.4, at a minimum, which allows for evaluation relative to the requirements for *definitive data* per RECAP. The laboratory reports should include a description of any problems encountered and comments on the performance of any part of a method. The results should be reported consistently in regard to reporting units (e.g., µg analyte/Kg wet weight).

B. DATA AQUISITION

9.0 Sampling Design

9.1 Rationale for Selection of Sample Locations or Sites

Blue crabs and/or forage fish will be collected if possible from the following locations:

- Twelve (12) locations in the East White Lake Oil and Gas Field (Figure 2). Nine of the twelve Site locations (T1 through T9) correspond to locations previously considered by Barbee (2010);
- Nine (9) reference locations (five [5] in Schooner Bayou and four [4] in White Lake; Figure 3);
- Market samples from locations in the region to determine the concentrations of COCs in crabs from commercial sources for comparative purposes.

Sufficient sampling locations are included in this study to permit valid comparisons and evaluations if blue crabs or forage fish are not caught at some locations. Sampling locations presented in Figures 2 and 3 are approximate and will be determined in the field using GPS equipment and consideration of local conditions such as flows and available habitat.

9.2 Rationale for Selection of Parameters

The COCs chosen for this study (arsenic, barium, mercury, and TPH) were measured in whole body crab samples from the Site in a previous study and cited by Barbee (2010) as containing concentrations of concern. Among other difficulties with the Barbee (2010) study, the crabs were analyzed as homogenized intact (shells and all) organisms. The COCs of concern as noted by Barbee are naturally occurring elements or compounds and have a variety of sources in coastal Louisiana. This study is intended to accurately measure concentrations of these COCs in blue crabs and forage fish.

Sixteen polycyclic aromatic hydrocarbons (PAHs) were previously analyzed in Site surface waters and sediment in May 2010. The PAHs are from RECAP Table D-1: acenaphthene. acenaphthylene. anthracene. benzo(a)anthracene, benzo(a)pyrene. benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 2-methylnaphthalene, naphthalene, phenanthrene, and pyrene. PAH results for all ten surface water samples locations were below the associated laboratory reporting limits (which ranged from <0.0000091 mg/L to <0000536 mg/L). PAH detections in the co-located sediment samples were primarily non-detect, with detections limited to 5 PAHs at three locations at concentrations well below 1 mg/kg-dry weight. Given the very limited detections of PAHs in sediments (and none in surface water), this SAP focuses on TPH analysis for evaluation of petroleum hydrocarbons in blue crab and forage fish tissues.

9.3 Sample Size

CAS and GCAL have minimum tissue (mass) requirements per composite for laboratory analysis of COCs, lipid content, and moisture content. The preferred total mass of homogenized wet tissue for analytical testing by CAS and GCAL is 50-60 grams (25-30 grams minimum).

9.4 Sample Types

To meet the study objective, this study will include samples of blue crabs (*Callinectes sapidus*) and forage fish (e.g., mosquito fish [*Gambusia affinis*]; topminnows [*Fundulus* spp.]) from the area. Samples of the crabs will be analyzed to provide data for both human health and ecological risk assessment.

Each blue crab will be separated into the following four components (and weighed) by CAS:

- Meat from the body and claws;
- Hepatopancreas;
- Other soft tissues (gills, heart, intestine, testes, and eyestalks); and
- Exoskeleton.

The human health risk assessment will use the analytical results (and respective weights) of the meat and hepatopancreas. The ecological risk assessment will use the analytical results (and respective weights) of all four components listed above to derive a whole-body crab concentration. The preferred total mass of homogenized wet tissue for analytical testing by CAS and GCAL is 50-60 grams (25-30 grams minimum).

Samples of forage fish will be analyzed as intact fish (whole body). Similar for crabs, forage fish will be composited to achieve adequate mass for accurate analyses (i.e., 50-60 grams preferred; 25-30 grams minimum). Fish will be composited within species if the variability of catch across the sampling sites requires use of more than one species

(Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume 1: Fish Sampling and Analysis, Second Edition [USEPA 2000a]). If the sampling crew is unable to collect all forage fish needed to prepare the composite sample on the same day, and the organisms used in the same composite sample will be collected on different days (no more than 1 week apart), individual fish will be frozen until all the organisms to be included in the composite sample are available for shipment to CAS. Since freezing the crabs prior to compositing makes dissection problematic, crabs will not be frozen prior to shipment to CAS. Crab samples will also be collected from commercial markets in Louisiana to assess the concentrations of the COCs. Water samples at the sites will be analyzed for standard field parameters (pH, temperature, conductivity, salinity, dissolved oxygen, turbidity). Field notes will be collected regarding weather, sampling effort, and other parameters that may be important for interpreting the results.

9.5 Sampling Period

Sampling will be conducted during December of 2010 to January of 2010 since water and weather conditions are conducive to safe and efficient field sampling, and blue crabs and forage fish are not spawning.

9.6 Evaluation of Objective

The analyte concentrations will be compared with appropriate screening values for human health (LA DEQ 2010) and ecological receptors.

10.0 Sampling Methods

10.1 Target Species

To meet the study objective, this study will include samples of blue crabs (*Callinectes sapidus*) and forage fish (e.g., mosquito fish (*Gambusia affinis*); topminnows [*Fundulus* spp.]).

10.2 Composite Sampling

The blue crab and forage fish tissues will be composited by CAS to minimize the opportunity for cross-contamination. The forage fish are prepared as whole body composites. Composite samples are effective for estimating average tissue concentrations of COCs in target species populations, and compositing ensures adequate sample mass for analysis of all target COCs. The preferred total mass of homogenized wet tissue (blue crab or forage fish) for analytical testing by CAS and GCAL is 50-60 grams (25-30 grams minimum). If insufficient tissue mass is able to be collected, CAS or GCAL will be consulted to identify the appropriate analytical strategy. Method modifications may include modified extraction techniques (e.g. adjusting the final extract volume), using a lower concentration for the lowest standard in the initial calibration, or adjusting the amount of extract injected into the instrument.

10.3 Sample Collection Methods

Collection methods for blue crabs and forage fish can be divided into two categories, passive and active. Passive collection methods for blue crabs include crab traps or pots. Passive collection devices (e.g., crab traps or pots) must be checked frequently to ensure a limited time lag between crab entrapment and sample preparation/preservation. For forage fish, active collection methods will involve sampling devices including seines and trawls. Although active collection requires greater fishing effort, it is usually more efficient than passive collection for covering a large number of sites and catching the number of individuals needed from each site for tissue analysis. The active collection methods generally require more field personnel and more complex equipment than passive collection methods.

Sampling for this study will involve an array of both active and passive gear to ensure collection of the desired target numbers of crabs and forage fish. Selection of the most appropriate gear type(s) for a particular sampling site will be at the discretion of the sampling team leader (Rodgers). A local contractor will be responsible for providing crab and forage fish sampling gear and sampling vessels. It is important that the sampling vessel(s) and equipment be clean and in good condition. Appropriate license or collection permits will be obtained prior to sampling, and sampling will be conducted in compliance with pertinent existing regulations. The analytical laboratory will provide sample packaging and shipping supplies.

10.4 Equipment and Supply List for Crab and Forage Fish Tissue Sampling

A list of equipment and expendable supplies is provided in Table 4. Sample collection, packaging, and shipment methods are presented in Section 11 of this document.

As soon as crabs or forage fish are obtained via active collection methods, or removed from passive collection devices, the species will be identified. Nontarget species collected in this study will be returned to the water. Individuals of the selected target species (blue crabs and forage fish) will be rinsed in ambient water to remove any foreign material from the external surface, will be handled using clean nitrile gloves, and placed in clean holding containers (livewell, buckets, etc.) to prevent contamination. Each blue crab and forage fish will be measured to determine length and width or total body length (mm), respectively. For blue crabs, data obtained will include sex, length, width and wet weight, For forage fish, maximum body length should be measured, i.e., the length from the anterior-most part of the fish to the tip of the longest caudal finray (when the lobes of the caudal fin are depressed dorsoventrally). When sufficient numbers of the target species have been identified to make up a suitable composite sample, the species name. specimen lengths, and all other site and sampling information should be recorded on the Field Record Form. The field objective is for sampling teams to obtain representative composite samples for both crabs and forage fish from each sample location. Each composite must consist of all the same species, and the composite must be able to deliver 50-60 grams (25-30 grams minimum) of tissue for chemical analysis.

11.0 Sample Handling and Custody Requirements

11.1 Sample Handling

Clean nitrile gloves will be worn during the entire sample handling process, beginning with removing the crabs and fish from the sampling gear. After individuals of the selected target species are rinsed in ambient water and the species and size are determined, each of the fish found to be suitable for the composite sample will be individually wrapped in extra heavy-duty aluminum foil (provided as solvent-rinsed, oven-baked sheets). A Sample Identification Label will be prepared for each aluminum foil-wrapped specimen. Each foil-wrapped fish will be placed into a plastic bag (i.e., heavy duty food grade plastic bag), and sealed with a plastic cable tie. The completed Sample Identification Label will be affixed to the cable tie, and the entire specimen package will be "double-bagged" (i.e., placed inside a large plastic bag with all the specimens of the same species from that site and sealed with another cable tie). Once packaged, samples should be immediately placed on ice for shipment. If samples will be carried back to a laboratory or other facility to be frozen before shipment (forage fish only), wet ice can be used to transport wrapped and bagged fish samples in the coolers to that laboratory or facility. If possible, all of the specimens in a composite sample should be kept together in the same shipping container (ice chest) for transport. Sampling Teams have the option, depending on site logistics, of:

- Shipping the samples packed on ice (in sufficient quantities to keep samples cold for up to 48 hours), via priority overnight delivery service (i.e., Federal Express), so that they arrive at the laboratory within less than 24 hours from the time of sample collection; or
- Freezing the forage fish (but not blue crab) within 24 hours of collection, and storing the frozen fish until shipment within 1 week of sample collection (frozen fish will subsequently be packed on dry ice and shipped to the laboratory via priority overnight delivery service to arrive within less than 24 hours from time of shipment).

The time of sample collection, relinquishment by the sample team, and time of their arrival at the laboratory must be recorded on the Chain-of-Custody Form. The field sampling teams should avoid shipping samples for weekend or holiday delivery to the laboratory unless prior plans for such a delivery have been agreed upon with the laboratory.

11.2 Sample Integrity

A critical requirement of this study is maintenance of sample integrity from the time of collection to the shipment and arrival at the final destination. Sample integrity will be maintained by preventing the loss of COCs that might be present in the sample and by taking precautions to avoid possible introduction of contaminants during handling. The loss of COCs can be prevented in the field by ensuring that the sample collected remains

intact. Once a sample is collected, sample integrity will be maintained through careful and controlled sample handling, storage, and preservation procedures. Preventable sources of extraneous contamination can include the sampling gear, oils and greases on boats, spilled fuel, skin contact, contact with soil or sand, boat motor exhaust, and other potential sources. Potential sources should be identified before the onset and during sample collection, and appropriate measures should be taken to minimize or eliminate them. Examples of preventative measures include the following:

- Collection nets should be free of any potential contaminants.
- The use of tarred collection nets is prohibited.
- Boats should be positioned so that engine exhaust does not fall on the deck area where samples are being handled.
- Ice chests and other sample storage containers should be cleaned with detergent and rinsed with clean water prior to use.
- Samples should not be placed directly on ice, but should be stored inside foil, plastic bags, and plastic garbage bags first.
- Proper gloves (clean nitrile gloves) should be used when handling samples.

11.3 Custody Requirements

Each sample will be identified and tracked with a unique numbering scheme as described in Section 8.0. The same unique number will be used in all documentation including the Field Record Form, the Sample Identification Label, and the Sample Preparation Record Form. Detailed information about the samples collected in the field and about the collection location will be recorded on the Field Record Form. Two copies will be made of this form: one will accompany the samples to the laboratory and one copy will be kept in a project-dedicated binder.

As soon as possible following collection, the sampling team will begin the process of identifying, labeling, packaging, and storing the sample(s). Each sample will be identified and tracked with a unique numbering scheme as described in Section 8.0. This composite code will identify each sample on all documentation and records including the following:

- Field Record Form,
- Sample Identification Label, and
- Chain-of-Custody Form.

Each sample will be labeled by affixing a Sample Identification Label as per the instructions in Section 8.0. All sample label entries will be made with black indelible ink. The sample label will accompany each sample throughout the chain-of-custody. Each sample label will include the following information:

- project name (EWL Tissue Study),
- site identification (number),
- sample number (01 through 06),
- composite code (as in Section 8.0),

- date of sample (month/day/year),
- time of collection (military time),
- · preservative used (on ice or frozen), and
- collector's name (field team leader).

Detailed documentation of the samples collected in the field (for shipment to the laboratory) and information about the collection location will be recorded on a Field Record Form. One form must be completed for each sample composite. A copy of the form (Section 8.0) will be retained by the sampler, and another copy will be included with sample shipment to the laboratory. All entries will be made in black ink and no erasures will be made. Each form will have the proper entry requirements, which includes the following information:

- composite code (as per Section 8.0),
- sampling date (month/day/year),
- time of collection (military time),
- collection method (e.g., cast net),
- collector's name (printed and signed),
- collector's affiliation, address, and telephone number,
- site name.
- site number (location of site sampled),
- sample type (e.g., crab),
- estimated maximum depth (meters), and
- length (mm) and width (mm) of each specimen (if applicable).

All samples and composites will be transferred to the receiving laboratory under chain of custody. The Chain-of-Custody Form will act as a record of sample shipment and a catalog of the contents of each shipment (coinciding with information on the field record). The forms will be produced and copied as needed with one copy retained by the sampler and one for shipment to the laboratory. The Chain-of-Custody Form shipped will be placed in a waterproof plastic bag and sealed inside the shipping container. All Chain-of-Custody Form entries will be made in black ink and will include:

- the Project Manager's name, address and telephone number (refer to the QAPP cover page),
- sampler's name and telephone number,
- project name (EWL Tissue Study),
- page number (e.g., 1 of 1),
- sample location,
- collection date and time,
- composite code and sample number.
- preservative (ice [crab and forage fish] or frozen [forage fish only]),
- number of containers.
- type of analysis required (arsenic, barium, mercury, TPH, lipids; and moisture content),

- sampler's signature, sample date, and time,
- · sampler relinquishment date and time,
- · laboratory recipient signature, and
- laboratory receipt date and time.

Immediately following the packing of each shipping container, each container (ice chest) will be secured with packaging tape and sealed with a Chain-of-Custody Label. The Chain-of-Custody Label must contain the signature of the sampler and the date and time written in ink. The seal must be affixed such that the shipping container cannot be opened without breaking the seal (e.g., label adhered across the ice chest latch), so as to protect and document the integrity of the contents from field to laboratory.

12.0 Analytical Methods Requirements

Composite samples will be analyzed for Total Arsenic, Inorganic Arsenic, Total Barium, Total Mercury, Methylmercury, and TPH. The analytical laboratories CAS and GCAL will conduct the analyses, using EPA methods. The results will be reported in parts per million or parts per billion, as wet weight. Analytical methods and specific method requirements are addressed by the Quality Assurance Project Plans and Standard Operating Procedures developed by the laboratories and in conjunction with requirements presented in this study plan. Lipids will also be analyzed for the composite samples. Percent moisture (wet weight and dry weight) will also be measured and reported for composite tissue samples.

Samples will be shipped under chain of custody to CAS for processing and analytical testing of metals, lipid content, and moisture content. CAS will ship tissue aliquots to GCAL for TPH analysis. Samples will be analyzed for total petroleum hydrocarbons using the Texas 1005 (Total Petroleum Hydrocarbons) and potentially Texas 1006 methods. For both analyses, the extract step described in Section 8.2 or Section 8.3 of the Texas 1006 (Characterization of NC6 to NC35 Petroleum Hydrocarbons in Environmental Samples) method will be performed. The laboratory will use the reporting protocols specified in the Texas 1005 method modified to reflect RECAP-recommended ranges for total petroleum hydrocarbons.

Sample processing and analytical testing and methods are within the scope of this QAPP. Sample processing involves dissection and compositing of the requisite tissues: 1) crabs – meat, hepatopancreas, soft tissue, and shell (exoskeleton); 2) forage fish – whole body.

Analytical testing of tissue samples for will follow standard methods:

- Total Arsenic SW 6020;
- Inorganic Arsenic EPA 1632A:
- Total Barium SW 6020;
- Total Mercury EPA 1631;
- Methylmercury EPA 1630;
- TPH Texas 1005/1006.

13.0 Quality Control Requirements

Data quality is addressed, in part, by consistent performance of valid procedures documented in this study plan as well as those routinely employed by the analytical laboratory. It is enhanced by experience and training of project staff and documentation of project activities. This Quality Assurance Project Plan (QAPP) will be distributed to all project scientists for review, and, in turn, to sampling personnel involved in implementation of the project's field work as well as to the analytical laboratory. The project manager will ensure that personnel have the Quality Assurance Project Plan and that an orientation and training session is undertaken by all involved.

14.0 Instrument/Equipment Testing, Inspection, and Maintenance Requirements

All field equipment will be inspected prior to sampling activities to ensure that proper use requirements are met (e.g., boats are operating correctly, nets are without defects, pH and other field meters properly calibrated). Inspection of field equipment will occur well in advance of the field operation to allow time for replacement or repair of defective equipment, and the field team will be equipped with proper backup equipment to prevent lost time on site. One member of the field team will gather and inspect all equipment on the equipment and supply list (Table 4) prior to the sampling event. All pH and other meters used by field teams will be calibrated according to the manufacturer's operating instructions, on a daily basis, while in use. Careful and thorough planning will be necessary to ensure the efficient and effective completion of the field sample collection task. A checklist of field equipment and supplies is provided in Table 4 of this document. It will be the responsibility of the field team to gather and inspect the necessary sampling gear prior to the sampling event and to inspect the sample packaging and shipping supplies. Defective packaging and shipping supplies (e.g., torn or damaged bags) will be discarded, and, if necessary, the field team will obtain replacement supplies.

15.0 Data Acquisition Requirements (Non-direct Measurements)

Non-direct measurements will include identification and/or verification of each sample location (i.e., latitude and longitude). Coordinates of the sample sites will be provided as decimal degrees or conventional degrees, minutes, and seconds.

16.0 Data Management

Samples will be documented and tracked via Sample Identification Labels, Field Record Forms, and Chain-of-Custody Forms (Section 8.0). Diligence of the Field Sampling Team in completion of the proper records will be essential. The field team leader will be responsible for reviewing all completed field forms. Any corrections should be noted, initialed, and dated by the reviewer. As mentioned in Section 8.0, Field Record Forms and Chain-of-Custody Forms will each be prepared in the field. The sampler will retain one copy each of the Field Record and Chain-of-Custody Forms, and the original copies will be delivered to the laboratory with the samples. Shipment of samples to the

laboratory must be conducted by a delivery service that provides constant tracking of shipments (e.g., Federal Express). Laboratory sample log-in and data management procedures are beyond the scope of this QAPP and are covered by the laboratory QAPP. The laboratory will retain one copy of each Field Record Form and Chain-of- Custody Form. All form copies associated with this project will be maintained in a project file during the active phase of the project, and for a period of 6 months following completion of the project (unless otherwise directed). Upon completion of sampling activities, a field collection effort summary will be developed (i.e., a detailed listing of all sampling participants, sampling locations, and specimens collected) based on information recorded by all Sampling Teams on the Field Record Forms. Project data will be stored by project scientists, and will be copied to disks for archive for two years after project completion (unless otherwise directed). All data entries will be checked for errors in transcription and computer input by a minimum of two persons. If there is any indication that requirements for sample integrity or data quality have not been met, the project scientists will be notified immediately (with an accompanying explanation of the problems encountered).

C. ASSESSMENT / OVERSIGHT

17.0 Assessment and Response Actions

The project manager will be on-call throughout the duration of the sampling effort. In the event that quality problems or other difficulties arise in the field, the project manager will contact the quality assurance officer, attempt to resolve the difficulty, and determine the appropriate corrective action to be taken. The project manager will have the authority to stop work on the project if problems affecting data quality are identified that will require extensive efforts to resolve.

18.0 Reports to Project Scientists and the Study Sponsor

A summary of the work conducted will be prepared. The report will contain summaries of the field sampling and analytical results. Subsequent reports may be produced by the project scientists and others based on the results from this study.

D. DATA VALIDATION AND USABILITY

19.0 Data Review, Validation and Verification Requirements

All field record forms and chain of custody forms will be reviewed by the project manager for completeness and correctness. Data will be entered and assessed by comparing entered data with the original forms. The project manager will determine whether to accept, reject or qualify the entered data. A report will then be prepared for submittal to the project scientists.

20.0 Validation and Verification Methods

The project manager will conduct a review of the laboratory's data results and reports, verifying that methods and protocols were followed. A data quality review will be performed by qualified personnel experienced in data validation. The data quality and data usability review will be conducted based upon guidance provided in RECAP Sections 2.4 and 2.5, the USEPA Risk Assessment Guidance for Superfund (1989), and other relevant guidance. The data evaluation will include a review of analytical methods; QA/QC documentation; laboratory performance on matrix spikes, surrogate recoveries, and laboratory control samples; QC blank results (e.g. field, method, and rinsate); sample quantification limits and duplicate analyses. Specific deficiencies in the data, if any, will be identified, qualified as appropriate, and discussed in the report as they relate to data usability for exposure assessment and risk characterization.

21.0 Reconciliation with Data Quality Objectives

As soon as possible following completion of the sample collection and analyses for this project, precision, accuracy and completeness measures will be assessed by the project manager and compared with the criteria discussed in previous sections of this QAPP. This will represent the final determination of whether the data collected are of the correct type, quantity and quality to support the intended use for this project. Any problems encountered in meeting the performance criteria (or uncertainties and limitations in the use of the data) will be discussed with the project scientists, and will be reconciled, if possible.

22.0 LITERATURE CITED AND REVIEWED

Barbee, G.C. 2010. Supplemental Toxicological Evaluation Report for the Vermilion Parish School Board Property, Section 16, T.15 S.-R.1 E., Vermilion Parish, Louisiana. Prepared for Talbot, Carmouche & Marcello, Baton Rouge, LA. 15 pp. + appendix. Brupbacher, R.H., J.E. Sedberry, Jr. and W.H. Willis. 1973. The Coastal Marshes of Louisiana – Chemical Properties of the Soil Materials. Bulletin No. 672, LSU Agriculture Experiment Station.

CH2MHill. 2008. Calcasieu Estuary Biological Monitoring Program. Spring 2008 Semiannual Report. To: PPG Industries, Inc., Louisiana Department of Health and Hospitals, Louisiana Department of Environmental Quality.

Louisiana Department of Health and Hospitals, Louisiana Department of Environmental Quality, Louisiana Department of Agriculture and Forestry and Louisiana Department of Wildlife and Fisheries. 1997. Protocol for Issuing Public Health Advisories and Bans Based on Chemical Contamination of Fish and Shellfish in Louisiana. January 1997.

Louisiana Department of Health and Hospitals, Louisiana Department of Environmental Quality, Louisiana Department of Agriculture and Forestry and Louisiana Department of Wildlife and Fisheries. 2010. Protocol for Issuing Public Health Advisories for Chemical

Contaminants in Recreationally Caught Fish and Shellfish. Draft for Public Comment, January 2010.

Louisiana Department of Health and Hospitals, Louisiana Department of Environmental Quality, Louisiana Department of Agriculture and Forestry and Louisiana Department of Wildlife and Fisheries. 2010. Tissue Screening Level Guidelines for Issuance of Public Health Advisories for Selected Contaminants and Supporting Documentation (Draft). Obtained from the internet. 8pp.

Louisiana Department of Health and Hospitals. 2010. Louisiana Seafood Safety Surveillance Report 2010.

Sasser, C.E., Visser, J.M., Mouton, E., Linnscombe, and Hurley, S.B. 2007-8. Vegetation types in coastal Louisiana in 2007. USGS Ag Center, LSU Ag Center Research and Extension. Open file report 2008-1224.

US EPA. 2000a. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume 1: Fish Sampling and Analysis, Third Edition. US Environmental Protection Agency, Washington, DC, EPA 823-B-94-007.

U.S. EPA. 2000b. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume II: Risk Assessment and Fish Consumption Limits, Third Edition. U.S. Environmental Protection Agency, Washington, DC, EPA 823-B-94-008.

U.S. EPA. 2000c. National Study of Chemical Residues in Lake Fish Tissue QAPP Final.

U.S. EPA. 2001. Requirements for Quality Assurance Project Plans, EPA QA/R-5 (USEPA 2001)

U.S. EPA. 2002a. Quality Assurance Report for the National Study of Chemical Residues in Lake Fish Tissue: Year 1 Analytical Data. United States Environmental protection Agency, Office of Water, Office of Science and Technology, Engineering and Analysis Division. 38 pp.

U.S. EPA. 2002b. Guidance for Quality Assurance Project Plans, EPA QA/G-5 (USEPA 2002).

Visser, J.M., C.E. Sasser, R.H. Chabreck, and R.G. Linscombe. 2000. Marsh vegetation types of the Chenier Plain, Louisiana, USA. Estuaries 23(3): 318-327.

Quality Control Performance Criteria Table 1

Other	Confirmation Analysis	Identification Criteria	Laboratory Control Sample (LCS) or Ongoing Precision and Recovery (OPR)	Internal Standard Area	Matrix Spike (MS) / Matrix Spike Duplicate (MSD)	Surrogate	Initial Calibration and Continuing Calibration Blank	Preparation (Laboratory) Blank	Instrument Tune/Calibration	Field Duplicate	Equipment Blank	Holding Times	Method Quantitation Limit (MQL)	Method	Quality Control Parameter
NA	NA	NA	Daily per digestion batch per matrix 80 – 120 %Recovery	Each sample $> 70-120\%$ recovery.	One per 20 samples per matrix 70 − 130 %Recovery ≤50 RPD if results greater than 5x MQL	NA	Analyze immediately after each ICV and CCV $<\pm$ MDL	Daily per digestion batch (maximum 20 samples) per matrix < ± MQL	See Table 2	1 every 10 samples <50 RPD if results greater than 5x MQL	Daily per matrix and equipment type <mql< td=""><td>Freeze or freeze-dry tissues (store at room temperature); holding time indefinite</td><td>0.5 mg/kg (Arsenic) 0.05 mg/kg (Barium)</td><td>SW 6020</td><td>Total Arsenic; Total Barium</td></mql<>	Freeze or freeze-dry tissues (store at room temperature); holding time indefinite	0.5 mg/kg (Arsenic) 0.05 mg/kg (Barium)	SW 6020	Total Arsenic; Total Barium
QCS quarterly; Mean of three analyses within 10% of QCS value	NA	NA	Daily per digestion batch (maximum 20 samples per matrix (1632 section 9.7.1) 50-150% Recovery (1632 Table 2)	NA	One per 10 samples per matrix 50-150% Recovery (1632 Table 2) <50 RPD if results greater than 5x MQL	NA	Analyze immediately after each ICV and CCV $< \pm \mathrm{MDL}$	Daily per digestion batch (maximum 10 samples) per matrix < ± MQL	See Table 2	1 every 10 samples <50 RPD if results greater than 5x MQL	Daily per matrix and equipment type <mql< td=""><td>Freeze or freeze-dry tissues (store at room temperature); holding time indefinite</td><td>0.030 mg/kg</td><td>EPA 1632A</td><td>Inorganic Arsenic</td></mql<>	Freeze or freeze-dry tissues (store at room temperature); holding time indefinite	0.030 mg/kg	EPA 1632A	Inorganic Arsenic
Additional blanks: 3 system blanks or 3 bubbler blanks	NA	NA	Daily per digestion batch per matrix; Analyze at beginning and end of batch or each 12-hour shift 77 - 123 %Recovery	NA	One per 10 samples per matrix 70 - 130 %Recovery <50 RPD if results greater than 5x MQL	NA	NA (See bubble blanks below)	Three per batch (maximum 20 samples) per matrix < ± MQL	See Table 2	1 every 10 samples ≤50 RPD if results greater than 5x MQL	Daily per matrix and equipment type <mql< td=""><td>Freeze or freeze-dry tissues (store at room temperature); holding time indefinite</td><td>0.001 mg/kg</td><td>EPA 1631</td><td>Total Mercury</td></mql<>	Freeze or freeze-dry tissues (store at room temperature); holding time indefinite	0.001 mg/kg	EPA 1631	Total Mercury
QCS with each batch analyzed in the middle of the batch	NA	NA	Daily per digestion batch per matrix; Analyze at end of batch or each 12-hour shift 67 - 133 %Recovery	NA	One per 10 samples per matrix 65 – 135 %Recovery ≤50 RPD if results greater than 5x MQL	NA	NA	Three per batch (maximum 20 samples) per matrix < ± MQL	See Table 2	1 every 10 samples <50 RPD if results greater than 5x MQL	Daily per matrix and equipment type <mql< td=""><td>Freeze or freeze-dry tissues (store at room temperature); holding time indefinite</td><td>$0.010~\mathrm{mg/kg}$</td><td>EPA 1630</td><td>Methylmercury</td></mql<>	Freeze or freeze-dry tissues (store at room temperature); holding time indefinite	$0.010~\mathrm{mg/kg}$	EPA 1630	Methylmercury
The response factor for nC_{35} is \geq the response factor for nC_{28} . Aliphatic and aromatic fractionation check per batch of silica gel ($< 10 - 20\%$ crossover) and 60-140% recovery	Gas chromatography/ mass spectrometry	Within retention time windows	Daily per extraction batch per matrix 60 - 140 %Recovery 25 RPD for LCSD	NA	One per 20 samples per matrix 60 − 140 %Recovery ≤50 RPD if results greater than 5x MQL	70 – 130 % Recovery 1-Chlorooctane or trifluoromethylbenzene (nC ₆ to nC ₁₂) 1-Chlorooctadecane, 2-fluorobiphenyl or o-terphenyl (>nC ₁₂)	NA	Daily per digestion batch (maximum 20 samples) per matrix < MQL	See Table 2	1 every 10 samples <50 RPD if results greater than 5x MQL	Daily per matrix and equipment type <mql< td=""><td>Freeze, hold up to one year; extract within 24 hours of thawing</td><td>Not Available</td><td>Texas 1005/1006</td><td>Total Petroleum Hydrocarbons</td></mql<>	Freeze, hold up to one year; extract within 24 hours of thawing	Not Available	Texas 1005/1006	Total Petroleum Hydrocarbons

CCV – continuing calibration verification
ICV – initial calibration verification
MDL – method detection limit
MQL – method quantitation limit
NA – Not applicable
QCS – Quality control sample (independent source)

Calibration Procedures Summary

Table 2

		Calibration Summary
Parameter Method Measured Description ¹	Activity	Requirements
	Initial Calibration	Blank and single point standardization as per method 6020.
Metals (Arsenic	Initial calibration Verification (ICV)	Analyze mid-level calibration standard. The %R for each analyte must be 90-110%.
and Barium)	Continuing Calibration Verification (CCV)	Analyze mid-level calibration verification standard every 10 samples. The %R must be 90-110% of the true value.
	Interference Tests	Analyze interference check standard at the beginning of every analytical run. The %R for each analyte must be 80-120% of the true value.
	Initial Calibration	Analyze a minimum of a blank and five concentrations. The acceptance criteria are a maximum $\%$ RSD (\le 15%) criteria and recovery of the lowest standard is in the 75 – 125% range.
Mercury (Total) EPA 1631	Initial Calibration Verification	Analyze a mid-level calibration standard. The %R for each analyte must be 77-123% (QCS)
	Calibration Verification	See OPR requirements
	Initial Calibration	Analyze a minimum of a blank and three concentrations (one at ML and one at upper range). Maximum %RSD (<25%) criteria before any investigative samples are analyzed.
Inorganic Arsenic EPA 1632	Initial Calibration Verification	Analyze a mid-level calibration standard. The %R for each analyte must be 80-120% (Method 1632 Table 2).
	Calibration Verification	Analyze a mid-level calibration verification standard every 10 samples. The %R must be 76-116% of the true value.
Methyl Mercury EPA 1630	Initial Calibration	Analyze a minimum of a blank and five concentrations prepared using distillation procedure. The acceptance criteria are a maximum %RSD ($\leq 15\%$) criteria and recovery of the lowest standard is in the $65-135\%$ range.
	Calibration Verification	See QCS requirements
Total Petroleum Texas 1005 / Hydrocarbons 1006	5 / Initial Calibration	Analyze minimum five concentrations for each analyte. Maximum %RSD (\leq 25%) or minimum correlation coefficient (0.995) criteria before any investigative samples are analyzed. A calibration curve must be prepared for any compound for which the %RSD is greater than 25%. Take corrective action when criteria not met. The lowest calibration standard establishes the MQL based on laboratory standard operating procedures for initial volume of sample and final volume of extract.
	Calibration Verification	Verify calibration curve daily, every 24 hours, or every 20 samples, whichever is more frequent, with a check standard. Maximum $\%D \le 25\%$.
CCC - Calibration check compound CCV - Continuing Calibration Verification ICV - Initial Calibration Verification MQL - Method Quantitation Limit NA - Not applicable RPD - Relative percent difference RRF - Relative Response Factor %D - Percent Difference %RSD - Percent Relative Standard Deviation SPCC - System performance check compound	ation Deviation compound	

Table 3
Laboratory Methods

Parameter	CAS No	Method	MQL
Total Arsenic	7440-38-2	SW 6020	0.04 mg/kg DW
Inorganic Arsenic	7440-38-2	EPA 1632A	0.03 mg/kg DW
Total Barium	7440-39-3	SW 6020	0.05 mg/kg DW
Total Mercury	7439-97-6	EPA 1631	0.001 mg/kg DW
Methylmercury	22967-92-6	EPA 1630	0.010 mg/kg DW
Total Petroleum Hydrocarbons	NA	TX 1005/1006	N/A

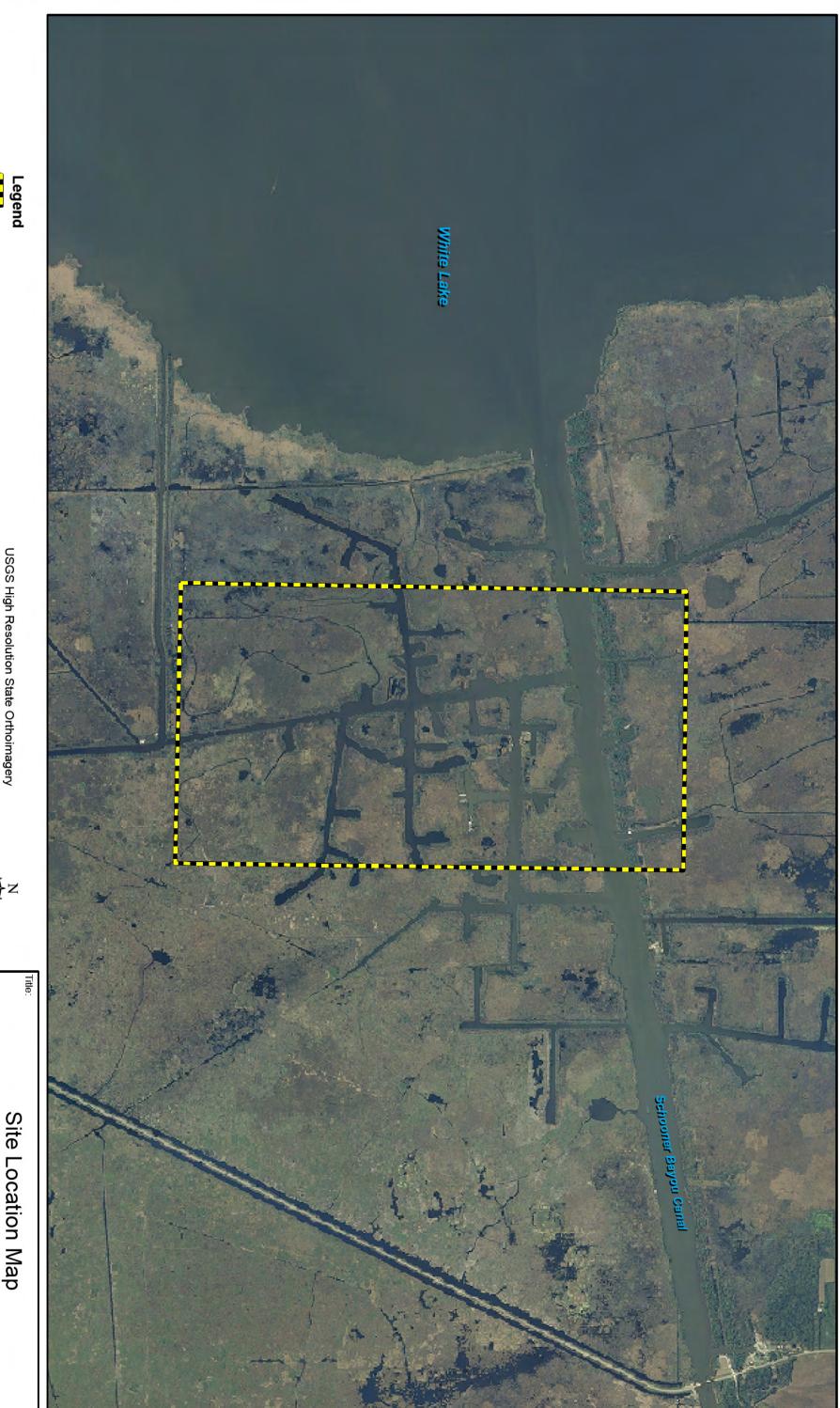

MQL – Method Quantitation Limit (Method Detection Limit [MDL] for Total Arsenic).

Table 4

Equipment and Supply List for Crab and Forage Fish Tissue Sampling

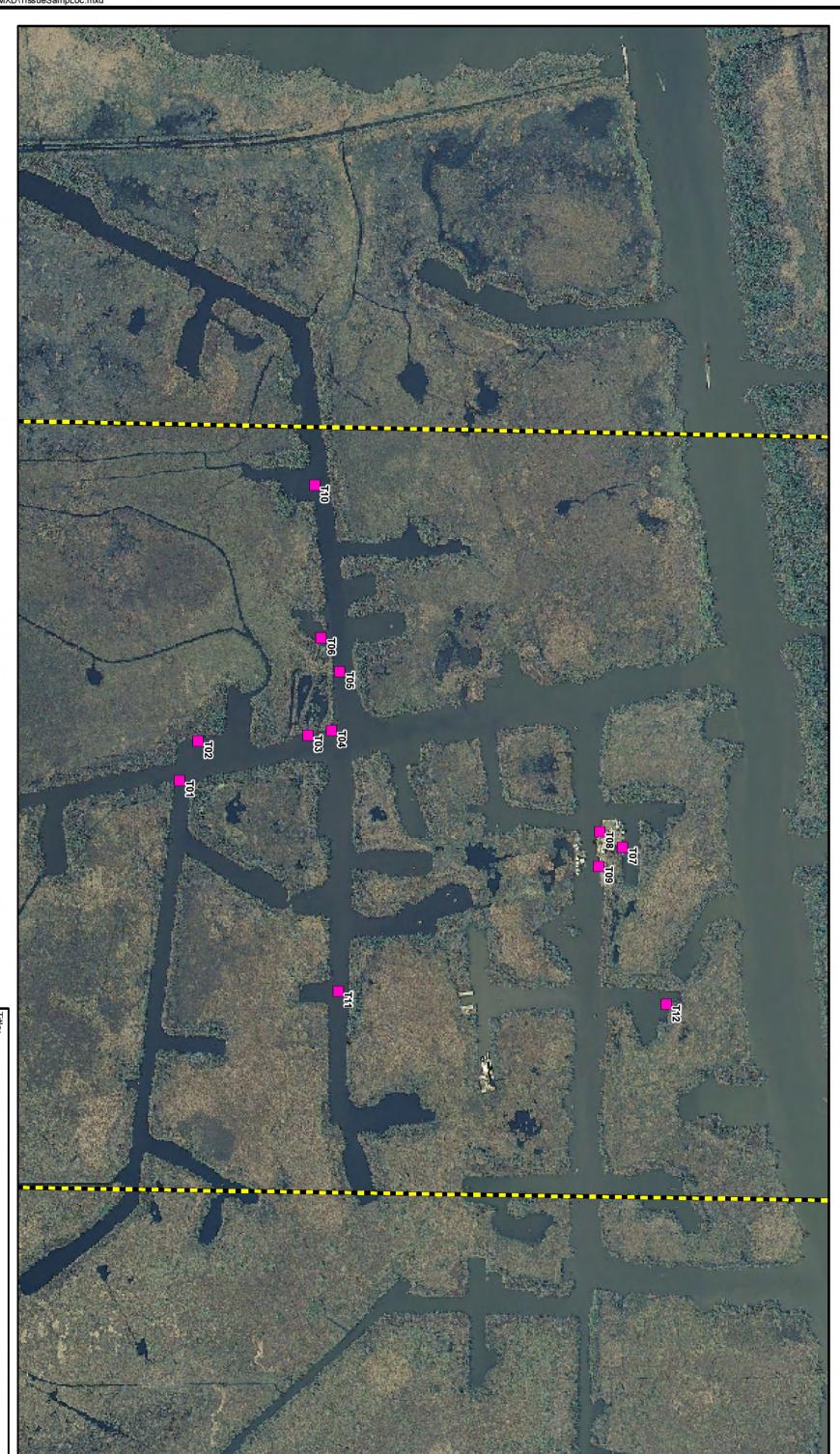
- 1. Sampling vessel (including boat, motor, trailer, oars, gas, and all required safety equipment)
- 2. Nets (including trawls and/or seines, hoop or castnets)
- 3. Crab Traps and /or Pots (several per sampling site)
- 4. Coast Guard-approved personal floatation devices
- 5. Maps of sampling areas, sites and access routes
- 6. Global Positioning System (GPS) unit
- 7. pH meter (including associated calibration supplies)
- 8. Livewell and/or buckets
- 9. Measuring board (millimeter scale)
- 10. Ice chests
- 11. Aluminum foil (solvent-rinsed and baked)
- 12. Heavy-duty food grade polyethylene bags
- 14. Large plastic bags
- 15. Knife or scissors
- 16. Clean nitrile gloves
- 17. Field Record Forms
- 18. Sample Identification Labels
- 19. Chain-of-Custody Forms
- 20. Chain-of-Custody Labels
- 21. Scientific collection permit or fishing license
- 22. Ice
- 23. Black ballpoint pens and/or waterproof markers
- 24. Clipboard
- 25. Packing/strapping tape
- 26. Overnight courier airbill and laboratory shipping address
- 27. Plastic cable ties
- 28. Plastic bubble-wrap
- 29. First aid kit and emergency telephone numbers

Legend
Section 16

USGS High Resolution State Orthoimagery for the Louisiana Coastal Area, 2008

4,000

1,000 2,000


Drawn By: KPL

11/24/10

Project No.:

Crab and Forage Fish Tissue Sampling East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Figure:

Legend

Section 16 Proposed Site Tissue Sample Locations

USGS High Resolution State Orthoimagery for the Louisiana Coastal Area, 2008

1,500

Propo

osed Site Tissue Sample Locations

Drawn By: KPL

Date: 11/24/10

Project No.:

Crab and Forage Fish Tissue Sampling East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Figure:

2

Field Notes Appendix B

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

raject / Client ccation -1100 7136 good) 4 + Crat 5575 63B28974 50-(N)\$288957 13-10 Shert to The Target moved

Dale 12-13-10 Project / Client 07-47 photo9 - Gaion driving toTR-04 tune 1148 TR-04 15R568232 3290316 Hime 1153 A-01 (additional trap) requested location by Peak aborted, burge in the way time 1156 T-12 15 R 5 6 135 (Swed) time 1158 I-09 ISR561314 3289624 Hime 1159 T-08 15R 561166 3289623 time 1301 (1201) T-07 15R561198 3289709 time 1205 graphing trap from P-2 one crato female - large & set 2 large ago 561017 3290021 tune 1206 P-3 gradaing trap brachs 561195 3290017, 2 orass 1) Heigh one bigger

Location EWL	Date 12 - 13 - 1051
Project / Client 07-47	

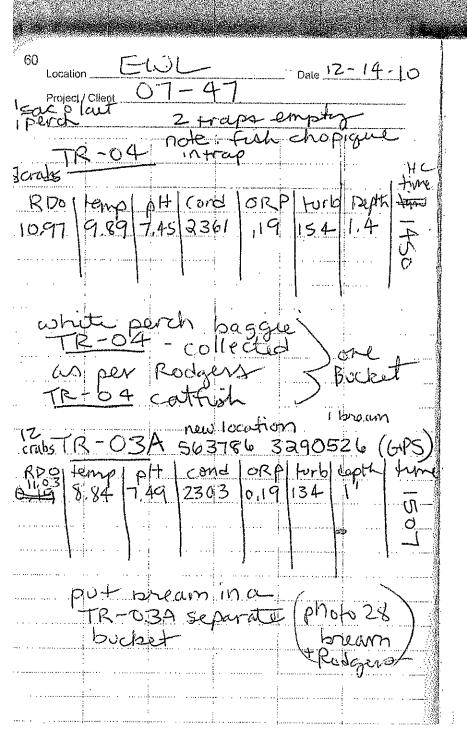
time 1208 to grab + throw P-4 1/1Hu male. 561391 3290032 time 1210 P-5 to grab trap + throw 2 big | medium 561556 3290064 photo 10 + 11) Gaion photo 12 Patrick tyme 1216 T-10 (photo 13) (Patrick) photo (4) each spoil ban 560451 3288906 T-06 560781 3288964 Hima 1222 <u>-05</u> 560869 3288990 Time 1223 T-04- 560982 3288975 Ime 1225 T-03 56/008 32888 8 line 1027 7-01 56 1094 3288 605

Location EWL Date 12 - 13-10 Project / Client 07-47 time 1229 T-02 561094 3288612 time 1238 saved in 6PS T-15 11 56 32 225-281 4451 Gary Barber time 1308 TR-03 564930, 3290761 2 crabe thrown back pot new bant fine 1317 TR-02 rebuted Helder with crabs (approx) 5 crabs) 567210 329 1154 (proto 15 +16) Helen pulling time 1325 + bull trap TR-01 (pnotos 17, 18, 19) Patrick polling trup, a crabs, rubout 569363 3291889 try to cost net for ful-

Location_EWL Project/Client 07-47 Trying-Carting

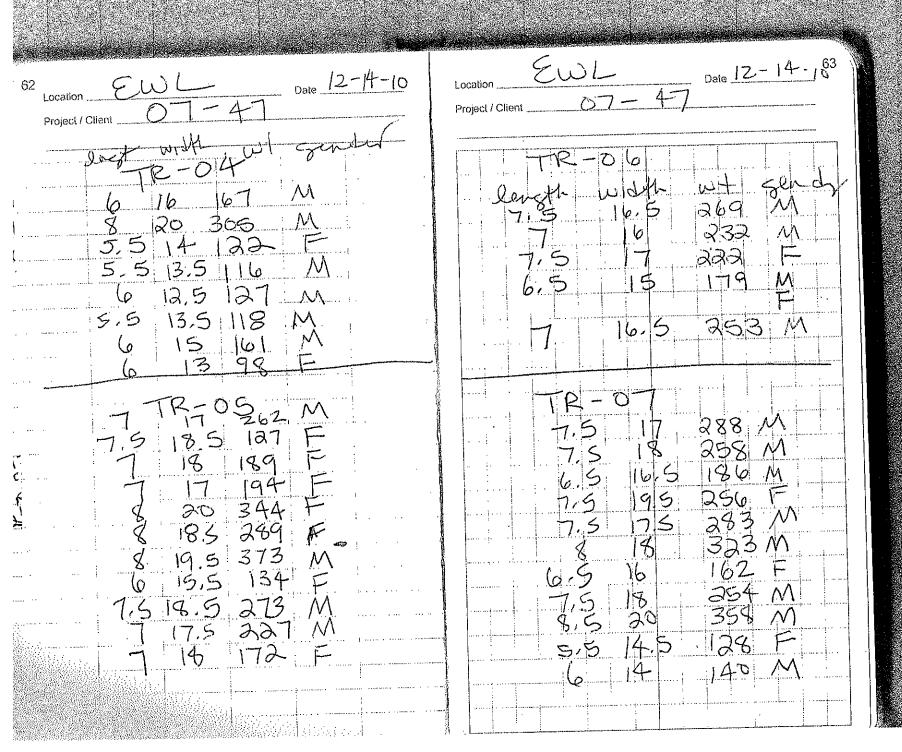
Location Date 12-13-1053

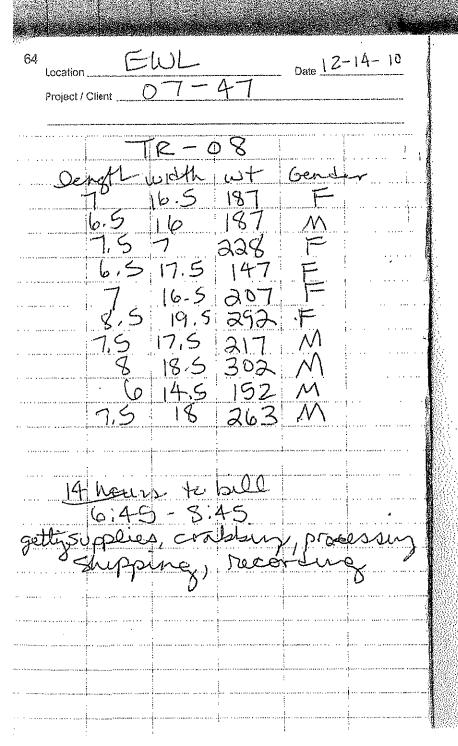
Project/Client 07-47 Trying-Carting time 1341/20 photos Janting nel cart per buch, location chosen by Gajon + caught poagu + shad, 3 costs 24' bigh | 211 - 411' lone 569363 3291889 time 135 at TR-02 to try carting net (21,25 photos) 1st cast nothing 2nd cost -> 15huns 3rd cast - nothing time 1522 (after lurch) 3 quart baggies of cathish bout heresparts using nitrile gloves (boit 1, 2, 3) 7 then into a 2 gallon time 1528 collected from bout ica chest on boat ? hast used for crad trapa-


EWL Date 12-13-10 time 1542 Project / Client 01-41. (st throw ret at T-07 one little mud minnow 2 nd throw-none 3 rd throw-none time 1545 P-6 18+ throw ret - 1 minnow 2 nd throw - 2 shrings GPS-561216 328965 81 ture 1551 15+ cast, hothing 2nd cast - nothing 3rd cast - nothing near T-02 15+ cart - 1 Hoagie 2 nd cast - nothing 1 hoase P-7 56022 328675

	tim		601	ier i Palaerithi dilandererrita A			
rea	ist ca	-06 st -	red	4in	e Tara		
a	ind, c	ast.	十ノ	Thri	M	154	in
	3-6	cast.	- no	th_	7		
7	, r	160	7				. [
nea		1-10	- 110	12.			
	1st co	ast	- not	hene			
	Brd	cast-	- 5"	mi	20c	1	
	4 h	cast		ofl	n'y		2
	me 1		P	-8			- j. -
be	tuee			an.		[R -	4
	1st ca	cast		hin			-
	309	cast	- - 2	mi	علال	£ 5	
	4m	casi	/ / _ /	Coth	7		
6							
	560	8 975		3289	796	3	
2014 A	nary o	of 12	113	400 3 - 6	23 4	- Y	ρ

Location EWL 6:45 AM meeting for today Justice for cartish pick upice on way back from Lafayette pickup John Redgers Patrick 1140 time calibrating water quality M5 wunentation time 1228 - head out in bout near TR-01 nocrabs Field Record Form I'll duplicate here what's on 712 Red Form TR-01 C EWL 12-14-10 Crab trap PPO 15.01 mg/L TEMP 9,18 pH 7,25 Cond u5/cm 2353 ORPMV-21 Turb NTU 120,7 Depth fee H.3 Time 1253


Location	EWL	na 1 kis. na 15 15 kis na na rhuad babbanarana karad manah banasharan sisanasa di Jaka	Date 12- 14	- (o 57 \
Project / Clie	ont 67-	47		maranta state o più
الله ما يحد العالم الله الله الله الله الله الله الله ا	trying t	o collect	crabs w/RI	dazers
RD 11.32 0	8.84 Ped	3, 38, 3	RP TULB Def 1-5	311
RPOIL	emppH	00,20 00,20	Turb Dept	<u>2 8 8 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5</u>
FD0 10:82	7, 3	Cond DRT	S collect Toy Is Dupth	Time


Date 12.14-10 Location_ EWL Date 12-14-16 Project / Client 07-4 Project / Client 07-4photo 24) crabs at 10 crabs head out 1333 TR-09 RECHEMA PH CONSIDER TURB DEATH TIME collect Locations crabs from with crabs crost TR-06 + 2 crabs (moles) +1 male +3 @ (2 penales, 1 mels TR-08 (photo 27 RDOJ HEND PIH COND ORP TURB DEPTH TIME 11 chabs RROITEMPT PH cond ORP TURB DEPTATION 5 cond ORP Turb Depth Time 13SG 18.56 7,44 2249 0,21 177.5 1117 11,42 temp pH cond ORP Turb Depth

Location	EW	1_	Date 12-14-161
Project / Client	07		

TR-03A cm langth with wt 298 11, 298 14, 5 141 6 15, 5 146 17 181 5, 5 14 152 19 191 6, 5 16 201 6 14, 5 149 14. 5 149 14. 5 132 7 16, 5 167 8 18 259	gender # 35 IL EXXII X M G. E.
--	-----------------------------------

Location EWL	Date 12 - 14 - 10 ⁶⁵
Project / Client 07-47	

TR. 577.5 857.5 5	0 3 18 9 - 9 17 17 17 18 10 15 15 15 15 15 15 15 15 15 15 15	3994900733	SON OF MELLY MAN
17 AL 12 8 11 5 11 0		7100 int: (c)	

Tr

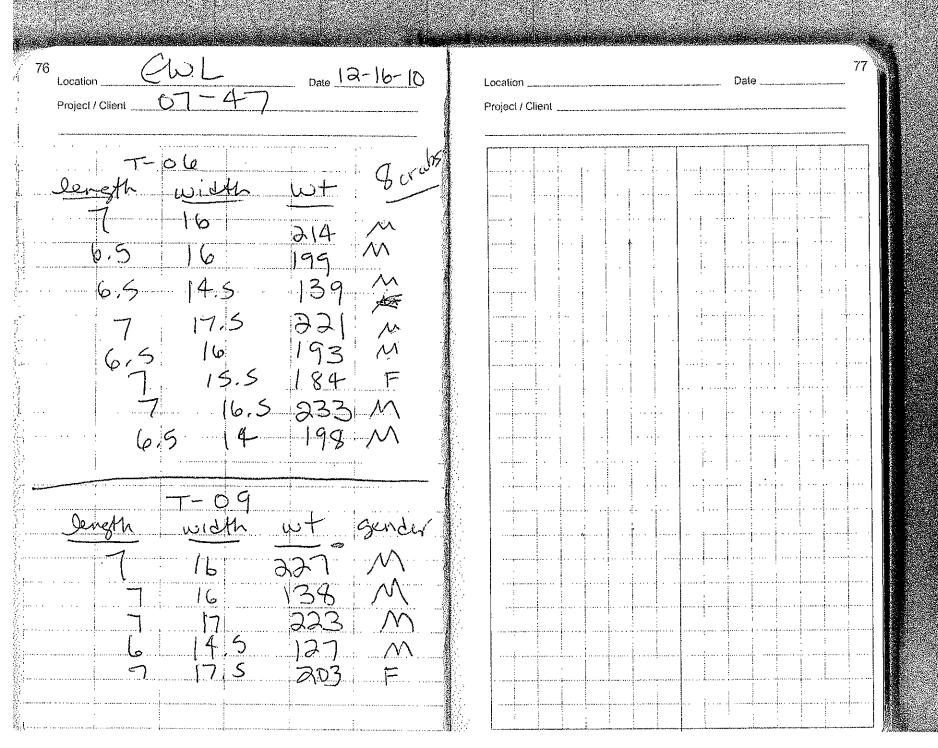
Location _ EWL Date 12-15-10 EWL Date 12-15-1067 Project / Client 07-47 Project / Client 07-47 7:30 for misself into Bioc planning maeting TR-02 RDO Temp pH (and 1029 Turb) Depty T. N Heading out 1114 TR-01 1/2 mile from Schroner Bayou RDO Temp of Cond ORP Turb Depth Time 11.56 9.84 6.76 2523 6,2 [52 1.4 no crabs, chick tomorrow TR-01A 15 crass RDO temp plt cond ORP TURB Dupth Tim 1st crab trap - no crabs checking for Fish here 41.24 11.337.09 2871 0,16 367 12.2/1237 hoppinet bream + cuttish (photo 29+30 bream/cattach Saw two recreational fishermen at TR-01 T-04, T-03, T-05 Barber Set traps where sediments were Stor Stirred up Gajan Saw 20 traps all in and area

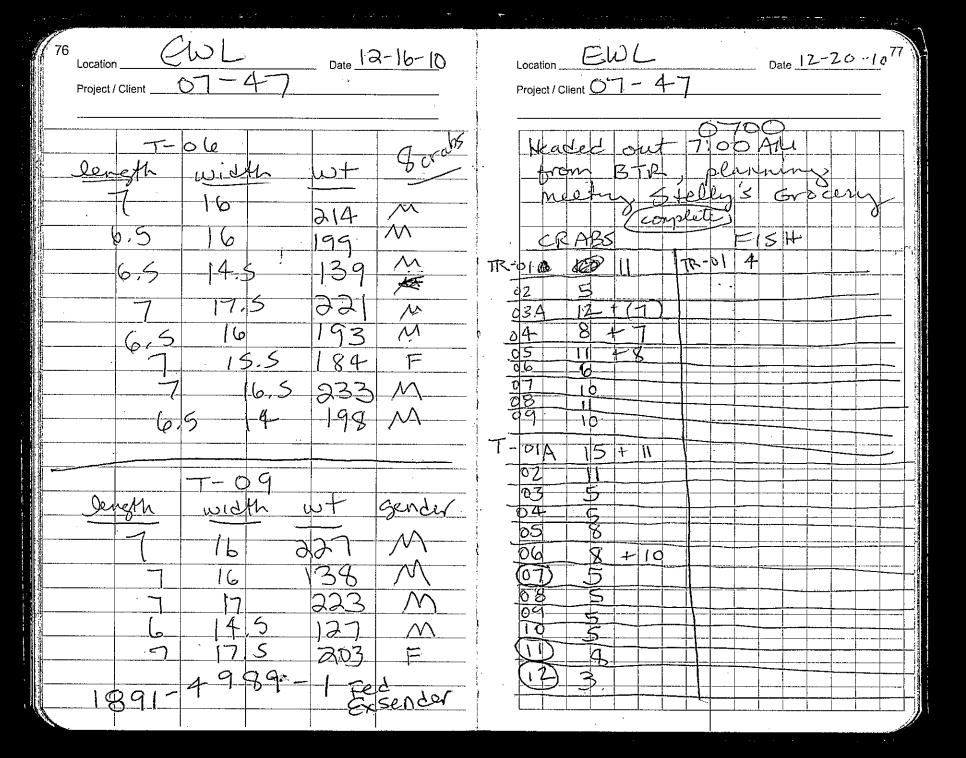
EWL Date 12-15-10 Project / Client 07-4-TR-04 toobig - one cattish wt 219 \bigwedge^{N} 234 205 M

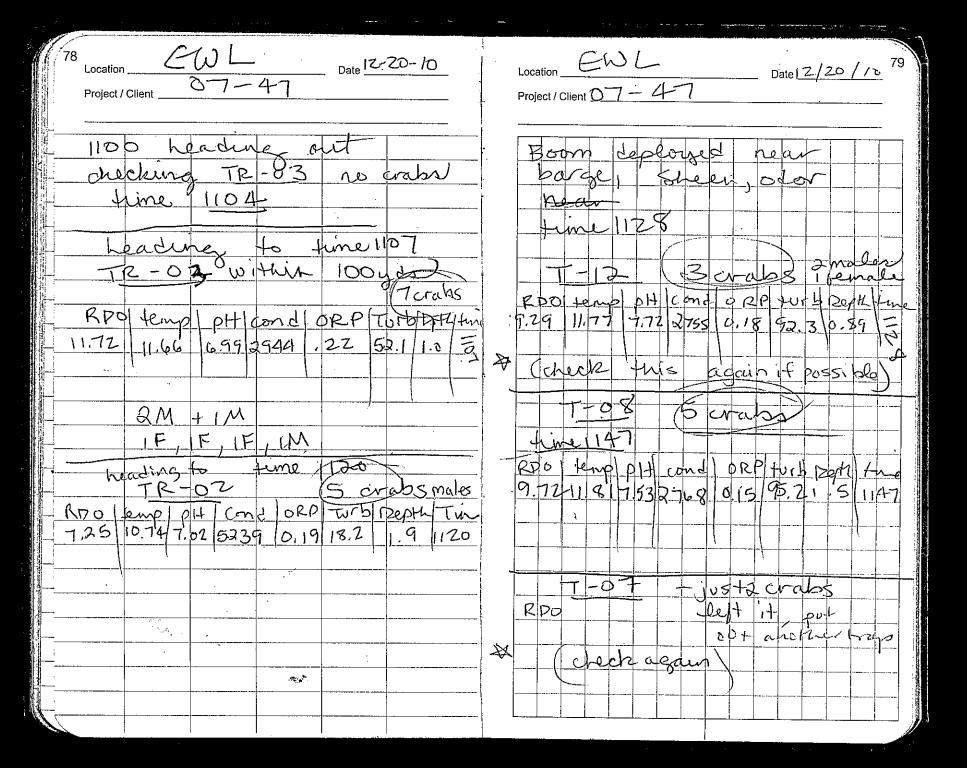
Location <u>EWL</u> Date 12-15-10 69

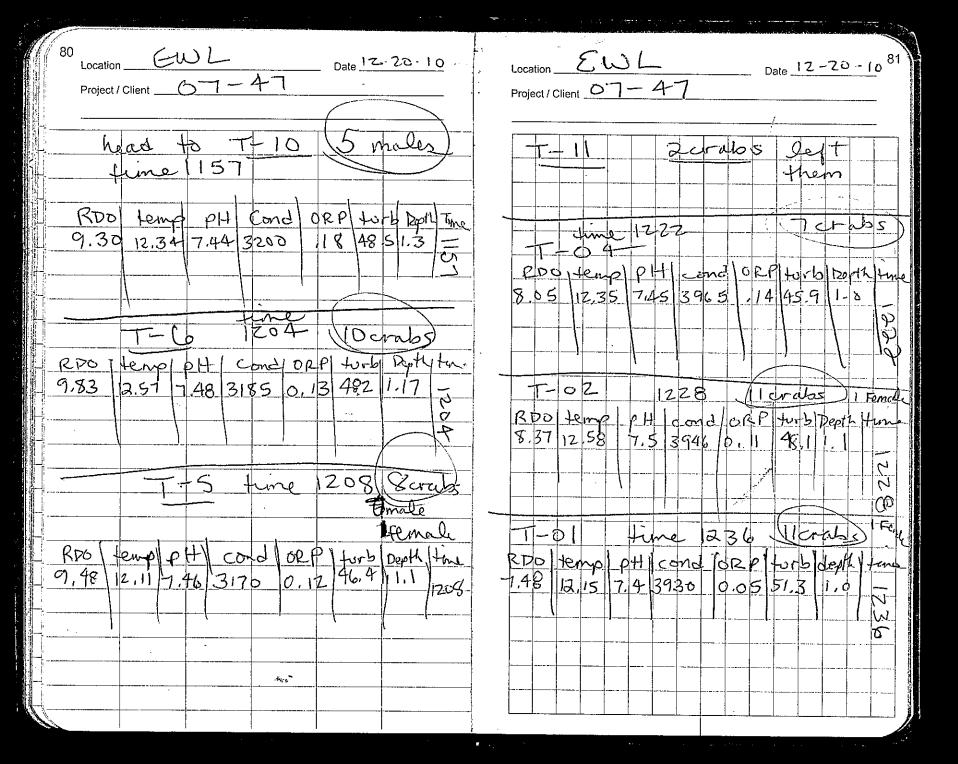
Project / Client 07-47

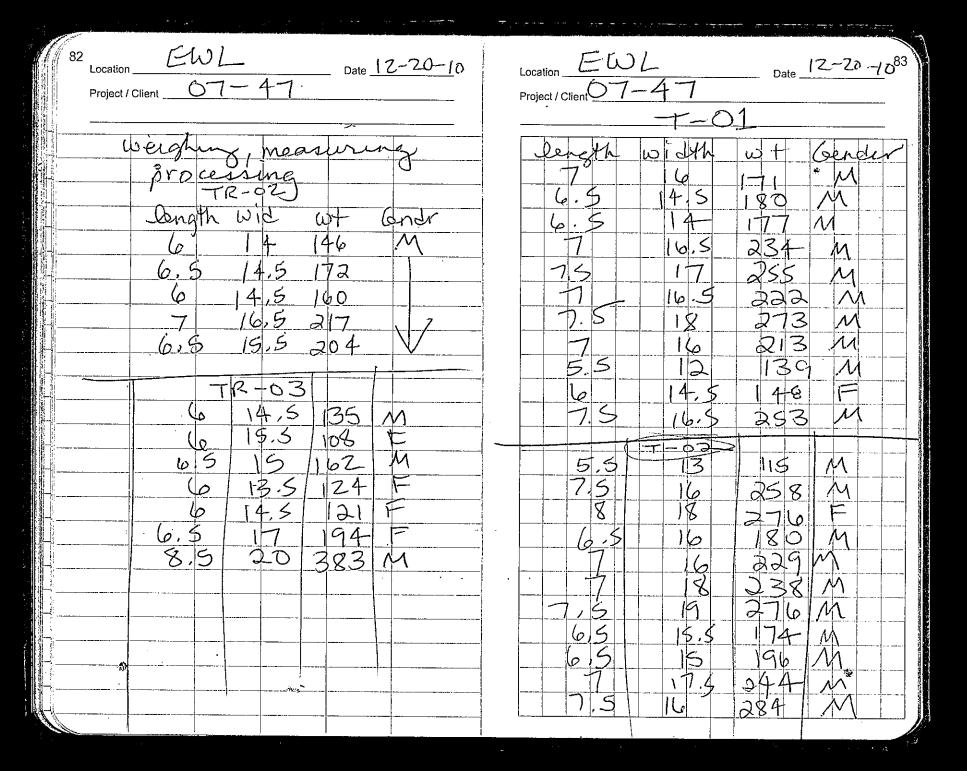
bream 5,5 45

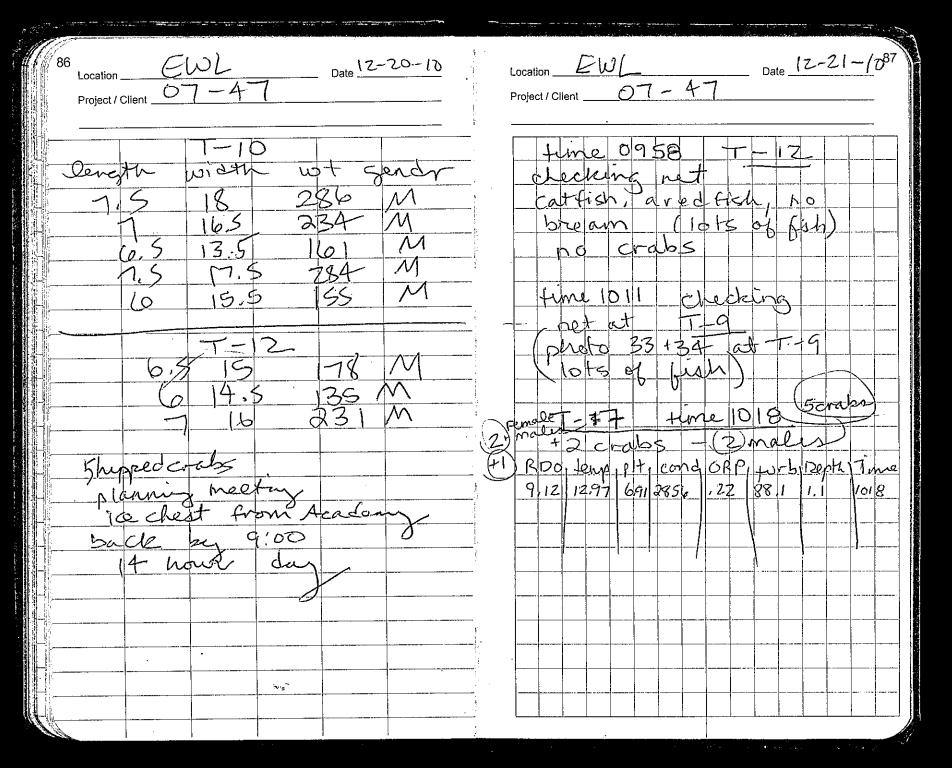

Location EWL Date 12-16-10 71 EWL Date 12-15-10 Project / Client 07-47 Heading of 1 to Fed EX to Ship 2 crab locations photo 29 mtg garans bad Fish + 1 bait 1544 + Ga) Patrick > best 12 hr day pet [locations] main north-south canali is Stelly Canal on way to T-12 for crabs one crab, put him back (still in trap) to try to get more craiss, reparted (a) 1100 set out not at 17-12-61110 photo 50+31 lunch + barge Munch) w/ Max on loss Barage 1-9 check chap trap 5 crass! 100 temp of cond ORP Turb Depth Tim 13 13 682 2672 .2 233 1.5 114-3

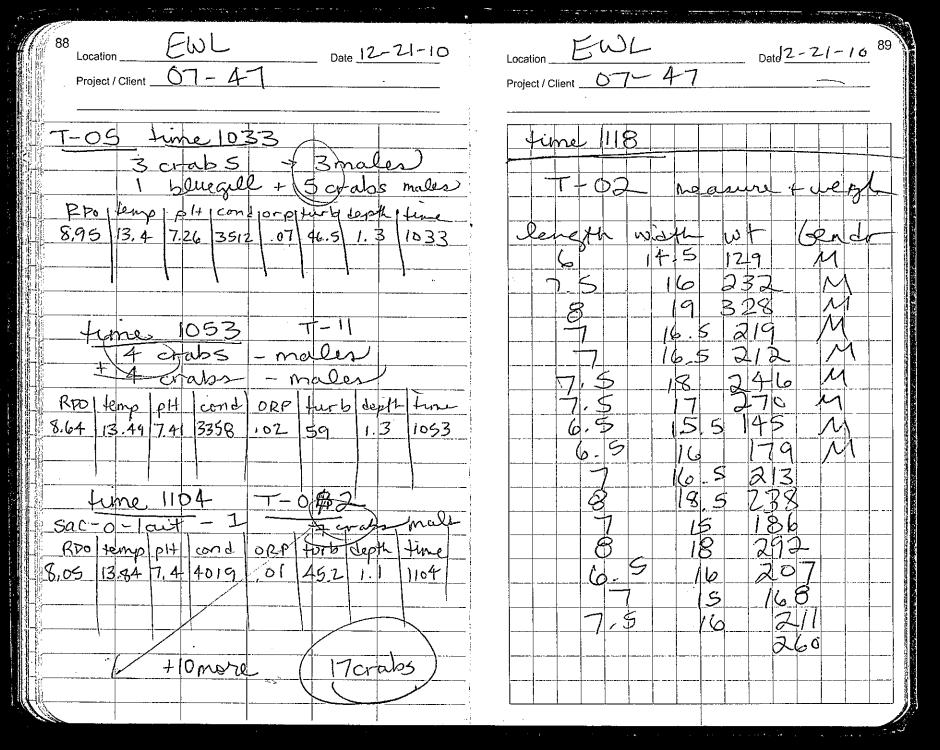

Location ___ EWL Date 12-16-10 73 Location EWL Date 12-16-10 Project / Client 0-7-47 approach o T-08 2 craiss, put them back to try for more g crabs & RDO HEMPIPH CONDERPHOREDEPHINE 9,32 13,79 7.25 3145 .26 656 1.0 1215 o pulting fish net trapin at 1153 near T-07 e oneching crab trap at T-07 - one crab. heading to check T-10 3 crabs, left them 1226 put him back checking T-04 5 crabs between 1-5 and T-6 at 1206 time 1237 RDO temp PH cond ORP Turd Depth Time · one crab@ T-05@1214 9,27 13,61 7,47 3120 0.13 110 1.2 1237 put it back checking T-03 1 5 crabs " checking T-06 for wabs time 1238 (photo 32 grabsat RDO Hemp | pH Cond ORP TURN Raph Time 9,45 3.81 741 3154 09 70,11 2 1238

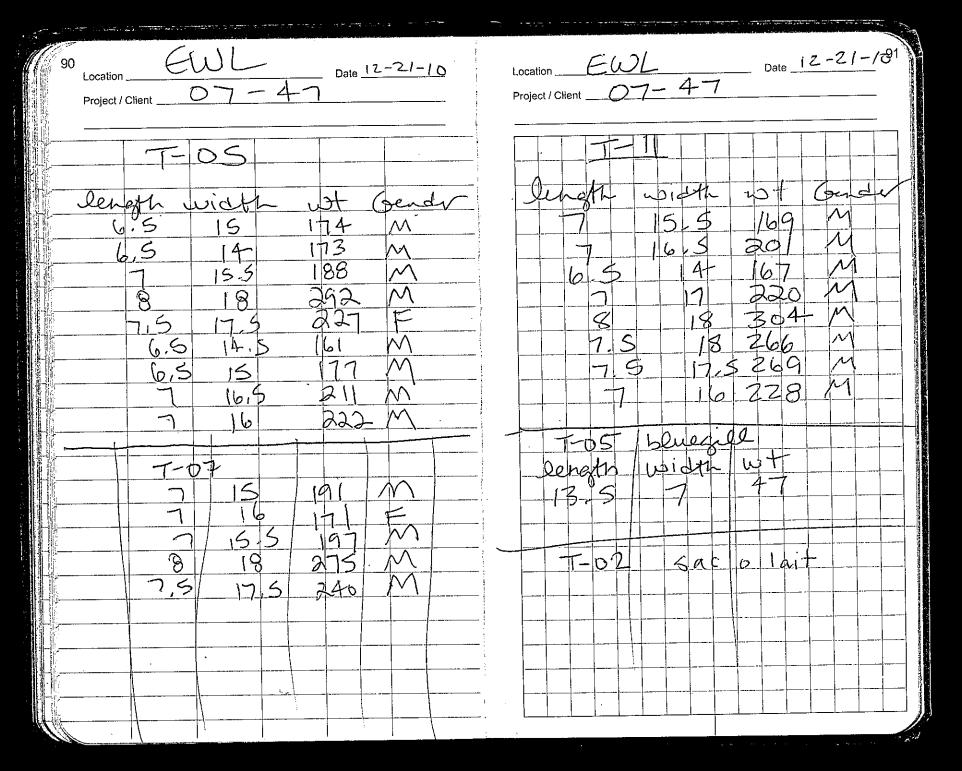

Location EWL 74 Date 12-16-10 Project / Client 07-4-7 checking T-02-2 grabs - Hurowit-back time 1242 check T-01 2 crabs)
leave them there
to try to collect more
time 1253

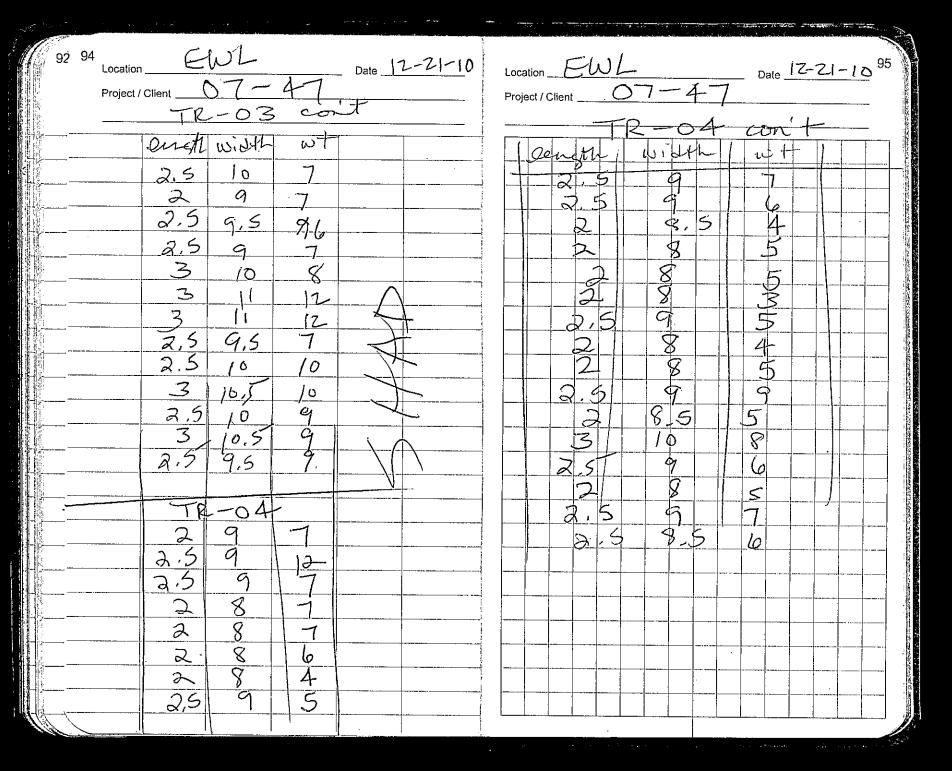

Check T-11 no crabs func 1257 checking TR-02 I crab, threw back in time: 1319


Location	FWL		Date 12-16-10 75
Project / Client	0.7-	47	and the second of the second o
-10	pach	205C+	
T-	0.3	6 cr	
len	=Ah u	bath	weight
6,	5	15 5	178 M
	7	15	212 M
	7	16	194 M
	5 5	13.5	130 1
	6	13,5	156 M
	Θ	12,3	1 / 0 /
	-04	5 cr	abs
	<u>i</u>		
len	eth 1	width	wight
(4 1	7	وموطوره ووالمرزرين أدهم وملك ووووريان	201 M
	7.5	17,5	289 M
	6.5	14,5	172 M
	8	15	M 681
	8		1298/









EWL 07-47 Location EWL
Project / Client 07-47 Date 12-20-10 85 Date 12 - 20 - 10 Location Project / Client ____ T-04 width 11.5 gender M M weight Dength 28 237 237 209 301 17.5 154 217 8 0 26 13.5 127 .70.5

96 EWL Date 01-03-11 Project / Client 67-47crabs collected John + Patrick TR-02 10 -63 T-03 12 -07 -08 head to Lafagette to ship crabs 2 hours preparations in morning 18ft BTR at noon Worked till 7:00 9 hrs worked

Location EWL Date OI-O4-197Project / Client O.7-47

Mexine DITOO head but in boat 0905 heading to TRIOS (photos) rets in water 0930 tmillet Collected Her SHAD, catherin Shad traveled 200 yd2 2/29allong lots of test kept 1/2 bucket move to TR-06 0945 Franked 2004ds Smaller number of fish, Kept shad (about 50) threw back cattish and mosquita Cul head to TR-08 1005 lots of shap and Jaige cattish Filled 1/4 of by chet W/SHAD, 6 Ly species

98 Location <u>FW L</u> Project / Client 07-47 Head to 12-094 1028 collected SHAD threw back lots of cateust seich + one small evals WadTR-07 1050 lots of SHAD head to canals 1/2 bucket of from WLF prime 763-3554 paused fishing to complete Collection parhit. Dorlzed fill 4.00 meetry WLF 7:00-4:00 ghour days

Location <u>EWL</u> Date 1-5-1199
Project / Cilent 07-47

\$ 35.64 11.28 gallows fuel - no recit from pump 0940 1000 - he a ded over the to WLF to try to set permet though & waiting to hear brom Manual Ruz spoke to manuel @ 10:51, he has the document on his bossed deale, waters to be signed 1055 - Signed! Nead to Landing Et Stelly for John to call Tread out 1425

Club Location $\int \frac{1}{1} \int \frac{1$ Date 1-5-11 Project / Client 07-47 while I was not: 1230 T-01 fraction 5H70 mouns to 1-7,8,9 T-09 time 1455 moto 1230 T-02-LISW-SHAD+ Mos Fish, catfit cras tens of SMAD John 1320 T-05 (330 T-03 7-08 15-05-time 1340 T-04 platos volum 1330 T-06 etos your shad, carfoll 355 T-10 405 T-11 T-07 1510 - time 8 stutions SHAD SHAD - no the follow heading out to T-12 on way to T-09 T-7, 18, 9 to check crabs Moving to T-12 time 1525 need small boat for time 1445 photos at T-12- ghour crab trups collected SITAP ~ 40 FM~

Photo Log Appendix C

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

IMGP2905: Crab traps on boat at Little Prairie Landing

IMGP2907: Gajan adding fuel to the boat

IMGP2906:Catfish heads/bodies to be used for baiting crab traps

Newly constructed platform with heater treater

PC130002: Newly constructed platform with heater treater

IMGP2909: Mitchell throwing in a crab trap at location TR-07

PC130003: Newly constructed platform with heater treater and flowlines

IMGP2910: Mitchell throwing in a crab trap at location TR-06

IMGP2911: Mitchell baiting a crab trap at location TR-05

PC130004: Oil and gas field canals, former location of elevated vessel

IMGP2912: Mitchell baiting a crab trap at location TR-05

PC130005: Oil and gas field canals, former location of elevated vessel

IMGP2914: Gajan, boat captain and crab fisherman, on the boat

IMGP2916: Patrick with handheld DeLorme Earthmate PN-40 GPS, used to identify location coordinates

IMGP2915: Gajan driving the boat towards location TR-04

IMGP2917: Patrick taking coordinates at location T-10 with handheld DeLorme GPS

IMGP2918: Oil and gas field canals, former location of elevated vessel

PC130007: Canal south of Schooner Bayou to ICON background location

PC130006: Canal south of Schooner Bayou to ICON background location

PC130008: Cast net and box with catfish bait

PC130009: Cast net, box of catfish bait

IMGP2919: Helen pulling crab trap into the boat at location TR-02

PC130010: Chevron dock facility

IMGP2920: Helen pulling crab trap into the boat at location TR-02

IMGP2921: Crabs collected in wire mesh trap at location TR-02

IMGP2923: Patrick pulling crab trap onto the boat at location TR-01

IMGP2922:Patrick pulling crab trap onto the boat at location TR-01

IMGP2924: Patrick rebaiting crab trap at location TR-01

Day 1 Setting Crab Traps/Cast Netting for Fish (12/13/10)

IMGP2925:Gajan casting net for fish at a test location chosen by him

IMGP2927: Gajan throwing cast net out to collect fish at a test location chosen by him

IMGP2926: Gajan pulling fishing cast net out of water at a test location chosen by him

IMGP2928: Gajan bringing cast net with fish in it onto the boat

Day 1 Setting Crab Traps/Cast Netting for Fish (12/13/10)

IMGP2929: Gajan checking cast net for fish at location TR-02

PC130012: Jug line/trout line between TR-04 and TR-05

PC130011: Fish collected by cast net at location T-10

PC130013: Jug line/trout line between TR-04 and TR-05

Day 1 Setting Crab Traps/Cast Netting for Fish (12/13/10)

PC130014: Contents of cast net between TR-04 and TR-06

PC130015: Oil and gas canal near TR-04

Day 2 Collecting/Weighing/Measuring/Shipping Crabs (12/14/2010)

IMGP2930: Crabs fromTR-06 in basket prior to being moved to holding bucket

IMGP2933:John counting crabs and identifying their gender

IMGP2931: Crab from location TR-07 held with tongs by Patrick

IMGP2934: Crabs collected at location TR-09 in holding basket on boat

Day 2 Collecting/Weighing/Measuring/Shipping Crabs (12/14/2010)

IMGP2935: Buckets/lids labeled by location to hold crabs once counted and gender identified

IMGP2938: Catfish and bream collected at location TR-03A in a holding basket on the boat

IMGP2937: Crabs collected at location TR-08 in a holding basket on the boat

IMGP2939: John holding a bream fish collected at TR-03A

Day 2 Collecting/Weighing/Measuring/Shipping Crabs (12/14/2010)

IMGP2940: Patrick weighing female crab on a digital scale at Little Prarie Landing

PC150016: Gajan pulling crab trap out of the water at TR-01

PC150018: Checking hoop net at TR-01

PC150017: Pulling hoop net out of the water at TR-1

PC150019: Returning hoop net to bottom at TR-01

PC150020: Checking hoop net at TR-01

PC150022: Hoop net partially out of water at TR-01

PC150021: Fish in hoop net at TR-01

PC150023: Fish in hoop net at TR-01

PC150024: Fish collected from hoop net at TR-01

PC150026: Contents of hoop net at TR-01

PC150025: Helen and John looking at hoop net at TR-01

IMGP2941: Bream and catfish collected by hoop net at location TR-01

IMGP2942: Bream and catfish collected by hoop net at location TR-01

PC150028:Barge holding flowline and pipe removal debris

PC150027: Barge holding flowline and pipe removal debris

PC150029: Newly constructed platform with heater

PC150030: Newly constructed platform with heater

PC150032: Crane/barge/tug used for flowline pipe removal

PC150031: Crane/barge/tug used for flowline pipe removal

PC150033: New signs posted by Vermilion Parish School Board restricting hunting and fishing

PC150034: New signs posted by Vermilion Parish School Board restricting hunting and fishing

PC150036: Crane/barge/tug used for flowline pipeline removal

PC150035: Crane/barge/tug used for flowline pipeline removal

PC150037: Crane/barge/tug used for flowline pipeline removal

PC150038: Crane/barge/tug used for flowline pipeline removal

PC150040: Crane/barge/tug used for flowline/pipeline removal

PC150039: Crane/barge/tug used for flowline/pipeline removal

PC150041: Long stick on barge conducting flowline/pipeline removal

PC150042: Long stick on barge conducting flowline/pipeline removal

IMGP2943: Crabs collected from location TR-01A in holding basket on boat

PC150043: Crane on barge conducting flowline/pipeline removal

IMGP2944: Patrick onshore

IMGP2945: Patrick and John at weighing and measuring station at Little Prairie Landing

PC160044: Little Prairie Boat Landing

PC160046: Crab trap location at T-12

PC160045: Little Prairie Boat Landing

PC160047: Crab trap location at T-12

PC160048: Gajan baiting hoop nets at T-12

PC160050: Gajan baiting hoop nets at T-12

PC160049: Gajan baiting hoop nets at T-12

PC160051: Gajan setting hoop net at T-12

PC160052: Gajan setting hoop net at T-12

PC160054: Gajan setting hoop net at T-12

PC160053: Gajan setting hoop net at T-12

PC160055: Gajan setting hoop net at T-12

IMGP2946: Patrick and Gajan getting on barge to have lunch with Max Hungerford

IMGP2947: Hoop nets stacked on boat

PC160056: Peak central facility tank battery

PC160057: Inspecting crab trap at T-05

PC160058: Traveling to T-07 location

PC160060: Traveling to T-07 location

PC160059: Traveling to T-07 location

PC160061: Collecting crab trap at T-07 location

PC160062: Collecting crab trap at T-07 location

IMGP2949: The barge near location T-07

PC160063: Gajan setting hoop nets at T-07 location

PC160066: Approaching crab trap at T-02 location

PC160067: Approaching crab trap at T-02 location

PC160070: Collecting crab trap at T-02 location

PC160068: Approaching crab trap at location T-02

IMG_0465: Helen recording number of crabs collected at location T-06

PC160071: Oil and Gas Field Canal

IMGP2951: Patrick with large crab at weighing and measuring station at Little Prairie Landing

IMGP2950: Crabs collected in trap from location T-06

Day 5 Collecting/Measuring/Shipping Crabs Recording Water Chemistry (12/20/10)

IMG_0466: Patrick holding large crab at location TR-03

PC200072: Barge traveling down Schooner Bayou

IMG_0467: Helen holding large crab at location T-05

Day 6 Hoop Netting Fish and Collecting Crabs Shipping Crabs and Fish (12/21/10)

IMGP2956: Fish captured in hoop net at location T-09

IMGP2958: Patrick measuring length and width of shad fish at measuring station at Little Prairie Landing

IMGP2957: Gajan bringing hoop net onto boat to check for fish at location T-10

IMGP2959: Shad fish in five gallon bucket at measuring station at Little Prairie Landing

Day 6 Hoop Netting Fish and Collecting Crabs Shipping Crabs and Fish (12/21/10)

PC210073: Collecting hoop net from T-11 location

PC210075: Fish in hoop net at T-11

PC210074: Gajan collecting hoop net at T-11

PC210076: Fish in hoop net at T-11

Day 6 Hoop Netting Fish and Collecting Crabs Shipping Crabs and Fish (12/21/10)

PC210077: Collecting hoop net at T-11

Day 7 Collecting and Shipping Crabs Photographing Waterways (01/03/11)

P1030078: Wildlife

P1030080: Wildlife

P1030079: Wildlife

P1030081: Wildlife

Day 7
Collecting and Shipping Crabs
Photographing Waterways
(01/03/11)

P1030082: Wildlife

P1030084: Wildlife

P1030083: Wildlife

P1030085: Wildlife

Day 7
Collecting and Shipping Crabs
Photographing Waterways
(01/03/11)

P1030086: Wildlife

P1040087: Double rigged trawling boat docked at Little Prairie Landing

IMG_0479: Detail of fish sorting table at back of trawling boat

P1040088: Double rigged trawling oat docked at Little Prairie Landing

IMG_0480: Gajan at back of trawling boat with fishing nets not in the water

IMG_0481: Gajan at back of trawling boat with fishing nets not in the water

IMG_0483: Patrick and John near table for fish collection/sorting, nets not in the water

IMG_0482: Gajan at back of trawling boat with fishing nets not in the water

IMG_0484: Nets being lowered into the water at location TR-05 on the trawling boat

IMG_0485: Pulling trawling nets through the water at location TR-05

IMG_0487: Submerged net on extended boom being pulled through water at location TR-05

IMG_0486: Trawling net, attached to boom, being dragged through the water at location TR-05.

IMG_0488: Raising net out of water at location TR-05

IMG_0489: Releasing fish collected in trawling net at location TR-05 to collection basket

P1040089: Trawling nets being lowered into the water

IMG_0490: Basket of fish collected by trawling net at location TR-05

P1040090: Boat captain setting trawling nets

P1040091: Trawling net dragging in water

IMG_0491: Birds following fishing boat on Schooner Bayou Canal

P1040092: Pulling trawling net through the water at TR-05

P1040093: Helen watching trawling

P1040094: Helen and boat captain

P1040096: Pulling trawling nets through the water at TR-06

P1040095: Boat captain setting nets

P1040097: Pulling nets through the water at TR-06

P1040098: John observing trawling at TR-06

IMG_0492: Bow of trawling fishing boat near location TR-06

P1040099: Pulling trawling nets through the water at TR-06

IMG_0493: Trawling nets out of water/extended from sides of boat on booms near location TR-06

P1040100: Wildlife

P1040102: John pulling the trawling net in

P1040101: Fish in bottom of net

P1040103: Catch from trawling at TR-06

P1040104: Wildlife

P1040106: Wildlife

P1040105: John releasing the tail end of the net

P1040107: Helen and John sorting the catch at TR-09

P1040108: Helen and John sorting the catch at TR-09

IMG_0495: Detail of sorting table, fish collection basket, and nets on trawling boat

IMG_0494: Releasing fish captured in nets at location TR-09 to sorting table

P1040109: Packaging shad for shipping in aluminum foil

IMGP2961:Cows and pasture near Little Prairie Landing

IMGP2963: Visible sheen on water surface at location T-12

IMGP2962: Cow, oak trees and pasture near Little Prairie Landing

IMGP2964: Lowering trawling nets into the water at location T-12

IMGP2965: Dragging trawling nets through the water at location T-12

IMGP2967: Captain piloting the boat. Boom is visible through the window on the starboard side of the boat

IMGP2966: Passing a fishing boat at location T-12

IMGP2968: Captain in the wheelhouse steering the boat

IMGP2969: John guiding trawling net out of the water at location T-12

IMGP2971: John emptying fish from the trawling net onto the sorting table

IMGP2970: John untying the rope that holds fish in the net at location T-12

IMGP2972: The full end of the trawling net, closed by a rope looped through rings and tied with a knot that is secure, but easily released to dump the catch.

IMGP2973: Fish released from trawling net onto sorting table

IMGP2975: Pulling trawling nets out of the water with in the background

IMGP2974: Peak facility facing east

IMGP2976: Emptying fish from trawling net onto sorting table with in the background

IMGP2977: John releasing fish from trawling net to sorting table

IMGP2979: Fish to be sorted: shad shorter than 7.0 cm and all catfish and mosquito fish are thrown back into the water

IMGP2978: John releasing fish from trawling net to sorting table

IMGP2980: Close up of fish before being sorted

IMGP2981: Peak facility

IMGP2983: Sunlight on Schooner Bayou

IMGP2982: On Schooner Bayou Canal heading back to Little Prairie Landing

Field Record Forms Appendix D

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Project Ini	Site Identifi itial Code: Date:	17-15	= 10				C = crab l	ype (G / F) F = forage fish	
Collection	Morra (mint	and significants	crap	trap	D D : 1	1. 0 11	C = 4.44.0	111.	
A follotion	Method(s): Name (print	and sign):	0 : 100	igers.	1.131	(9/-11)	<u>, CONNE</u>		
Adman	1: C14	<u>2015-091</u>	UNIVE	NSIty.	ks I	-(<u>064</u>)	<u>650</u> -	0270	
Address.	Departy	nent of	torest	ry and	Natur	el res	ounces	<u> </u>	
Site Locat	tion				Parish:	Vermi	lion		
Latitude:	5610	094	,		Longitude	328	18605		
Site Name	:	Scho	oner B	ayou					
Site Descr	iption: ly Descriptic	_ Ba	10 h	- 1					
Water Bod	ly Description	on:	Bayo) W	1				
Estimated	Maximum V	Water Deptl	1:	(meters) /	(feet)				
	RDO	Temp	рН	Cond	ORP	Turb	Depth	Time	
	mg/L	C	"	μS/cm	N _i V	NTU	feet		
	9.24	11.33	7.09	2871	0,16	367	2,2	1237	
		1111		<u> </u>	- 1 1 -	507	7,0	1 1	
									
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-						 	

Notes:	400 ya	urds so	uth of	T-01	on main	~ N-S	Barron	on	
	School	board	prope	rty ne	ar th	e pilin	aS		
						, , , , , , , , , , , , , , , , , , ,	3		_
Sample De	escription		-						_
Species:	-calli HC 12/15/1	nectes) Sapi	dus	Total # of l	ndividuals:	15	>	
	40 12/15/1	0 HC 12/1	ISLID					MAKAN-A-L-A-	
Specimen	Length	Width	Weight	Date/Time	Date/Time	Type of			
Composite	cm	cm	J	Trap Set	Trap	Bait	Sex	Additional Commen	ts
Code	(AHTN)	(mmi)	(grams)		Pulled		· ·		
2	6-5	14	186	12/08/10/0900			$ \sim$ $-$		_
		16	219	12/08/10/0900			/^\`\	missing claw	_
		16.5	175	12/08/10/0900	,		M		_
	7,5	17	263	12/08/10/0900		catfish	M	· · · · · · · · · · · · · · · · · · ·	\downarrow
	/_		205	1408/10/0900			\mathcal{M}	missing clau	
$\frac{C}{C}$	7,5	18		12/08/10/0900			M		_
		15,5		12/08/10/0900			<i>/</i> //		_
<u> </u>		16		12/08/10/0900			M		_
Č	7.5	18,5	219	12/08/10/0900			=	missing claw	4
		15 15	<u>aos</u>	12/08/10/0900			M		
2	6.5		181	12/08/10/0900			<u> </u>		4
Notes:	6,5	<u> [6</u>]	197	12/08/10/0900			<u> </u>		4
Notes	7.5	\$ 18		12/08/10/0900			$-\frac{\mathcal{M}}{\mathcal{M}}$	miss. claw.	
		18,5		12/08/10/0960			<u></u>	Wills, CKMO,	
	8	10/7	~ ~ ~ ~	ן שיניטן טונס יושי	10-11-01	いいヤフハ	F		

		ication Code		-01				ype (C)/ F)
_		E W					$C = \operatorname{crab} I$	F = forage fish
Sampling		12-2	0_ 0	1				
Collection	Method(s)	:	crab	trap			1.	
Collector	Name (print	and sign):	P. R	itchie		· Com	ell	
Affiliation	i: (Ilem	Sen .	Univ	ersitu	(864)	650X	0210
Address:	Den	+ 7	orestr		Nation		0 1 1571	~~~~)
	7		-, -, -, -, -, -, -, -, -, -, -, -, -, -) 	1000,00	10 10	- 	<u> </u>
Site Loca	tion				Parish: \	jern	11/100	<u> </u>
2002		_ ^				O BY TI	101101)#
Latitude:	5610	294			Longitudo	: 329	28/00	5
Site Name		EWL	<u> </u>	ēld	Longitude	$\frac{1}{2}$	30 VC	<u></u>
				<u> </u>				
Site Descr	•		anal	- ()		<u> </u>		
	ly Descripti		<u> </u>					
Estimated	Maximum \	Water Deptl	n:	(meters) / _	<u>20 (feet)</u>			
			T			T		"
	RDO	Temp	pН	Cond	ORP	Turb	Depth	Time
	mg/L	C		μS/cm	NV	NTU	feet	
	7.48	18,15	7.4	3930	0,05	51.3	1,0	1236
	-							
					-	-		
		·						
Notes:		l	·	1	<u> </u>	<u> </u>	L	1
110103								
	<u> </u>						<u></u>	
G 1 D	• .•						-	
Sample De	escription							
	H · .	، مدا،،					1.1	
Species:	CKILINA	ectes s	sapious	<u> </u>	Total # of I	Individuals:	_1_1_	
	HC12/20/1	HCIZ/ZO/	•					
Specimen	Length	Width	Weight	Date/Time	Date/Time	Type of		
Composite	(mm)		_	Trap Set	Trap	Bait	Sex	Additional Comments
Code	-(mm)	(mni)	(grams)		Pulled			
<u></u>	7	16	171	12/13/10/1227	12/20/10/1236	catfish.	2	one claw
Ċ	6,5	14,5	180	12/13/16/1227	12/20/10/1236	catfish	M	
C	6,5	14	177		12/20/10/1236		M	
	7	16,5	234		12 20 10 1236	caten	M	-
Č	7.3	17			12/20/10/1236		M	
	7	16,5			12/20/16/1236		W,	<i>i.</i> .
	7,5	18					M	
<u> </u>	1,5	16		1 ' <i>t</i> 1	12/20/10/1236			
C					12/30/6/1236		M	one claw
\overline{C}	5.5	12	139	12/13/10/1227	12/20/10/1236	cattish	M	
C	6	14,5	148	12/13/10/1227	12/20/10/1236	catfish	F	
\sim	7.5	(6,5	253	12/13/10/1227	12/20/10/1236	catfort	\mathcal{M}	
							•	
Notes:								

Sampling S	Site Identifi	cation Code	•	01				pe (C / (
		EW L					C = crab F	= forage fis	1
	Method(s):		Yuul						
	same (print		1 7	lodger.	5	01. A	150	~~~	
Affiliation:	<u> </u>	Swear	<u>Uni</u>	V , V	1	(804)	7 - U CO		Y
Address:	De	pt 7	oresti	ry an	9 Na	wal	Resor	-021 (mas	
Site Locat		1230				Jermi			
Latitude:					Longitude:				
Site Name:				-			·		
Site Descri	•								
	y Descriptio			(
r sumarea .	Maximum y	water Depth	i:((meters) /	(feet)				
	RDO mg L	Temp	pН	Cond µS/cm	ORP	Turb NTU	Depth feet	Time	
		 ` ` 		долен	''''	1110	1001		
					<u> </u>				
									:
		<u> </u>		<u> </u>	<u> </u>				
Notes:	. Ja	x, x_0	\sim \sim \sim	LTC	<u> </u>	ee p	revis	0.7	
		s cor 9	+o v	(Y 1.5				•	
Sample De	scription								
	_	HAD					1/.	1	/
Species:	0	ハハレ			Total # of I	ndividuals:	1/8 0	6_5 gal	DN POCH
Specimen		<u> </u>		1	Date/Time				
Composite	Length	Width	Weight	Date/Time Trap Set	Trap	Type of Bait	Sex	Additional	Comments
Code	(mm)	(mm)	(grams)	Trap set	Pulled		·		
					01/05/11/12	30			
				<u> </u>				 	
				-					
	 								
						-			
						- · · - · · · - · · · · · · · · · ·			
Notes:		<u></u>		L				<u>L. </u>	
									
									1

Project Ini	tial Code:	cation Code Ew L 12-20					Sample Ty C = crab F	$ ype \left(\begin{array}{c} C \\ F \end{array} \right) \\ F = forage fish $
Collection	Method(s):	12-20	rab	trap				
		and sign):	8. R	tchie	H. Co		$\sqrt{}$	
Affiliation		`lem	Son	Univ!	ersity			0210
Address:	Dep	+ 7	orest	(4 + 1	Vatur	al R	esous	cer
	<u> </u>			7				<u></u>
Site Locat	ion				Parish:	Verni	lion	
Latitude:		1094	-	- , ,	Longitude	32	8861	2
Site Name			L Fix		·			·
Site Descri	-	· · · · · · · · · · · · · · · · · · ·	ena					
1	y Description	on: Water Depth	<u>ca</u>		又O (feet)			
Estimated	waxiiiiuiii v	water Depth	·	(meters)/	XO (leel)			
	RDO mg/L	Temp C	pН	Cond µS/cm	ORP	Turb NTU	Depth feet	Time
	8.37	12.58	7.5	3946	0,11	48.1	1.1	1228
}					<u>-</u>			
Notes:								
				· ·			·	
G 1.D	•							
Sample De	scription							
Species:	0.000	ectes	Sapido	25	Total # -£1	ndividuals:	11	
species.	1. 12/20/	10 HC 12/2	elio	_	TOTAL # OF I	naividuais:		
Specimen				<u> </u>	Date/Time			1
Composite	Length	Width	Weight	Date/Time	Trap	Type of	Sex	Additional Comments
Code	(mm)	-(mm)	(grams)	Trap Set	Pulled	Bait		
Ç	5,5	13	115	12/13/10/1229	12/20/10/1228	cat-fish	M	
C	7.5	16	258		12/20/10/1228		M	
C	S	18	276	12/13/10/1229	12/20/10/1228	catfush	П	
Ċ	6.5	الو			12/20/10/12/28		M	
C	7	16	229		12/20/10/1228		M	one claw
C	1	18			12/20/10/1228		M	^
C	7.5	19			12/20/10/1228	- 1	10	one claw
\mathcal{C}	6,5	15,5	, v		12/20/10/1228		M	
<u> </u>	6,5	15	196	12/13/18/1229	12/20/10/1228	catfuh	M	
C	-1	17.5	244	12/13/10/1229	11/20/10/1218	cattigl	M	
	7,5	16	384	12/13/10/1229	12/20/10/1228	catfish	M	
				•	•			
Notes:								

Project Ini	Site Identification	EW L		02'				ype (
Sampling	Date:	12-2	1-10		•			
Collection	Method(s):	^	et_					
	Name (print	and sign):	P. Ri	tchie,	H, Con	nelly,	J. Rac	gers
Affiliation				iversit		(8764)	650	0210
Address:	Deg	ot for	<u>estry</u>	+ Nat	wal	Resow	res	
[iller .	verw	. 1: 2.0	
Site Locat		المثارة						
Latitude:		6109	4	- Λ i	Longitude	: 328	4612	<u></u>
Site Name		- EW	L 72	<u> </u>				
Site Deser	•		cana	2				•
1	ly Descriptic Maximum V			anal	7 0/ (fout)			
Simaled	Maximum V	water Depth	•	(meters)/_c	₹ 6.7 (1661)	. <u> </u>		
	RDO	Temp	pН	Cond	ORP	Turb	Depth	Time
	mg/L	C		μS/cm	λV	NTU	feet	
	8.05	13.84	7.4	4019	0.01	45,2	1:1	1104
				ļ				
				<u> </u>				
Notes:				1				<u></u>
.voies.	***							
			·····					
Sample De	escription							
	الممدا	PC 501	aidae				1	+10 7 17)
Species: C	allinect	CS 304	31002	W	Total # of 1	Individuals:		
Specimen	12/21/11	7 HC12/21/10		<u> </u>	Date/Time	1		
Composite	Length	Width	Weight	Date/Time	Trap	Type of	Sex	Additional Comments
Code	(HHTI)	(JI) (II)	(grams)	Trap Set	Pulled	Bait		
0	6	12914.	5 129	12/13/10/1228	12/21/10/1104	catfish	M	
	7.5	16	<i>3</i> 32	12/13/10/1228			M	
	8	19		12/13/10/1228	12/21/10/1104	catfish	М	
<u> </u>	7	16.5	219	12/13/10/1228	12/21/10/1104	catfigh	M	
	7	16.5	<u> 212</u>	12/13/10/1228	12/21/19/11/04	catfish	M	
<u>C</u>	7.5	18	<u>246</u>	12/13/10/1228	12/21/10/1104	catfish	M	
<u> </u>	7.5	17_	270	12/13/10/1228			$\mathcal{M}_{\underline{}}$	
	6,5	15,5	145	12/13/16/1228			\mathcal{M}	
<u>·C</u>	لويح	16	179			catfish		
	8	16,5	213			cattion	$-\frac{\mathcal{M}}{\mathcal{M}}$	
	7	(815		12/13/10/1228			$-\frac{\mathcal{M}}{\mathcal{M}}$	one claw
Soles C	8	\[5 \\8	186	12/13/10/1228			<u>/~\</u>	
	<u> </u>	15	3 07	12/13/10/1228	12/21/10/1104	Caluan	A	
ا ج	7,5	16	211	12/13/10/1228	12/21/10/1104		M	
-	<u></u>	1-1	200		12/2/10/11		1 m	1

	one raeming	cation Code	:: <u> </u>					/pe (C /	
	tial Code:	EW L	= 11				C = crab F	= forage fis	sh
Sampling		<u> </u>							
	Method(s):								
	Name (print			Zodge	<u>r5</u>	~!	<i></i>		
	:رار	<u> MSBN</u>	Llai	versite	4	(S6T)	<u>650-0</u>	0 d 10	
Address:	De	ot te	<u>restn</u>	- + h	2 alru	al	Reso	urcas	
	Y			<u>J</u>		. 1	۲ ,		
Site Locat	ion 12	30			Parish:	Verm	clion		
Latitude:				_	Longitude	•			
Site Name					<u>-</u>				
Site Descr	-								
•	y Descriptio								
Estimated	Maximum V	Vater Depth	1;((meters) /	(feet)				
	RDO mg/L.	Temp C	pН	Cond µS/cm	ORP	Turb NTU	Depth feet	Time	
					· · ·				
								-	
	-					-			
Notes:	Tat, 1	ong	p.tc.	\ <u>\</u>	70 P 1	revio	<u>) < </u>	1	'
I									
}	' ' ' -		- Na	Cor o	$\sqrt{5}$	0010			
	- · · · · · · · · · · · · · · · · · · ·	e dov	d	Corn	13				
Sample De			d	Forn	15				
Sample De			d	Forn	<u> </u>				
Sample De			d 1D	Forn	<u> </u>			galle	en buc
-			d 1D	For n	<u> </u>			Galle	en buc
Species:	escription	s HA	Weight		Total # of 1	ndividuals:	1/8 5		
Species: Specimen Composite	escription	Width	Weight	Date/Time	Total # of I	ndividuals: Type of			Comments
Species: Specimen Composite Code	escription	s HA	Weight (grams)		Total # of l Date/Time Trap Pulled	ndividuals: Type of Bait	1/8 5		
Species: Specimen Composite	escription	Width		Date/Time	Total # of I	ndividuals: Type of Bait	1/8 5		
Species: Specimen Composite Code	escription	Width		Date/Time	Total # of l Date/Time Trap Pulled	ndividuals: Type of Bait	1/8 5		
Species: Specimen Composite Code	escription	Width		Date/Time	Total # of l Date/Time Trap Pulled	ndividuals: Type of Bait	1/8 5		
Species: Specimen Composite Code	escription	Width		Date/Time	Total # of l Date/Time Trap Pulled	ndividuals: Type of Bait	1/8 5		
Species: Specimen Composite Code	escription	Width		Date/Time	Total # of l Date/Time Trap Pulled	ndividuals: Type of Bait	1/8 5		
Species: Specimen Composite Code	escription	Width		Date/Time	Total # of l Date/Time Trap Pulled	ndividuals: Type of Bait	1/8 5		
Species: Specimen Composite Code	escription	Width		Date/Time	Total # of l Date/Time Trap Pulled	ndividuals: Type of Bait	1/8 5		
Species: Specimen Composite Code	escription	Width		Date/Time	Total # of l Date/Time Trap Pulled	ndividuals: Type of Bait	1/8 5		
Species: Specimen Composite Code	escription	Width		Date/Time	Total # of l Date/Time Trap Pulled	ndividuals: Type of Bait	1/8 5		
Species: Specimen Composite Code	escription	Width		Date/Time	Total # of l Date/Time Trap Pulled	ndividuals: Type of Bait	1/8 5		
Species: Specimen Composite Code	escription	Width		Date/Time	Total # of l Date/Time Trap Pulled	ndividuals: Type of Bait	1/8 5		
Species: Specimen Composite Code	escription	Width		Date/Time	Total # of l Date/Time Trap Pulled	ndividuals: Type of Bait	1/8 5		
Species: Specimen Composite Code	escription	Width		Date/Time	Total # of l Date/Time Trap Pulled	ndividuals: Type of Bait	1/8 5		

Project Init Sampling I Collection	Site Identiffs tial Code: Date: Method(s):	12-16	- 10 rab	trap			C - crab l	ype (C) (F)
Collector Affiliation Address:	Vame (print Clen Dept	and sign): 1000 For	1		. Ritch Nat		. Conn 650 C Resou	elly 2100 rees
Site Locat	ion				Parish:			
Latitude: Site Name:		610°6	8	_	Longitude	32	888	28
Site Descri		EWL	field					
1	Maximum V				(feet)			
	RDO mg/L	Temp C	pН	Cond µS/cm	ORP NV	Turb NTU	Depth feet	Time
	9.45	13.81	7,41	3154	0,09	70.1	2	1238
Notes.								
Sample De	serintian							
Species:	calline	ctes s	apidu	<u>چ</u>	Total # of I	ndividuals:		5
Specimen Composite Code	Length (mm)	Width CM (mm)	Weight (grams)	Date/Time Trap Set	Date/Time Trap Pulled	Type of Bait	Sex	Additional Comments
<u>C</u>	6.5	15,5	178		12/16/10/123		M_{\perp}	one daw
Ĉ C	-	15	194		12/16/10/03		$\frac{\mathcal{M}}{\mathcal{M}}$	one claw
2	5,5	13,5	130		12/16/10/1238 12/16/10/1238			one claw
C	10	13,5	156		12/16/10/1238		\overline{M}	
			· · · · · · · · · · · · · · · · · · ·					
								
Notes:								

		E-10							
-		<u>EWL</u>	_				C≠ crab l	F = forage fish	h
Sampling 1		01-00							
Collection	Method(s):	trap	2						
Collector 1	Name (print	and sign):	_John	Rodge	us g	Um HRo	day s	h	
Affiliation	: <u>Clem</u>	son Un	iversite	1		(864)	450°	0210	
Address:	Dept.	of Fo	ores my	and h	Vature!	Resour	ces		
	, ,		2					•	
Site Locat	ion	1/3	3		Parish:	Vermil.	'on		
		,, _	•						
Latitude:					Longitude:				
Site Name:		7-03		-				·	
Site Descri	iption:								
	y Description	 on:							
	-	Water Depth	· (meters) /	(feet)	·			
			··		(1001)				
	RDO	Temp	pН	Cond	ORP	Turb	Depth	Time	
	mg/L	C	1	μS/cm	h _V V	NTU	feet		
	- mg/L		<u> </u>	μυνοπ	IR.V	NIO	icci	1	
	ļ	ĺ							
			<u> </u>					 	
	1		1			l		1 "	
Notes:	[me, e		5e€			
Notes:	lat, previ			me, e cord fo		5eC			
	previ					26E			
Notes:	previ					26¢	-		
Sample De	scription	ou <u>s</u> 'fi	eld re	coré fe	orm S				
Sample De	scription		eld re	coré fe			12		
Sample De	scription	ou <u>s</u> 'fi	eld re	coré fe	orm S		12		
Sample De	scription <u>Calling</u>	nectes	eld re <u>sapid</u>	us_	orm S	ndividuals:	12		
Sample De Species: Specimen Composite	escription <u>Calling</u> Length	ous fi	Sapida Weight	Cor & fe	Total # of I Date/Time Trap	ndividuals: Type of	Z Sex	Additional	Comment
Sample De Species: Specimen Composite Code	scription <u>Calling</u>	nectes	Sapida Weight (grams)	COV & fe	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	Sex	Additional	Comment
Sample De Species: Specimen Composite Code	escription <u>Calling</u> Length	width (mm)	Sapide Weight (grams)	COV & fe	Total # of I Date/Time Trap	ndividuals: Type of Bait		Additional	Comment
Sample De Species: Specimen Composite Code	scription Callin Length (mm)	ous fi	Sapida Weight (grams)	COV & fe	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	Sex	Additional	Comment
Sample De Species: Specimen Composite Code	escription Callin Length (mm)	width (mm) 7 7.5	Sapida Weight (grams) 195 249	COV & fe	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	Sex M M	Additional	Comment
Sample De Species: Specimen Composite Code	scription Callin Length (mm)	width (mm) 7 7.5	Sapide Weight (grams)	COV & fe	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	Sex	Additional	Comment
Sample De Species: Specimen Composite Code	Scription Callin Length (mm) 17 18	Width (mm) 7 7.5 6.5 7.5	Sapide Weight (grams) 195 249 201	COV & fe	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	Sex M M	Additional	Comment
Sample De Species: Specimen Composite Code	Length (mm)	Width (mm) 7 7.5 6.5	Sapide Weight (grams) 195 249 201 263 183	COV & fe	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	Sex M M F M		
Sample De Species: Specimen Composite Code		Width (mm) 7 7.5 6.5 7.5	Sapide Weight (grams) 195 249 201 263 183 261	COV & fe	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	Sex M M F M M M M	Additional (
Sample De Species: Specimen Composite Code C C		Width (mm) 7 7.5 6.5 7.5 7.0	Sapide Weight (grams) 195 249 201 263 183 261 229	COV & fe	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	Sex M M F M M M M M M		
Sample De Species: Specimen Composite Code C C	Previous	Width (mm) 7 7.5 6.5 7.5 6.5 7.6	Sapide Weight (grams) 195 249 201 263 183 261 229 168	COV & fe	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	Sex M M F M M M M M M M M		
Sample De Species: Specimen Composite Code C C	Previous	Width (mm) 7 7.5 6.5 7.5 7.5 7.5 7.5	Sapida Weight (grams) 195 249 201 263 183 261 229 168 203	COV & fe	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	Sex M M F M M M M F M M F F M F M F M F M	miss) n	
Sample De Species: Specimen Composite Code C C	Collinarion Callinarion Callinarion	Width (mm) 7 7.5 6.5 7.5 7.5 7.5 7.5	Sapide Weight (grams) 195 249 201 263 183 261 229 168 203 237	COV & fe	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	Sex M M F M M M M F M M F F M F M F M F M	miss) n	
Sample De Species: Specimen Composite Code	Colling	Width (mm) 7 7.5 6.5 7.5 7.5 7.5 7.5	Sapida Weight (grams) 195 249 201 263 183 261 229 168 203 237 265	Date/Time Trap Set 12/29/10/0900	Total # of I Date/Time Trap Pulled ol/o3/11/113	ndividuals: Type of Bait	Sex M M F M M M M F M F M F F	miss) n	
Sample De Species: Specimen Composite Code C C	Collinarion Callinarion Callinarion	Width (mm) 7 7.5 6.5 7.5 7.5 7.5 7.5	Sapide Weight (grams) 195 249 201 263 183 261 229 168 203 237	COV & fe	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	Sex M M F M M M M F M M F F M F M F M F M	miss) n	

Sampling I	Site Identificial Code: Date: Method(s):	cation Code EW L 01 -05	-11 aw 1	03			Sample Ty C = crab F	pe (C) = forage fis	F))
		and simple	<u> 200 : </u>	1-01					
Conceen a	vame (princ	and sign):	7,150	20 gers	<u> </u>	(864)	650.	<u> </u>	·····
- AHIIIation.	<u> </u>				1 1 1	_ ' '			
Address:	neb.	ttc	restr	y au	nd N	aturo	بالا إدر	rour	usi
Site Locat	ion /	330		. 60	Parish:\	•	rilion	1	
Latitude:		·	. ·	- -	Longitude:				_
Site Name:									_
Site Descri	ption:			•	·				_
Water Bod	y Descriptio	m:					`		-
Fstimated	Maximum V	Water Depth	:(meters)/	(feet)				•
İ	RDO	Temp	pН	Cond	ORP	Turb	Depth	Time]
	mg L	C T	-	μS/cm	l incv	NTU	feet		
					1				
					 				
				<u> </u>			 	<u> </u>	
				 					1
					 			 	
1									
Nation	r - 4.	1 0	0 2	-/ >	< 00 V	~0., \.	2.) ((
Notes:	ا المال	long	, ed	ر کے <u> </u>	se p	revio	2051	recor	لمه
Notes:	rat,	long	, ed	<u> </u>	Se p	rev i	202 1	recor	لمها
		long	, et	()	See p	rev i	205 1	recor	لمل
Notes: Sample De		long	, ed	·					
		long HAI))	·	See A				
Sample De	escription	HAI		. 2	Total # of 1			of 5 g	
Sample De Species:		HA [Weight	Date/Time	Total # of l	ndividuals:	1/4	<u>06</u> 59	allon opet
Sample De Species: Specimen Composite	escription S	HA. [Weight		Total # of l Date/Time Trap	ndividuals:		<u>06</u> 59	
Sample De Species:	escription	HAI		Date/Time	Total # of 1 Date/Time Trap Pulled	ndividuals: Type of Bait	1/4	<u>06</u> 59	allon opet
Sample De Species: Specimen Composite	escription S	HA. [Weight	Date/Time	Total # of l Date/Time Trap	ndividuals: Type of Bait	1/4	<u>06</u> 59	allon opet
Sample De Species: Specimen Composite	escription S	HA. [Weight	Date/Time	Total # of 1 Date/Time Trap Pulled	ndividuals: Type of Bait	1/4	<u>06</u> 59	allon opet
Sample De Species: Specimen Composite	escription S	HA. [Weight	Date/Time	Total # of 1 Date/Time Trap Pulled	ndividuals: Type of Bait	1/4	<u>06</u> 59	allon opet
Sample De Species: Specimen Composite	escription S	HA. [Weight	Date/Time	Total # of 1 Date/Time Trap Pulled	ndividuals: Type of Bait	1/4	<u>06</u> 59	allon opet
Sample De Species: Specimen Composite	escription S	HA. [Weight	Date/Time	Total # of 1 Date/Time Trap Pulled	ndividuals: Type of Bait	1/4	<u>06</u> 59	allon opet
Sample De Species: Specimen Composite	escription S	HA. [Weight	Date/Time	Total # of 1 Date/Time Trap Pulled	ndividuals: Type of Bait	1/4	<u>06</u> 59	allon opet
Sample De Species: Specimen Composite	escription S	HA. [Weight	Date/Time	Total # of 1 Date/Time Trap Pulled	ndividuals: Type of Bait	1/4	<u>06</u> 59	allon opet
Sample De Species: Specimen Composite	escription S	HA. [Weight	Date/Time	Total # of 1 Date/Time Trap Pulled	ndividuals: Type of Bait	1/4	<u>06</u> 59	allon opet
Sample De Species: Specimen Composite	escription S	HA. [Weight	Date/Time	Total # of 1 Date/Time Trap Pulled	ndividuals: Type of Bait	1/4	<u>06</u> 59	allon opet
Sample De Species: Specimen Composite	escription S	HA. [Weight	Date/Time	Total # of 1 Date/Time Trap Pulled	ndividuals: Type of Bait	1/4	<u>06</u> 59	allon opet
Sample De Species: Specimen Composite	escription S	HA. [Weight	Date/Time	Total # of 1 Date/Time Trap Pulled	ndividuals: Type of Bait	1/4	<u>06</u> 59	allon opet
Sample De Species: Specimen Composite Code	escription S	HA. [Weight	Date/Time	Total # of 1 Date/Time Trap Pulled	ndividuals: Type of Bait	1/4	<u>06</u> 59	allon opet
Sample De Species: Specimen Composite	escription S	HA. [Weight	Date/Time Trap Set	Total # of 1 Date/Time Trap Pulled	ndividuals: Type of Bait	1/4	<u>06</u> 59	allon opet

		cation Code ビル		04				ope (C) F) Front forage fish
		12-11					CTILDT	Winge II iii
Collection	Method(s):			Trap				
Collector l	Name (print	and sign):	J. Rod	gers P	. Ritchi	e, H.C.	onnell	10210
	: <u>(l</u>				Hu.	(864)	650-6	20210,
Address:	Dep	t 70	restr	y and				nos
Site Locat	ion				Parish: \	Jermi	lien	
Latitude:	56	223 EWL	2	~	Longitude	329	0316	and the second s
Site Name		_						
Site Descr	iption: ly Descriptio		field	0				
		on: Water Depth			7 (feet)			
			·		(
	RDO mg/L	Temp C	рН	Cond µS/cm	ORP NV	Turb NTU	Depth feet	Time
	9,27	13,61	7,47	3120	0.13	110	1.2	1237
		ļ <u>-</u>						
Notes:	L	<u></u>	<u> </u>	<u> </u>		1		
Sample De	•							J
Species:		inecte		idus	Total # of l	Individuals:		5
Specimen	AC 12/14/1	12/16/	10		Date/Time			
Composite		Width	Weight		Trap	Fype of	Sex	Additional Comments
Code	(TITHUI)	(मा गा)	(grams)	Trap Set	Pulled	Bait		
<u> </u>	7	16	201		12/16/16/1237		M	one claw
<u></u>	6,5	17,5	289		12/16/10/1237		<u> </u>	
C	6,5	14,5	182		12/16/10/123		M	
	8	18	298		12/16/16/123		M	
	0	1 0	0 10	14121101153	141161191231	cultish	/ \	
							~	
Notes:								

Project In Sampling Collection	itial Code: Date: Method(s): Name (print	1 2-20 :	- 2- <u>10</u> rap + _P. Ri	rab tchie, niversi	H. Co uty Natur Parish:		C = crab I) (050 - 0	4)	
Latitude:	56	0983 EWL		<i>د</i> ۲		32.8			_
Site Descr			anal	<u> </u>	· - .				_
	ly Description		cana	<u> </u>					
	-	Water Depth			O (feet)				_
		•		· , <u> </u>	`				
	RDO mg/L	Temp C	рH	Cond µS/cm	ORP	Turb NTU	Depth feet	Time	
	8,05	12.35	7.45	3965	0,14	45.9	1,0	1927	
		}							
									┦ .
Notes:		•	·		·		<u> </u>	<u> </u>	_
					,,,,				
<u></u>			···	,					
Sample De	scription						-		·
_	calline	CPS 5		<u>. </u>	Total # of l	Individuals:			
Specimen	Length	Width	Weight	ID - 4 - //ID*	Date/Time	T			
Composite	cm		weight	Date/Time Trap Set	Trap	Type of Bait	Sex	Additiona	al Comments
Code	(mm)	(mmi)	(grams)	Trap Set	Pulled	Bait			
C	6	11,5	76	12/13/10/1223	12/20/10/1222	catfish	\mathcal{M}		*
C	6.5	13.5	148	12/13/10/1223	12/20/10/122	<i>catfish</i>	\sim	one	claw
	7_	16,5	281	12/13/10/1223	12/20/10/222	-catfish	M		
	7,5	16	237		12/20/10/1227		7		
	7,5	17.5	239			eatent	- M		
Ĉ	7,5	15,5				L (attish		me	daw
Ċ	8	18	301	12/13/16/1223	17 /2 0/10/12/27	catersh	M	Ť	
		10		1 - 1 - 1 - 1	1-1-710 1166	- C-MP-W	1	 	
	1					· -	·		
		1							
	 			1		-			
Notes:			I					<u> </u>	
					 .				
									1

Sampling S	Site Identific	cation Code	:	<u>04</u>				rpe (C / F)
Project Init	tial Code:	EW L	- 11				$C = \operatorname{crab} F$	= forage fish
Sampling I		01-05						
	Method(s):		w I					
	Name (print			Zodge	1			
Affiliation	:C	lemse	<u>n U,</u>	11VE PS	ita	(864_).	<u> 1050-</u>	0210
Address:	De	p+ 7	oves	try f	Wax	ural	Resi	nices
Site Locat	ion (340			Parish:	Ver	milia	m
Latitude:				_	Longitude:			
Site Name:			==					
Site Descri	ption:							
Water Bod	y Descriptio	on:						
Estimated 1	Maximum V	Water Depth	:(meters) /	(feet)			
	RDO mg/L	Temp C	pН	Cond µS/cm	ORP N _Q V	Turb NTU	Depth feet	Time
				<u> </u>				
	<u> </u>							
		<u> </u>						
Notes:	101	I em	s, et		> 500	<u> </u>	eulor	1.0
110tcs. —	√e co	1 0,00	$\frac{2}{2}$	<u> </u>		- PV	<u> </u>	
	1 6 00	7r C +	DY NOT	-				
Sample De	scription							
1 1	•	IINE						
Species:	9	THL)		Total # of I	ndividuals:		
'		•						
Specimen	Length	Width	Weight	Date/Time	Date/Time	Type of		
Composite	•			Trap Set	Trap	Bait	Sex	Additional Comments
Code	(mm)	(mm)	(grams)	_	Pulled			
					01/05/11/13	40		
							•	
	· ·						.,	
		-						
Notes:					· ,	I		
-								

Project In Sampling Collection	itial Code: Date: Method(s):	7-10 Cr	-10 ab tr	· ay		- n. fi	Sample Ty C = crab F	ype C F) = forage fish
Affiliation		and sign):	n Ur	riversi	t. Conn	(86 4)	650 -	0210
Address:	Dept	- Fore	stry	+ Nat	oral	Keno	urces	<i>)</i>
Site Locat	tion			,	Parish:	Verm	ilion	
Latitude:	56	5869			Longitude:	328	8990)
Site Name	•	_Ew	レカ	eld				
Site Descr	-		anal			,		
ľ	y Description			anal	- 1 		·	
Estimated	Maximum \	Water Depth	ı:((meters) / _c	<u>20'</u> (feet)	·		
	RDO	Temp	pН	Cond	ORP	Turb	Depth	Time
}	mg/L	C	- 1 · 1 · 1	μS/cm	mV	NTU "	feet	1.2 - 6
	9,48	12.11	7.46	3170	0,12	46.4	1.1	1208
						<u> </u>	<u> </u>	
					<u>.</u>			
Notes:					ı			
Sample De								
Sample De		_					\bigcirc	
Species:	callin	ectes	Sapid	کی	Total # of I	ndividuals:		
Specimen	Length	Width	Weight	Date/Time	Date/Time	Type of		
Composite Code	Ů		_	Trap Set	Trap	Bait	Sex	Additional Comments
Code	(mm) 7.5	(mm) 18,5	(grams)	12/12/12/12	Pulled	LOVEN		<u>.</u>
\overline{c}	$\frac{4}{1}$	ا ما ا	317		12/20/10/1208			
C	6,5	14.5	,		12/20/10/1208		M	one law
C	7	17			12/20/10/1268		M	_
C	7,5	17.5	251		12/20/10/1208		M	one claw
<u> </u>	8,5	20			12/24/10/1248		M	
C^{T}	φ	13.5		12/13/10/122	112/20/10/1208	Catish	. M	
C	5,5	13	121	121310 1222	12/20/10/1208	cathist	Μ	
					· ·			
								-
Notes:	<u>. </u>					<u>.</u> .		

Sampling	Site Identif	ication Code	::T	05				ype (C) / F)
		<u>EWL</u>	_				C = crab F	= forage fish
Sampling		12-21	net					
	Method(s)			1 1 0	11 6		1 0	1
	•	t and sign):	$\frac{P,R_1}{2}$	tchie,	HILON	nelly,		odgers
Affiliation		lemser	1 Un	iversit	<u>v</u>	_(5/64)		OXID
Address:	Dept	101	estry	f No	Hural	KP50	urces	
Site Locat	tion				Parish:		nilior	
Latitude:	5	608	69	_	Longitude	: 3 🕏	889	90
Site Name	:	EWL	Field	4				
Site Descr			nal_					
1	ly Descripti			nal_				·
Estimated	Maximum '	Water Depth	•	(meters)/_	(feet)			
	RDO mg/L	Temp C	р Н	Cond µS/cm	ORP	Turb NTU	Depth feet	Time
	8.95	13.4	7.26	3512	0.07	46.5	1.3	1033
								\
Notes:				•		•,		-l:
							·	
Sample De	garintian							· · · · · · · · · · · · · · · · · · ·
Sample De	scription							
Species:	callin.	ectes s	sapidu	5	Total # of 1	Individuals:	3+	5 +1 = [9]
- ,		HC 12/21/10						
Specimen					Date/Time			
Composite		Width	Weight	Date/Time	Trap	1 ype oi	Sex	Additional Comments
Code	(uu u) Ć₩	(mm)	(grams)	Trap Set	Pulled	Bait		
O	615	15	174	12/16/10/1206	12/21/10/1033	catfish	Μ	
	6,5	14	173		12/21/10/1033		\mathcal{M}	
Ú	7	15,5	188		12/21/10/1033		M	
6	ક	81	292		144/10/1033		\overline{M}	
	7,5	11.5	<u>aa1</u>		012/21/10/10%			
	6,5	14.5	161		0 2 2 /16 1033		M	
C	6.5	15		12/16/10/1206			<i>-</i> / <u>\(\dot\)</u>	
C		16.5		12/16/10/1206			$\overrightarrow{\mathcal{M}}$	
Č		16	222	12/16/10/1206		catfish	M	
	,		<u> </u>	1-111010	ر - مهر - ب _ا ا	111000	.,,,	_
				<u> </u>				
							 .	-
Notes:				<u></u> .l				

	site Identific	cation Code	: _T	<u> </u>				pe (C / (
Project Init	tial Code: _		ا ا				C = crab F	= forage fish	l
	Method(s):		raul						
	Name (print		-1	Rodg	01/5	 _			
Affiliation		lens	$\frac{1}{2}$	1011		86A)	650.	-021	5
Address:	Des		restru	ane	Nat	wa		rces	
			<u> </u>)	•			_	
Site Locat	ion (S	320			Parish:	Ver	milion	^	_
Latitude: Site Name:				-	Longitude:				
Site Name.									
1	y Descriptio	 n:							
	•		n:(meters) /	(feet)				
	RDO	Temp	pН	Cond	ORP	Turb	Depth	Time	
	mg/L	С	<u> </u>	μS/cm	λίΛ	NTU	feet		
Notes:	lat.	lona	. etc	<u> </u>	7 500	pre	vious		
	ré	cord	/	rms				•	
Sample De	scrintion								
	our prior								
Species:		SFA	D		Total # of l	ndividuals:	1/4 06	_5 g.J	lon buck
Specimen Composite Code	Length (mm)	Width (mm)	Weight (grams)	Date/Time Trap Set	Date/Time Trap Pulled	Type of Bait	1/4 of	5 g al	Lon buck Comments
Specimen Composite	Length		} _	Date/Time	Date/Time Trap	Type of Bait			
Specimen Composite Code	Length		} _	Date/Time	Date/Time Trap Pulled	Type of Bait			
Specimen Composite Code	Length		} _	Date/Time	Date/Time Trap Pulled	Type of Bait			
Specimen Composite Code	Length		} _	Date/Time	Date/Time Trap Pulled	Type of Bait			
Specimen Composite Code	Length		} _	Date/Time	Date/Time Trap Pulled	Type of Bait			
Specimen Composite Code	Length		} _	Date/Time	Date/Time Trap Pulled	Type of Bait			
Specimen Composite Code	Length		} _	Date/Time	Date/Time Trap Pulled	Type of Bait			
Specimen Composite Code	Length		} _	Date/Time	Date/Time Trap Pulled	Type of Bait			
Specimen Composite Code	Length		} _	Date/Time	Date/Time Trap Pulled	Type of Bait			
Specimen Composite Code	Length		} _	Date/Time	Date/Time Trap Pulled	Type of Bait			
Specimen Composite Code	Length		} _	Date/Time	Date/Time Trap Pulled	Type of Bait			

	Site Identifi			- <u>O</u> (Q_			-	ype (CC)	
	tial Code:						C = crab	F forage	LISH
	Date: 16			_		•			
Coffeetion	Method(s):	<u>Crau</u>	3 + Ta		O n		11		(/
A CELLORIAN	Name (print	and sign):	$\frac{1}{2}$	·		1tche	650-	SYNE	
- Address:			<u> </u>	IVERSI					
Address.	- Dep	t ot	401	estry	_	Nan	vial 1	Cescin	<u> </u>
Site Locat	ion				Parish:				
Latitude:	51	00781			Lonoitude	: 328	96	4	
Site Name	:	06781 EWL	_	-	rsom <u>e</u> ntice	·	<u> </u>		
Site Deser			field						
Water Bod	ly Descripțio		cana	71	,				····
Estimated	Maximum V	Vater Depth	:((meters)/	(feet)				_
	RDO	To		Canal	(ADD	Т	I D1	Tri	_
	mg/L	Temp	pН	Cond µS/cm	ORP NV	Turb NTU	Depth feet	Time	
	9,32	13,79	7.25	3145	0.26	65.6	1,0	1215	
	<u> </u>								
Notes:	l <u>. </u>			<u> </u>			<u> </u>	<u> </u>	_]
ixores.									
L							- · · · ·		
Sample Do	escription						······································		
Carrier	calling	des .	Saniale	_			\overline{C}	x	
Speciest	Calline HC 12/10	10 10 10 10 10 10 10 10 10 10 10 10 10 1	· lo	>	Total # of I	Individuals:	. 7		
Specimen					IS 4 #7P!	<u> </u>		T	
Composite		Width	Weight		Date/Time Trap	Type of	Sex	Addition	al Comments
Code	(IIIIII)	(min)	(grams)	Trap Set	Pulled	Bait	inex.	Audinona	n y ominicuty
Ċ	7	16	214	12/13/10/1227	12/16/10/1215	catfich	M	 	
C	6,5	16	199		12/10/10/1215		M		
	-	15.5	184	12/13/10/1222			F		
	6,5	14.5	139		12/16/10/12/5		M	me	law
	7	17.5	221	12/13/10/1222			\mathcal{M}	 	law
\subset	6.5	16	193		12/16/10/12/5		M	100	
	7	16.5	233	12/13/10/122			/\lambda	one c	(au)
	6.5	14	-	12/13/10/1221			M	0,40	zaco
				1120-1100	· 1.4111.07	- 1113,0		 	
			···		-				
Notes:								L,	

Project In Sampling Collection Collector	itial Code: Date: Method(s): Name (print	and sign):	L - 10 - rab - f. R	·	<i>f f f f f f f f f f</i>	Conne O	ب/	= forage fish
Affiliation Address:	De C	LOW	restor	UNIO	Vatur	(864) (0) 1>	<u> 1850 -</u>	02-10
		- F-O	WHV	}	10 00(00	OC. VC		V
Site Locat	tion				Parish: \) er mi	lion	
Latitude: Site Name	:	0078 EWL	field	ī	Longitude	32	8896	<u> </u>
Site Descri Water Boo	puon: y Description		anal	αÛ		····	-	
		on. Water Depth		(meters) /	20 (feet)			
		<u>-</u>						
	RDO mg/L	Temp C	pН	Cond µS/cm	ORP	Turb NTU	Depth feet	Time
	9.83	12.57	7.48	3185	8.13	48.2	1.17	1204
					ļ <u></u>			
	""			1	ļ		-	
		<u> </u>			-			
Notes:			<u> </u>					<u>i</u>
*****				•			· · · · · ·	
	- -							
Sample De	scription							
Species:	calling	olio Heli	5ap 2/20/10	idus	Total # of I	ndividuals:	10	
Specimen	Length	Width	Weight	Date/Time	Date/Time	Т		
Composite	(mmi)	(mm)		Trap Set	Trap	Type of Bait	Sex	Additional Comments
Code C.			(grams)		Pulled		4.4	
C	6,5	14,5	178 192		12/22/10 1204	-	\mathcal{N}	one claw
\overline{c}	8	16,5		12/13/10/1220		-	\mathcal{M}	one claw
C	7	15,5	172		12/20/10/1284			one Jaw
C	4	16.5	ये डि		12/20/10/1204		\mathcal{M}	المراح المراح
	8	19,5	309	12/13/16/1220			\mathcal{M}	
	6,5	14.5	174		12/20/10/1204		M	
<u> </u>	6	14		12/13/10/1220			$\frac{1}{\sqrt{2}}$	
C	6	15		12/13/10/1220				
Č	6.5	16.5		12/13/10/1220			M	
				1-1-1	,-,,-,1204	- CALLINAS	,	
Notes:		•						-

Project Initial Sampling I	tial Code:	01-05	:: _T- 5_[] _raw]	06				vpe (C / \) = forage fis	
	Name (print	and sign):	J	Roda	iers	- 1 A			
Affiliation	: <u> </u>	emsor		<u>) i V ,</u>	•	(864)		0210	<u> </u>
Address:	Dept	t For	restry	and	Natu	ral Re	seur		
Site Locat	ion	 350			Parish:	Verm	ilior)	
Latitude:					Longitude:				
Site Name:				-					
Site Descri	-								
1	y Descriptio				(6. 1)				,
Estimated	Maximum V	Vater Depth	ı:((meters) /	(feet)				
	RDO mg/L	Temp C	pН	Cond µS/cm	ORP	Turb NTU	Depth feet	Time	
	9 -	,		por om		1110			
•									
									
Notes:	for lo	it, lor	ig, etc	->	see (revio	US_	,	
Sample De									
	escription								
Species:	<u>S</u>	HAI	>		Total # of l	Individuals:	1/4 of	5gal	lon bud
Specimen Composite	Length	Width (mm)	Weight (grams)	Date/Time Trap Set	Date/Time Trap	· · · · · · · · · · · · · · · · · · ·	1/4 of Sex	5gal	
Specimen	S	Width (mm)	Weight (grams)	1	Date/Time Trap Pulled	Type of Bait		1	
Specimen Composite	Length			1	Date/Time Trap	Type of Bait		1	
Specimen Composite	Length			1	Date/Time Trap Pulled	Type of Bait		1	
Specimen Composite	Length			1	Date/Time Trap Pulled	Type of Bait		1	
Specimen Composite	Length			1	Date/Time Trap Pulled	Type of Bait		1	
Specimen Composite	Length			1	Date/Time Trap Pulled	Type of Bait		1	
Specimen Composite	Length			1	Date/Time Trap Pulled	Type of Bait		1	
Specimen Composite	Length			1	Date/Time Trap Pulled	Type of Bait		1	
Specimen Composite	Length			1	Date/Time Trap Pulled	Type of Bait		1	
Specimen Composite	Length			1	Date/Time Trap Pulled	Type of Bait		1	
Specimen Composite	Length			1	Date/Time Trap Pulled	Type of Bait		1	

	Site Identif	ication Code	ð:	T / '	10.1.		Sample T	ype ((C)/ F)
Project In	itial Code:	EWL		~- ,	12/2/10			F = forage fish
Sampling				. •				8
	n Method(s)	<u> </u>	-EFQ	b tra	P			
		t and sign):			+. Con	nelly,	J. R	odgers
Affiliation	·-	~ : /				<u>4(864)</u>		0210
Address:	Dont			Natu		RESOU		
	-seep 1		'''	1- 00 100	<u> </u>	123001		· .
Site Loca	tion				Parish:	Vermi	lian	
	561	198 #	12/21/1	٥١	_	_ 4 01 11()	HZ 17	2/21/10
Latitude:	55-	7 004 "			Longitude	276	Z-7 Q-2	3289709
Site Name		EWI	- Fip	٦٦.	Bongitude	- 220	010/	701
Site Descr			cana	()	<u> </u>			
	ly Description	On:	car	2 0 .				
	•	Water Depth		(meters) / _;	70 (feet)			
		2001 Dopui		(IIIOCO13) / -(X(/(1001)			
	RDO	Temp	рH	Cond	ORP	Turb	Depth	Time
	mg/L	C	PII	μS/cm	ληV	NTU	feet	Inne
		 	6.91	-	0.22			1010
	9.12	12,97	9.41	2856	0,62	88,1	1.1	1018
	<u> </u>	 	ļ	<u> </u>				
		 						
					<u> </u>			
Notes:	L	L		<u> </u>	<u> </u>			<u> </u>
Notes		-				.		
		·	· .					
Commis De			- · 					
Sample De	escription							
g!.	Callina	las						
Species:	Juline		- I				5	
		30162 3	sapido	<u>s</u>	Total # of I	Individuals:	_5	
6 .	HC12(21)11	ectes s	sapido	<u>s</u>			_5	
Specimen	HC12/21/11	Width		 	Date/Time		5	
Composite	HC12(21)11 Length	Width	Weight	Date/Time Trap Set	Date/Time Trap		5 Sex	Additional Comment
Composite Code	HC12/21/11	Width (mm)	Weight (grams)	Date/Time Trap Set	Date/Time Trap Pulled	Type of Bait	<u> </u>	Additional Comment
Composite	Length (mm)	Width (mm)	Weight	Date/Time Trap Set	Date/Time Trap Pulled 12/21/10/1018	Type of Bait	M	Additional Comment
Composite Code	Length (mm)	Width (mm)	Weight (grams)	Date/Time Trap Set 2/13/10/1201	Date/Time Trap Pulled 12/21/10/1018	Type of Bait Catfish Catfish	M	Additional Comment
Composite Code	Length (mm)	Width (mm)	Weight (grams)	Date/Time Trap Set 12/13/10/1201 12/13/10/1201	Date/Time Trap Pulled 12/21/10/1018 12/21/10/1018	Type of Bait Catfish Catfish Catfish	M F M	Additional Comment
Composite Code C C C	Length (mm)	Width (mm) 15 16 15,5	Weight (grams) 191 171 197 275	Date/Time Trap Set 12/13/10/1201 12/13/10/1201 12/13/10/1201	Date/Time Trap Pulled 12/21/10/1018 12/21/10/1018 12/21/10/1018	Type of Bait Catfish Catfish catfish catfish	M F M	Additional Comment
Composite Code	Length (mm)	Width (mm)	Weight (grams)	Date/Time Trap Set 12/13/10/1201 12/13/10/1201	Date/Time Trap Pulled 12/21/10/1018 12/21/10/1018 12/21/10/1018	Type of Bait Catfish Catfish catfish catfish	M F M	Additional Comment
Composite Code C C C	Length (mm)	Width (mm) 15 16 15,5	Weight (grams) 191 171 197 275	Date/Time Trap Set 12/13/10/1201 12/13/10/1201 12/13/10/1201	Date/Time Trap Pulled 12/21/10/1018 12/21/10/1018 12/21/10/1018	Type of Bait Catfish Catfish catfish catfish	M F M	Additional Comment
Composite Code C C C	Length (mm)	Width (mm) 15 16 15,5	Weight (grams) 191 171 197 275	Date/Time Trap Set 12/13/10/1201 12/13/10/1201 12/13/10/1201	Date/Time Trap Pulled 12/21/10/1018 12/21/10/1018 12/21/10/1018	Type of Bait Catfish Catfish catfish catfish	M F M	Additional Comment
Composite Code C C C	Length (mm)	Width (mm) 15 16 15,5	Weight (grams) 191 171 197 275	Date/Time Trap Set 12/13/10/1201 12/13/10/1201 12/13/10/1201	Date/Time Trap Pulled 12/21/10/1018 12/21/10/1018 12/21/10/1018	Type of Bait Catfish Catfish catfish catfish	M F M	Additional Comment
Composite Code C C C	Length (mm)	Width (mm) 15 16 15,5	Weight (grams) 191 171 197 275	Date/Time Trap Set 12/13/10/1201 12/13/10/1201 12/13/10/1201	Date/Time Trap Pulled 12/21/10/1018 12/21/10/1018 12/21/10/1018	Type of Bait Catfish Catfish catfish catfish	M F M	Additional Comment
Composite Code C C C	Length (mm)	Width (mm) 15 16 15,5	Weight (grams) 191 171 197 275	Date/Time Trap Set 12/13/10/1201 12/13/10/1201 12/13/10/1201	Date/Time Trap Pulled 12/21/10/1018 12/21/10/1018 12/21/10/1018	Type of Bait Catfish Catfish catfish catfish	M F M	Additional Comment
Composite Code C C C	Length (mm)	Width (mm) 15 16 15,5	Weight (grams) 191 171 197 275	Date/Time Trap Set 12/13/10/1201 12/13/10/1201 12/13/10/1201	Date/Time Trap Pulled 12/21/10/1018 12/21/10/1018 12/21/10/1018	Type of Bait Catfish Catfish catfish catfish	M F M	Additional Comment
Composite Code C C	Length (mm)	Width (mm) 15 16 15,5	Weight (grams) 191 171 197 275	Date/Time Trap Set 12/13/10/1201 12/13/10/1201 12/13/10/1201	Date/Time Trap Pulled 12/21/10/1018 12/21/10/1018 12/21/10/1018	Type of Bait Catfish Catfish catfish catfish	M F M	Additional Comment
Composite Code C C C	Length (mm)	Width (mm) 15 16 15,5	Weight (grams) 191 171 197 275	Date/Time Trap Set 12/13/10/1201 12/13/10/1201 12/13/10/1201	Date/Time Trap Pulled 12/21/10/1018 12/21/10/1018 12/21/10/1018	Type of Bait Catfish Catfish catfish catfish	M F M	Additional Comment

Sampling	Site Identifi	cation Code	»: -—	<u> 7/37</u>				ype (C / F)
	itial Code:						C → crab F	F = forage fish
Sampling		<u>0_1-0:</u>						
	Method(s):		nep					
	Name (print		John	Roda	ers s	blum H.	Robert	- <i>}</i> z
Affiliation	1: <u>Clem</u>	usen Un	iversity			(564)	650-	0210
Address:		of Fa			Satural.	Resource	ی	
Site Loca	tion T.P.	7		1105	Parish:	comilion	7	-
Latitude:	_				Longitude			
Site Name	:			_				 ,
Site Descr	iption:							• • • • • • • • • • • • • • • • • • • •
Water Boo	ly Description	n:					• .	
	Maximum V		:	(meters) / _	(feet)	· · · · · · · · ·		
	RDO	Temp	pН	Cond	ORP	Turb	Donth	Time
	mg/L	C	pii	μS/cm	ñχV	NTU	Depth feet	Time
						<u> </u>		
		·		<u></u>				
Notes:	for	at, 10	ng Si	te nam	0 ->	See	previo	<u> </u>
	Field	re con	11'	rms	<u> </u>	-	1	
	11110	7(001	<u> </u>	<u> </u>		· · · · · · · · · · · · · · · · · · ·		
Sample De	escription							·
F							_	
Species:	Calline	tes sa	pidus		Total # of l	ndividuals:	9	
- F 2 - 2 - 2		34	<u>-7043</u>		Total ii of I	mar v radais.		
Specimen		7774 747		<u> </u>	Date/Time			
Composite	Length	Width	Weight	Date/Time	Trap	Type of	Sex	Additional Comments
Code	(mm)	(mm)	(grams)	Trap Set	Pulled	Bait		
C	19	8	297	12/29/10/000	01/03/11/1105	catfish	M	
C	15	6.5	166	' ' -	i		M	
<u></u>	17.5	8	268				M	
<u>ن</u>	16.5	7	226				M	
<u></u>	14	Ĺ	132				M	
C	16	7	2/0				M	
C	14.5	6	156			_	M	
O	16	7	246	/			<u> </u>	
7	16	25	167			1/	M	
				· · ·		- V	•	
							·	
Notes:				<u></u>				l .
1000.								

Sampling 5	Site Identific	cation Code:	: -	To				pe (C / (F))
Project Init	tial Code:	EW L	- 	1.カニ	-) í		C = crab F	= forage fish
- Sampling 1 - Collection	Date: Method(s):	L- 4 H	1-11-11 C	71-05	,,			Mela
- Collector N	Name (nrint-	and sign): N	NI. KAN NA	4e.rs	1 1 . (_0x	nella	D R '	HC 1/5/11 1chic
Affiliation	Clo	M500	Univ	J/_	1.(/	(864)	650-0	210
Address:	<u>Cle</u> Dept	Fores	, try	and h	Jatura	I Re	Lourc	es
,			<u> </u>					
Site Locat	ion 5	0			Parish: _\	lermil	ion	
Latitude:					Longitude:			
Site Name:				<u> </u>				
Site Descri	•							
1	y Descriptio		·····		(6 1)			
l: stimated	Maximum V	Vater Depth	:((meters) /	(reet)			
	RDO	Temp	pН	Cond	ORP	Turb	Depth	Time
	mg.T.	c ·	•	μS/cm	ìχV	N.LΩ	fect	
				ļ				
			<u>-</u> .					
Notes: 1	0 + 10		رام مردر	m a a	 			<u> </u>
isoles, j	at, 10 previo	7.96	Gold	r	-d C	5ec	- 	
	Previo		11610	17 (71 1100		
Sample De	escription							
	<u></u>	10					1/- 1 1	≟ ∧ i) i
Species:	SH	14U			Total # of I	ndividuals:	1306	Jgallon buck
Specimen	T			Т.	Date/Time		I	
Composite	Length	Width	Weight	Date/Time	Trap	Type of	Sex	Additional Comments
Code	(mm)	(mm)	(grams)	Trap Set	Pulled	Bait		
#					el <i>lu4/m </i>	HC 1/E	/11	
					01/05/11/1510			
ļ								
ļ			:					
		· · · · · ·						
Notes:					· · · . · . · · · · · · · · · ·			

	Site Identifi itial Code:		e: <u> </u>	<u>08</u>			Sample Ty	ype (C/F)
Sampling		1 V-20	5-10				C - Crao r	- lorage rish
	Method(s):		crab	_trof	>		^	
	Name (print			tchie,	Η.	Conn	LU /	
Affiliation	: <u></u>	elms		UNIV	crsity	(864-)	<u>650 -</u>	6210
Address:	Dep	<u> </u>	forest	ry	+ Na	Aural	Real	ources!
Site Loca	tion				Parish:	Dermi	lien	
Latitude:		6116	6	1 1	Longitude	32	8965	3
Site Name		- Ew	L 9	1619				·
Site Descr	-		Cana					
1	ly Description		<u>ca</u>		0 1 (C)			
Estimated	Maximum V	water Deptr	1:((meters) / O	Cfeet)			
;	RDO mg/L	Temp C	pН	Cond µS/cm	ORP	Turb NTU	Depth feet	Time
-	972	11.81	7,53	2768	0.15	95.2	1.5	1147
<u> </u>				<u> </u>			.	
Notes:	-		-		 .			
								
Sample De	escription					<u> </u>		
Species:	callin	re ctes	Sapic	lus_	Total # of l	Individuals:	_5	
	V120/1	0 HC 12/2	10					
- F	Length	Width	Weight	Date/Time	parte, x mile	Type of		
Composite Code	(mm)	(mm)	(grams)	Trap Set	Trap Pulled	Bait	Sex	Additional Comments
Code	——————————————————————————————————————	(7,3		taliali lure.	12/2dio/1147	catfish	M	
\overline{C}	7.5	17				catfish	M	
ي	<u> </u>	16			12/26/10/1147		M	
Č	7	16,5			12/20/10/114		F	
C	6,5	16	171		12/20/16/1147		卡	
_				1.21.91.7	190011-7-111	<u> </u>	•	
,	,							
							·	
				- <u>-</u>				
Notes:		i						
Notes:			<u>-</u>					

Project Ini Sampling Collection	Method(s):	EWL OL-OS truo	Z-/_/				C = crab F	$ \text{ype} \left(\begin{array}{c} C & F \\ \end{array} \right) $ $ F = \text{forage fish} $
Collector I	Name (print	and sign):	John	Rodgers	on.	mH Roa	gen pr	
Affiliation	: Clem	son Ur	rivasi4	4		(864)	650-0	2210
Address:	Dept.	of Fo	restry	and No	Matrim R	esource	5	
Site Locat		105	/			Vermi		
	/	, 0 0					,,,,,	
Latitude: Site Name				_	Longitude:		·	<u></u>
Site Name								
	ly Descriptio					*		
	•		i:((meters) / _	(feet)			
	RDO mg/L	Temp C	pН	Cond µS/cm	ORP	Turb NTU	Depth feet	Time
			l .	μονem		NIO	icot	
						 		
								
					-			
Notes:	lat, lon	a, sit	name	etc -	> see	Previo	v.S	
	100	ord.	forms	,	1.1	ı		
Sample De	escription							11.1
Species:	<u>Calli</u>	<u>nectes</u>	sapidu	<u>s_</u>	Total # of I	ndividuals:	8	
Specimen	Length	Width	Weight	D - 4 - /TP2	Date/Time	m c		
Composite	_	Wiuli	_	Date/Time Trap Set	Trap	Type of Bait	Sex	Additional Comments
Code	(mm)	(mm)	(grams)		Pulled			
<u> </u>	16	7.5		12/21/10/0900	01/03/11/1109	catfish	M	
C C	18	8	256				<u> M</u>	
	1.8.5	8	352				M	
2	15	7.5	254				M	
	19	8_	351				M	
<u> </u>	15.5	6,5	196				M	
	17.5	フ	240				_M_	
<u> </u>	18	7.5	296	V	√	_ \	-M	
18/1							·	
<u> 42</u>								
* と								
					ļ			
Notes:						·····		
								ļ

Sampling S	ite Identific	ation Code	·	08			Sample Ty	pe (C / _	\bigcirc
Design buit	int Costo	F = I(I)						= forage fish	
Sampling I	Date:	0100	FIT	01-05	-11				
							1.17	17.1	
Collector N	iame (print	and sign):	J. Rodo	iers. H	Connell	4. f.	Litchie	12/11	
Affiliation:	<u>Cle</u>	MSON	Univ	J		(\$64)	650 - C	2 <u>510</u>	
Address:	Dept	FORPS.	try a	nd N	Connell Datura	l Res	Lource	للع	
			<u> </u>						·
Site Locati	ion 15	05			Parish:	Vermi	HON		
Latitude:				-	Longitude:		!	·····	
Site Name:			····						
Site Descri	puon. y Descriptio		 			 			
•	•		- (meters) /	(feet)				
i seminica i	viaxonom v	vaier Depin		incicis) /	((CCI)				
,	RDO	Temp	pН	Cond	ORP	Turb	Depth	Time	
	$\mathrm{mg} \cdot \mathrm{L}$	c'	•	μS/cm	ik(V	NTU	feet		
				 					
									
ļ									
Notes:	at.	ona is	site n	ane.	- > <	ee pr	eviou	5	
Fiel	d re	cord	forms		<u> </u>			_	
	·								
Sample De	scription							- 11	
	SH	A-D					1/3 06	5 gallo Individu	w pac
Species:	011	/ \ 」			Total # of h	ndividuals:	many	indi uldu	مليك
		,						1	
Specimen	Length	Width	Weight	Date/Time	Date/Time Trap	Type of	£.	1.1.1.2	
Composite Code	(mm)	(mm)	(grams)	Trap Set	Trap Pulled	Bait	Sex	Additional C	omments
Citac	(11111)	(341111)	(grants)		allo4/11 H	1/5/11	-		
F									
					01/05/11/1505				
									. ==
			<u> </u>	 	 			 	
				<u> </u>					
					 				
							<u>.</u> .	 	·-··-
								<u> </u>	
Votes:				<u> </u>	L			l	
e a campana de la compansión de la campana d							·		

Sampling Site Identification Code:								
Collection Method(s): crab trap								
Collector Name (print and sign): J. Rodgers, P. Ritchie, H. Connelly Affiliation: Cilmson University (864) 650 0210								
Affiliation: Clemson University (864) 650 0710 8								
Address: Dept of Forestry and Natural Resources								
Site Location Parish: Vermilion								
Latitude: 56/3/4 Longitude: 3289624 Site Name: EWL								
Site Name: EWL								
Site Description: EWL fuld								
Water Body Description: Canal,								
Estimated Maximum Water Depth: (meters) / (feet)								
	RDO	Temp	рН	. Cond	ORP	Turb	Depth	Time
	mg/L	C		μS/cm	hγV	NTU	feet	
	12,29	12.73	6.82	2673	0,2	233	1.5'	1143
				<u> </u>				
					-			
Notes:	<u>. </u>					<u> </u>	<u>.</u> .	
				<u>-</u>				
Sample Do	scription		·					
~								
Species: <u>Callinettes Sapi</u> dus Total # of Individuals: 5 HC17/16/10 HC 12/16/10 Specimen Date/Time								
HC17/16/10 HC 12/16/10								
	Length	Width	Weight	Date/Time	Date/Time	Type of		
Composite Code	(mm)	CM	_	Trap Set	Trap	Bait	Sex	Additional Comments
Code	(#1111)	(mm)	(grams)	salah luca	Pulled	1C-1	Λ Λ	
<u> </u>	7	16 16	327 138		12/16/10/143		$\frac{\mathcal{M}}{\mathcal{M}}$	no claws
-		17	<i>aa3</i>		12/16/10/1143		$\overline{\mathcal{M}}$	110 Claws
\overline{c}	6	14,5	127		1416/10/1143		M	one clow
Č		11,5	203		12/16/10/1143			one daw
···· ·		1 1 1 - 2	<u> </u>	1-1181 CH15-1	1419/19/1143	CICI FIGIT		ora our
			-				· · · · · · · · · · · · · · · · · · ·	
			-					
Notes:								
			-			-		

Project Initial Code: EWL Sampling Date: $OI - D5 - II$	Sample Type (C = crab F = forage	
Collection Method(s): \\ \tau \!		
Collector Name (print and sign): J. Rodgers, H. Conn	1050.021	
Address: Dept Forestry and Natural	Resourc	es
Site Location 1455 Parish: Verm	ilion	A
Latitude: Longitude:		
Site Name:		
Site Description:		
Water Body Description:		
Estimated Maximum Water Depth: (meters) / (feet)		
RDO Temp pH Cond ORP Turb mg 1. C μS/cm NTU	Depth Tim	e
Notes: lat, long, etc -> see previo	US	
1 J \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
record forms		
record forms		
Sample Description		
Sample Description Species: SHAD Total # of Individuals:		lon
Sample Description Species: SHAD Total # of Individuals: Specimen Length Width Weight Date/Time Type of	1/2 5gal	
Sample Description Species: SHAD Total # of Individuals: Specimen Composite Length Width Weight Date/Time Trap Set Trap Rait	1/2 5gal	lon overset
Sample Description Species: Total # of Individuals: Specimen Composite Code (mm) (mm) (grams) Trap Set Pulled Trap Bait	1/2 5gal	
Sample Description Species: SHAD Total # of Individuals: Specimen Composite Length Width Weight Date/Time Trap Set Trap Rait	1/2 5gal	
Sample Description Species: Total # of Individuals: Specimen Composite Code (mm) (mm) (grams) Trap Set Pulled Trap Bait	1/2 5gal	
Sample Description Species: Total # of Individuals: Specimen Composite Code (mm) (mm) (grams) Trap Set Pulled Trap Bait	1/2 5gal	
Sample Description Species: Total # of Individuals: Specimen Composite Code (mm) (mm) (grams) Trap Set Pulled Trap Bait	1/2 5gal	
Sample Description Species: Total # of Individuals: Specimen Composite Code (mm) (mm) (grams) Trap Set Pulled Trap Bait	1/2 5gal	
Sample Description Species: Total # of Individuals: Specimen Composite Code (mm) (mm) (grams) Trap Set Pulled Trap Bait	1/2 5gal	
Sample Description Species: Total # of Individuals: Specimen Composite Code (mm) (mm) (grams) Trap Set Pulled Trap Bait	1/2 5gal	
Sample Description Species: Total # of Individuals: Specimen Composite Code (mm) (mm) (grams) Trap Set Pulled Trap Bait	1/2 5gal	
Sample Description Species: Total # of Individuals: Specimen Composite Code (mm) (mm) (grams) Trap Set Pulled Trap Bait	1/2 5gal	
Sample Description Species: Total # of Individuals: Specimen Composite Code (mm) (mm) (grams) Trap Set Pulled Trap Bait	1/2 5gal	
Sample Description Species: Total # of Individuals: Specimen Composite Code (mm) (mm) (grams) Trap Set Pulled Trap Bait	1/2 5gal	

	itial Code:	ication Code EW L 12-20		10		(Sample Ty C = crab F	ype C / F) F = forage fish
	Method(s)		crat	o tra	<u></u>			
Collector	Name (print	and sign):	P.R	it chie	1 14.	Conne	they/	
Affiliation	n:C	lems.	en L) niver	uty	(864)		0210
Address:	- Dept	700	estry	+ Na	twal	Reson	irces	
Site Loca	tion	_			Parish:	Vern	alion)
Latitude: Site Name		0045	5 (أم ا مأ	Longitude	:_329	38901	<u> </u>
Site Name			ianal	<u> </u>				
	ly Descripti			nal		•		
	-	Water Depth			入〇 ¹ (feet)			
	RDO mg/L	Temp C	pН	Cond µS/cm	ORP	Turb NTU	Depth feet	Time
	9,30	12,34	7.44	3200	0.18	48-5	1,3	1157
		<u> </u>						
Notes:					<u></u>		<u> </u>	<u>i</u>
INOIES. —			7 778.48					
								····
Sample De	escription							
Species:	<u>callin</u>	rectes:	sapid	<u>U</u> S	Total # of l	Individuals:	5	
Specimen	Length	Width	Weight	Date/Time	Date/Time	Type of		
Composite Code	(mm)	(mm)	(grams)	Trap Set	Trap Pulled	Bait	Sex	Additional Comments
	7.5	18	286			catfish		
<u> </u>	7_	16,5				catfish		
<u> </u>	6,5	13,5	A:\ h			catfish	$\mathcal{M}_{\mathcal{A}}$	
C	7,5	17,5	284	12/13/10/1216	12/20/10/1157	catersh	//\	
<u></u>	<u> </u>	15.5	155	12/13/10/1216	12/20/10/1157	cather	M	one daw
								
Notes:				j		· · · · · · · · · · · · · · · · · · ·		
				·=				

oampinig	Site Identiti	ication Code	e:	- T-10			Sample Ty	/pe (C / F	')
Project Ini	itial Code:	EWI	,					= forage fish	•
Sampling !	Date:	01-0	7-//						
Collection	Method(s):	+1/2	ω. 						
Collector 1	Name (print	and sign):	Tobo	Prdaers	<u></u>	Light Red	geowt.		
Affiliation	: Clem	care Uni	var ils	Rodgers		()	300//-		-
Address:	Dont	of Error	e born	L Natural	Dozano				
	-Dep 7.	or pores	ing on	a junturu	Reserve				
Site Locat	tion (123	· · · ·		Parish:	Vermili	ion		
	• •								_
Latitude:					Longitude:				
Site Name	:	T-10	•••	 -	Ü	-			
Site Descri	iption:	T-10	ENL						
	ly Description								
1	-		n:	(meters) /	(feet)				
		•		`					
	RDO	Temp	pН	Cond	ORP	Turb	Depth	Time	
	mg/L	c c	•	μS/cm	No,V	NTU	feet		
								 	
								 	
				<u> </u>					
		ļ	 						
	i	1							
		-		 					
Notes:	[]	0.0 %	side no	000 0	.(3)	SPP D	Calians		
	lat, 1	0000	site nau	ne, et	· (-3	see p	rcuios s		
	lat, 1. field	ong, c	site nau	me, et	(-3	see p	rcuion s		
	tield	record	site nau	me, et	(-3)	see p	rcvious		
	tield	ong, c	site nau form	me, et	-(-3)	see p	rcyjos s		
Sample De	escription	<u>record</u>	forw	<u> </u>			rcuious		
Sample De	escription	ony, crecord	forw	<u> </u>		see p	12		
Sample De	escription <u>Calling</u>	record	Sapidu	<u></u>	Total # of I	ndividuals:	rcuious 12		
Sample De Species:	escription	<u>record</u>	Sapidu	Date/Time	Total # of I	ndividuals:	12		nmments
Sample De Species: Specimen Composite	escription <u>Calling</u>	record	Sa pidu Weight	<u></u>	Total # of I Date/Time Trap	ndividuals:	revious 12	Additional Co	omments
Sample De Species:	escription Callin Length (mm)	vectes Width (mm)	Sapidu Weight (grams)	Date/Time Trap Set	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	12 Sex		omments
Sample De Species: Specimen Composite Code	escription Callin Length (mm) 18-5	vectes Width (mm)	Sapidu Weight (grams)	Date/Time	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	12 Sex		omments
Sample De Species: Specimen Composite Code	Length (mm) 18.5	width (mm)	Sapidu Weight (grams) 293 195	Date/Time Trap Set	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	Sex M M		omments
Sample De Species: Specimen Composite Code	Length (mm) 18.5 14.5	Width (mm)	Sapidu Weight (grams) 293 195	Date/Time Trap Set	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	12 Sex M M		omments
Sample De Species: Specimen Composite Code	Length (mm) 18.5 14.5	width (mm)	Sapidu Weight (grams) 293 195 157 220	Date/Time Trap Set	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	12 Sex M M M M		omments
Sample De Species: Specimen Composite Code	Length (mm) 18.5 14.5 14.5	Width (mm) 8 7 6 7	Sapidu Weight (grams) 293 195 157 220 224	Date/Time Trap Set	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	Sex M M M M M		omments
Sample De Species: Specimen Composite Code	Length (mm) 18.5 14.5 14.5 14.5	Width (mm) 8 7 6 7	Sapidu Weight (grams) 293 195 157 220 224 196	Date/Time Trap Set	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	12 Sex M M M M M M M M M		omments
Sample De Species: Specimen Composite Code	Length (mm) 18.5 14.5 14.5 14.5 14.5 14.5	Width (mm) 7 6 7 7 6 5	Sapidu Weight (grams) 293 195 157 220 224 196 192	Date/Time Trap Set	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	Sex M M M M M M M M		omments
Sample De Species: Specimen Composite Code	Length (mm) 18.5 14.5 14.5 14.5 16 16	Width (mm) 7 6 7 7 6 8	Sapidu Weight (grams) 293 195 157 220 224 196 192 289	Date/Time Trap Set	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	Sex M M M M M M M M M M M		omments
Sample De Species: Specimen Composite Code	Length (mm) 18.5 14.5 14.5 14.5 14.5 14.5 16 17 16	Width (mm) 8 7 6 7 7 8 6.5	Sapidu Weight (grams) 293 195 157 220 224 194 192 289 205	Date/Time Trap Set	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait			omments
Species: Specimen Composite Code C C C	Length (mm) 18.5 14.5 14.5 16 15 17 16 14.5	Width (mm) 8 7 7 7 7 6.5 8 6.5 6.5	Sapidu Weight (grams) 293 195 157 220 224 196 192 289 187	Date/Time Trap Set	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	Sex M M M M M M M M M M M M M		omments
Sample De Species: Specimen Composite Code C C C C C C C C C C C C C C C C C C C	Length (mm) 18.5 14.5 14.5 16 17 16 14.5	Width (mm) 8 7 6.5 8 6.5 7	Sapidu Weight (grams) 293 195 157 220 224 196 192 289 205 187 207	Date/Time Trap Set	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait			omments
Species: Specimen Composite Code C C C	Length (mm) 18.5 14.5 14.5 16 15 17 16 14.5	Width (mm) 8 7 7 7 7 6.5 8 6.5 6.5	Sapidu Weight (grams) 293 195 157 220 224 196 192 289 187	Date/Time Trap Set	Total # of I Date/Time Trap Pulled	ndividuals: Type of Bait	Sex M M M M M M M M M M M M M		omments

Project Initial Sampling I	Site Identification of the Identification of Identification of Ide	<u> </u>	<u>.</u>	<u> D</u>				/pe (C / (
Collector 1 Affiliation Address:	Name (print		7.1	Rodge Iniv Jan	e Va	864 tural	650-	-021 ource	0
Site Locat	ion	1355			Parish:	Verm	lion		
Latitude: Site Name: Site Descri				-	Longitude				
Water Bod	y Description Maximum V		n:((meters) /	(feet)				
	RDO mg/L	Temp C	pН	Cond µS/cm	ORP NoV	Turb NTU	Depth feet	Time	
Notes:	lat	lon	g, e	7 -3 NS	see	pre	Vious	>	
Sample De	escription	7110					1/2 =	50.00	σn Λ
Species:		> /1 / \ 			Total # of I	Individuals:	,	- g all	91 00 dee
Specimen Composite Code	Length (mm)	Width (mm)	Weight (grams)	Date/Time Trap Set	Date/Time Trap Pulled	Type of Bait	Sex	Additional	
+					01/05/11/13	55			
	j								
				-					
Notes:									

Field Record Form: 07-47 East White Lake (VPSB) Sampling Site Identification Code: Sample Type (C / F) Project Initial Code: EWL C = crab F = forage fishSampling Date: 12-21-10 crab trap Collection Method(s): Collector Name (print and sign): Clemson University Affiliation: (864) 650-0210 Address: Dept Forestry + Natural Vermilion Site Location Parish: Latitude: Longitude: Field Site Name: Site Description: canal Water Body Description: Estimated Maximum Water Depth: (meters) / An' (feet) RDO Temp рH Cond ORP Depth Time Turb mg/L C μS/cm γη NTU feet 13,49 7.41 3358 5.64 0.02 59 1053 1.3 Notes: Sample Description callinectes sapidus Species: Total # of Individuals: 1/c12/21/10 HC12/21/10 Specimen Date/Time Length Width Weight Date/Time Type of Composite Trap Sex **Additional Comments** Winner-(mm) Trap Set Bait Code (grams) Pulled _ 5.5 $\overline{\mathcal{M}}$ 169 12/13/10/1238 12/21/10/1053 cathish $\sqrt{\mathcal{N}}$ 100 12/13/10/1238 12/21/10/1053 Catifish one claw 6.5 12/13/10/1238/12/21/10/1053 \mathcal{N} catfish 167 220 12/13/10/1238 12/21/10/1097 catfigh $\wedge \wedge$ 18 304 12/13/10/1238/12/21/10/1053 catfish ∕∿ 266 12/13/16/1238/12/21/10/105 catfish 269 12/13/10/123012/21/10/1053 catfish 1,5 17.5 Μ 12/13/10/1239/12/21/10/1053 \mathcal{N} 228 one claw catfigh 6 Notes:

Project Init Sampling I	Site Identific (ial Code: Onte: Method(s):	EW L	<u>5-11</u>					pe (C / S = forage fish	
Callantan N	in an aming	and ciants	1 0	odger	<u> </u>	. 0 . 1	·····		
Affiliation	vame (print	ensen	Uni	/ 5		(864)	050-	0210)
Addresst	Dep	+ Fore	stry	and 1	Jatura	l Res	ource	0210	
Site Locat		05	<u></u>	 	Parish:	Verm	ilian		
	1 1	00							
Latitude:			 		Longitude:				
Site Name:									
Site Descri			 						
1	y Descriptic Maximum V			meters) /	(feet)				
Simula	Maxanum A	rater Deptil	•\		(1001)				
	RDO mg L	Temp C	рН	Cond µS/cm	ORP \m\V	Turh NTU	Depth fect	Time	
	mg to			μω/επ	N. V	NIO	1001		
			<u> </u>						
					:				
Notes:	lat	, lon	giet		see	prev	ious		-
	{	ecoro	y sh	<u>2 tee</u>					
Sample De	carintian	····	 				.		
Species:	5_	HAT)		Total # of h	ndividuals:	1/4 06	5 gal	lon
Specimen	Length	Width	Weight	Data/Time	Date/Time	Tuna of			0,00
Composite	·			Date/Time Trap Set	Trap	Type of Bait	Sex	Additional (Comments
Code	(mm)	(mm)	(grams)	, ,	Pulled				
4				<u> </u>	01/09/11/14	⁵ 5			
							·		
				**,-,					
	. ,								
Ni.									····
Notes:		,		·					

		ication Code		12				ype C F)
		EW 1	~				C = crab I	= forage fish
Sampling	Date: Method(s):	17-2		400				
			crab	trap	<u> </u>	01.	/	
	Name (prini	and sign):	1, 1970			nelly		-> 100
Affiliation		Clem		Univer	, 12	<u>(8649</u>	<u> 650 - 0</u>	
Address:	_ Dep	+ 40	restn	1 + 1	Jatur	ial 10	esour	<u>ces</u>
Site Locat	tion				Parish:	Vermil	ion	
Latitude:	50	0135	Ś		Longitudo	328	3978	9
Site Name		EWL	· Tire	[9	Longitude			1
Site Descr	iption:	0	anal					
	ly Description			nal				
Estimated	Maximum V	Water Depth	i:((meters) / _	Z-O (feet)			
	RDO	Temp	pH	Cond	ORP	Turb	Depth	Time
	mg/L	С		μS/cm	hq∨	NTU	feet	
:	9.29	11.77	7.72	2755	0,18	92.3	0.89	1128
	<u></u>							
						ļ		<u> </u>
Notes:								
								
Sample De	escription							
G	calli	necles	20 د ۱	ڪڻ لم نم	m . 1 // Ca		ス	
Species:	- 4.01	necte:	10	1100	Total # of I	Individuals:		
Specimen	14012/2011	16 12 120		I	Date/Time			<u> </u>
Composite	Length	Width	Weight	Date/Time	Trap	Type of	Sex	Additional Comments
Code	~(mm)	(mm)	(grams)	Trap Set	Pulled	Bait	SCA	Additional Comments
<u></u>	6,5	15	178	12/12/10/110	12/20/10/1128	catcish	M	
C	(0	14,5		12/13/10/1158		catfish	F	
\sim	\rightarrow	ال		12/13/10/1158		catfish	M	
		 , •	<u> </u>	-1011011120				
		-		1				
		-						
	_					' -		
			_					
						1		
					f			1
Notes:	<u></u>		ا ــــــــــــــــــــــــــــــــــــ					

Sampling	Site Identifi	cation Code	:	- T-12			Sample Ty	уре (🖒/	F)
Project Ini	tial Code:	EWL						F = forage fisl	
Sampling 1		01-03						C	
Collection	Method(s):								
Collector 1	Name (print	and sign):	. 7	ohn Ro	doore	The !	+ Rober	-2/2	
Affiliation	: Clem	man Uni	مل سرور	,,,,	J	(864)	658-	0210	
Address:	Dent	of Ear	refra	my Nak	dgers ural Re	STUL MEA			
	- Legy		- J	77-7-17	- <u> </u>				
Site Locat	ion	1100			Parish:	Vermil)	dn_		
							•		
Latitude:				_	Longitude				
Site Name	•								
Site Descri	iption:			,			•		
Water Bod	y Description	on:					•-		Ì
Estimated 1	Maximum V	Water Depth	ı:	(meters) / _	(feet)	•			
	RDO	Temp	pН	Cond	ORP	Turb	Depth	Time	
	mg/L	С		μS/cm	hq∨	NTU	feet		
								1	1
Notes: <u>+</u>	or lat	, long,	site n	ame of	fc > 5	see			
	previo	US TO	cord.	form's		-			
	1								
Sample De	scription								
	O 11:		• ,				. 1		
Species:	Calline	ectes s	Sapido	<u> </u>	Total # of I	ndividuals:			
			. '				•		
Specimen	Length	Width	Weight	Date/Time	Date/Time Trap	Type of			
Composite	_			Trap Set	1 *	Bait	Sex	Additional (Comments
Code	(mm)	(mm)	(grams)	_	Pulled			<u> </u>	
<u></u>	19	8	357	12/29/10/090	001/03/11/110	o cattish	<u> </u>		
<u></u>	16.5	7	24.9				_M		
<u> </u>	15	4.5	202		<u> </u>		M		
<u>_</u>	15,5	7	178						
<u> </u>	14,5	6.5	182				<u> </u>		
	14.5	`6	130				_M	<u> </u>	
	16		214				_M		
	15	_6	13/				-44		
C	15	7	198				M		
<u> </u>	14.5	6	154				M		
С	14.5	6	124	\bigvee	lacksquare	V	_F_		
				<u> </u>	<u> </u>				
Notes:		<u>-</u>		 -					

Sampling S	Site Identific	eation Code EWL	:_T-	12	•			pe (C / F) = forage fish	
Sampling I	_	01-05					C Club I	Totage Hish	
Collection	Method(s):	tr	aust						
Collector N	Name (print	and sign):	, ل	Roda	213				
	:	tems	en (<u>)nive</u>	rsity	12364)	_6 <i>≤0</i> :	-0210 uces	
Address:	<u>Dep</u>	t 70	<u>restru</u>	y + N	a tua	1 <u>all</u>	Leson	uces	
Site Locat	ion 	445			Parish:	Jerm	ilion)	
Latitude:				_	Longitude:				
Site Name:									
Site Descri	-								
1	y Descriptio				(C ()				
Estimated	Maximum V	vater Depth	:(meters) /	(feet)				
	RDO mg/L	Temp C	pН	Cond µS/cm	ORP h _l V	Turb NTU	Depth feet	Time	
					,				
Nintan		100	<u> </u>	7	: See	OVA	اره را در	<u> </u>	
Notes:	104	1 1 0 M	. 1	V MS) - 22	- PIE	<u> </u>)	
	1 4	2 - W	<u>e</u> + c)					
Sample De	scription	1							
	•	941	20				1/4 11	55 gallon Sucker	
Species:		<u> / (17</u>	11		Total # of I	ndividuals:	1/ 104	20 gallor	ر <u></u>
Specimen	["				Date/Time			> U Yee	
Composite	Length	Width	Weight	Date/Time	Trap	Type of	Sex	 Additional Comn	nents
Code	(mm)	(mm)	(grams)	Trap Set	Pulled	Bait			
F					01/09/11/144	-5			
					, ,				
		_							
								_	
Notes:									

Project Ini Sampling	Site Identifi tial Code: Date:	EWL 12-14	4-10					BAIT ype (C / F) = forage fish
Collection	Method(s):	<u>Bait</u>	for C	rab Tray	25	4 . 1 . 6		· · · · · · · · · · · · · · · · · · ·
Collector i	Vame (print	and sign):	_John	Po dge	r J	huld Ke	deen ju	dn i l
	dans	k Unive	rity			(864)	<u>659</u>	Ø21\$
Address:	Dept.	of tor	esting an	ed Natu	M/Kesu	urces	·	
Site Locat	ion		<u></u>		Parish:			
Latitude:		٠٤٠	;	_	Longitude:	:		
Site Name	•							
Site Descri	iption:		***					
	y Description							<u></u>
Estimated	Maximum \	Water Depth	i:	(meters) /	(feet)			
	RDO	Temp	pН	Cond	ORP	Turb	Depth	Time
	mg/L	C	· ·	μS/cm	λ _V V	NTU	feet	
					,			
Notes:	escription							
Species:	Codfis	h Bait			Total # of I	ndividuals:		
Specimen Composite Code	Length (mm)	Width (mm)	Weight (grams)	Date/Time Trap Set	Date/Time Trap Pulled	Type of Bait	Sex	Additional Comments
EWL-Baid	_							
								,
					_			
							-	
							_	
			<u>.</u>					
							 	
Notes								
Notes:								

Sampling Site Identification Code: $T_{R} - 01$ Sample Type (C) F)									
		<u>Ew</u> L					$C = \operatorname{crab} F$	= forage fish	
		1215						5	
Collection	Method(s):	Cro	b tr	ap	<i>-</i> /-				
Collector N	Name (print	and sign):	J. Roda	jels,	P. Ritc	hie H	-Conn	e lly	
Affiliation	: Ulem	150N V	unvers	itU		(<u>464</u>)			
Address:	Dept	. of 1	orestr	y and	Natur	-al 14	sour	es	
Gu T	<u>'</u>				D 11 1	. 1	• _		
Site Locat	ion				Parish:	Vermil	197	<u>.</u>	
Latitude:	56931	63			Longitude:	3291	889		
Site Name:		Schoo	oner T	<u>Bayou</u>	Ü		-0 (
Site Descri	iption:	Bay	٥Ü	-/					
Water Bod	y Description	on:	Brusc)W					
Estimated 1	Maximum V	Water Depth	:(meters) / _	えり (feet)				
			T	1 6 1	077				
	RDO mg/L	Temp C	рH	Cond μS/cm	ORP (mV	Turb NTU	Depth feet 12	Time /13/10	
	11.56	9.84	6.76	2523	15,0	52_	1,4E	1126	
	11.78	1,51	W 7 1 CB		0,-1	9-2	11 1 12.	1124	
Notes:								<u>, </u>	
G 1 D	•							1111111	
Sample De	escription						, 1	+9 = (11)	
Species:	callin	ectes s	apidus	\$	Total # of 1	ndividuals:	另 2	+9 = (11)	
Species.	12/12/14	5/10 HC12	115/12	<u></u>	10tal # 01 1	marviduais.	<u> </u>	_ '	
Specimen	Length	Width		Date/Time	Date/Time	Tuno of			
Composite	(mm)			Trap Set	Trap	Type of Bait	Sex	Additional Comments	
Code		(mm)	(grams)		Pulled				
				i		161			
<u></u>	7	17	858	12/10/10/1700	12/15/10/1126	catfish	/\/\		
\mathcal{O}	7,5	16	a43	12/10/10/1700	12/15/10/1124	catfigh	ŹM.	// 2	
0	7,5	14,5	162	12/10/10/1700	12/15/10/1124	catfigh catfish	M.	one claw	
0	7,5	16 14,5 13,5	243 162 125	12/10/10/1700 12/10/10/1700 12/10/10/1700	12/15/10/1126 12/15/0/1126 12/15/10/1126	catfish catfish catfish	/М. /М.	one claw	
000	7,5	16 14.5 13,5 17.5	243 162 125 209	12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700	12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124	catfish catfish catfish catfish	M M M F	one claw	
000	7,5 7 6 7,5 7,5	16 14,5 13,5	243 162 125 209 267	12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700	12/15/10/1124 12/15/0/1126 12/15/10/1126 12/15/10/1126 12/15/10/1126	catfish catfish catfish catfish catfish	M M M F		
00000	7,5 7 6 7,5 7,5 1,5	16 14.5 13,5 17.5 17	243 162 125 209 267	12/10/10 1700 12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700	12/15/10/1124 12/15/0/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124	catfish catfish catfish catfish catfish	M M M F M	one claw	
000000	7,5 7 6 7,5 7,5 1,5	16 14,5 13,5 17.5 17	243 162 125 209 267 211	12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700	12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124	catfish catfish catfish catfish catfish catfish catfish	M M M E M M		
000000	7,5 7 6 7,5 7,5 7,5 7,5 7,5	16 14.5 13,5 17.5 17 17	243 162 125 209 261 201 202	12/10/10 1700 12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700	12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124	catfish catfish catfish catfish catfish catfish catfish catfish	M M F M M M		
00000000	7.5 7.5 7.5 7.5 7.5 7.5 9.5 5.5	16 14,5 13,5 17.5 17 17 17 11 10	243 162 125 267 267 267 267 267 267	12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700	12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124	catfish catfish catfish catfish catfish catfish catfish catfish catfish	M M M M M M		
000000	7,5 7 6 7,5 7,5 7,5 7,5 7,5	16 14.5 13,5 17.5 17 17	243 162 125 209 261 201 202	12/10/10 1700 12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700	12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124	catfish catfish catfish catfish catfish catfish catfish catfish catfish	M M F M M M		
00000000	7.5 7.5 7.5 7.5 7.5 7.5 9.5 5.5	16 14,5 13,5 17.5 17 17 17 11 10	243 162 125 267 267 267 267 267 267	12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700 12/10/10/1700	12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124 12/15/10/1124	catfish catfish catfish catfish catfish catfish catfish catfish catfish	M M M M M M		

Sampling	Site Identifi	cation Code	:TR	0				ype (C / (F)))
· -		EWL					$C = \operatorname{crab} F$	F = forage fish	
Sampling	Date:	1215	10	4-					
Collection	Method(s):	hoc	ob ve	<u> </u>					
Collector l	Name (print	and sign):	J. Rod	gers, f	P. Ritu	rie, H	CONI	relly	
Affiliation	1: <u> </u>	nson.	<u>Univer</u>	sity'		(864)	<u>_650-</u>	<u>02101</u>	
Address:	Dept	of t	-orestri	<u>, and</u>	Natu	ral f	esour	مرهم	
Site Locat	tion				Parish:	Verm	ilion		
Latitude:	569	363	*		Longitude	32	9 188	9	
Site Name	:	363 5 Scho	oner	Bayon)		1 1 0 0		
Site Descr	iption:	Bay	ou	.					
Water Bod	ly Descripti	Bay	Bay	οŪ					
Estimated	Maximum \	Water Deptl	n:	(meters) / $\widehat{\mathcal{O}}$	(feet)			· · · · · · · · · · · · · · · · · · ·	
	RDO	Temp	рН	Cond	ORP	Turb	Depth	Time	
	mg/L	c c		μS/cm	\u0\	NTU	feet		
	11.56	9.84	6.76	2523	0.21	52	1.4	1126	
				ļ					
Niera			<u></u>	<u>.</u>					
Notes: _									
		<u> </u>			<u></u>	· ·			
Sample De	escription		HC 12/15/10	·					
	t						γ	±7	
Species:	lepom	S Mac 12/18 Width	<u>nroch</u>	rus	Total # of I	ndividuals:			
Specimen	17-12-15/	10 HC 12/15/	10	1	D. 4. (T)				
Composite	Length	Width	Weight	Date/Time	Date/Time Trap	1 ype oi	Sex	Additional Cor	nmante
Code	(mm)	(mm) (γM	(grams)	Trap Set	Pulled	Bait	Sex	Additional Con	mnents
F	14	7	55	12/10/10/1700	12/15/10/1126	pogie		bream	
F	14.5	5,5	63		12/15/10/1124				
F	13	5	41		12/15/10/1126				· · · ·
F	12.5	5	45		12/15/10/1724				
						1 1			
		_							
NI-4									
Notes:	·	····							
<u>L.</u> .									

Sampling	Site Identifi	ication Code	: <u>IR</u>	02			Sample Ty	ype((C) F)		
Project Initial Code: $C = \text{crab } F = \text{forage fish}$ Sampling Date: $C = \text{crab } F = \text{forage fish}$										
Sampling	Date:	12-21	5- 10					C		
Collection	Method(s):	:	N WD	trap						
	Name (print			nie 1	H, Con	nellen	/	<u> </u>		
Affiliation	ı: Ö.).	emser	1/1/0	1 V + x < 1		(864_)	6 50 -	02.10		
Address:	1000	+ 30	$\frac{1}{2}$	· · · · · ·	Vactur	= ^ ~	Low			
	— 	71 40	<u> </u>	y ' '	000,000	<u> </u>	o co co			
Site Loca	tion				Parish: \	Jermi	lian			
						0 01 1111				
Latitude:	50	721	O		Longitude	: <u>.32</u>	3 1154	4		
Site Name	;:	500	P77994 c. d	Bains	11 -			<u> </u>		
Site Descr	iption:	IZ	er er	10-000		<u>.</u>				
	ly Description	o721 Sch Bon: Water Depth	Day	1011	,		·			
1	Maximum V	Water Denth	. <u> </u>	(meters) / a	CO (feet)					
		,, attr 2 opti.	··	(11101015) /	<u>5. 5</u> (1001)			•		
	RDO	Temp	рH	Cond	ORP	Turb	Depth	Time		
	mg/L	C	PII	μS/cm	lav.	NTU	feet			
	7,25	10.74	7.02	5239	0,19	18,2	1.5	1120		
	1/2	110: 17	1,00	12531	0,11	10/0	1 . 1	1120		
				1	 					
				 				 		
			!							
Notes:				1	<u>f</u>	<u>ł</u> .				
	·									
					•					
Sample Do	escription						 ,			
,	- varpuon						~			
Species:	cal	linectes	2 San	idus	Total # of l	Individuals:	5			
- -	1 0 120/15	llinectes	0		XOLAT II OT I	ilar i i dadibi				
Specimen	' '				Date/Time]		
Composite	Length		Weight	Date/Time	Trap	Type of	Sex	Additional Comments		
Code	(mm) ^(W)	(mm)	(grams)	Trap Set	Pulled	Bait				
Ü	6	14	146	12/13/10/1317	12/2/10/1120	catfish.	M			
\dot{C}	6.5	14.5	172		12/20/16/1120		$\overline{\mathcal{M}}$			
C	6	14,5			12/20/10/1120		M			
<u>_</u>	7	16,5	$\overline{}$		12/20/10/1120		M	one claw		
	6.5	15,5				catfish				
				,,,,,		7, -1, -4	· · · · · · · · · · · · · · · · · · ·			
								· · · · · · · · · · · · · · · · · · ·		
	<u> </u>				·					
		1								
							·			
			•							
							·			
Notes:						{.				
						·				

	Site Identifi tial Code:			02				spe (C / 😾)
	nar Code. Date: Method(s):			-nat	 .		Cinor	107100 1100
Callmeton	Some Essint	and sign):	1 8-1	14000				
Affiliation	: Cle	MSM	11 nive	rcitu	itural	(864)	650	0210
Address:	Dept	Fore	WY4 a	NZ -NC	itural	Rese	urces	<u> </u>
)					
Site Locat		ŕv			Parish:	Verm	Moill	
Latitude: Site Name:	567	1210		- 2 -	Longitude:	329	1154	Time
Site Descri	ntion:	-3C/V	toner	Day	<u>yu</u>			
	y Descriptic	<u> 2</u>	azou					······································
I.	Maximum V	 Vater Depth	: Du	(meters) /	8 (feet)			
		1						
	RDO	Temp	pH ·	Cond	ORP	Turb	Depth	Time
	mg/L	C		μS/cm	λįV	NTU	feet	
		<u> </u>		Dak			.	
		٧٤			00	OK_		
Notes:	<u> </u>	J		.1.				<u> </u>
				,				
Sample De	scription				-	•		
	<	IHAI	\supset				v	72.
Species:		ITAI		· · · · ·	Total # of I	ndividuals:		
Specimen	HC 12/2	HO HELZ	12110	Τ	[]			1
Composite	Length	Width	Weight	Date/Time	Date/Time Trap	Type of	Sex	Additional Comments
Code	(mm)	(mm)	(grams)	Trap Set	Pulled	Bait	. 14. 4	Additional Confidence
=	3	10	14	12/21/10/1315	12/21/10/1314	rone		SHAD
F		9,5	8	1	1			
<u> </u>	2.5	1,5	11					
F	3,5	<u> </u>	7					
	3							
F	- 2 5	7,5	<u> 5</u>					
F	3 a,5	10	<u> </u>					
F	2.5	G	<u> </u>					
F	2,5	a	-4					
F	a	7.5	4	1	1			/
F	2,5	10,5	11		<u> </u>			\vee
Notes:								

Sampling Project Ini	Site Identification	cation Code	e:	TR-O.	Z.			$ \begin{array}{ccc} \text{Vpe} & \mathbf{C} & \mathbf{F} \\ \mathbf{F} & = \text{forage fish} \end{array} $
Sampling !	Date:	01-0	3-/ /					6
Collection	Method(s):	tra	o .					
Collector 1	Name (print	and sign):	John	Rodger	15 g	En It Rec	lean to	
Affiliation	: Clems	on Univ	/ .)		(864)	650-0	2210
Address:	Dept.	of For	estry a	nd Natu	me / Re	sources		2210
Site Locat	tion [D]	6			Parish:	Verm; L	'an	
Latitude:				_	Longitude			
Site Name								
Site Descri	ipuon: ly Descriptio		,			-:-		
1	•			(meters) / _	(foot)			
Listimated	iviaxiiiuiii v	vater Depti	··	(meters) /	(1661)			
	RDO mg/L	Temp C	pН	Cond µS/cm	ORP NoV	Turb NTU	Depth feet	Time
	mg/D	Ŭ		μο/οπ		NIO	1001	
					·			
Notes:	iat, 1	ong,	site nou	ne e	ح ح	jee		<u>'</u>
	previ	00 g'	field 1	ne, et	form	\sim		
	ı				•		· · · · · · · · · · · · · · · · · ·	
Sample De	scription							
Species:	Callin	ectes	sapidu	<u>s</u>	Total # of I	ndividuals:	10	
Specimen	Length	Width	Waight	D-4-/Ti	Date/Time	т		
Composite			Weight	Date/Time Trap Set	Trap	Type of Bait	Sex	Additional Comments
Code	(mm)	(mm)	(grams)		Pulled			
C	13.5	6	143	12/29/10/0900	01/03/11/1016	cathigh	<u> M</u>	
	15	6	128				<u> </u>	
<u> </u>	17	7,5	186				F	
<u> </u>	/3	5.5	116				<u> M</u>	
<u> </u>	18	7.5	201				<u></u>	
<u> </u>	15	6.5	174	ı İ			<u> </u>	
	18.5	7.5	256				<u> M</u>	
- /-	14	6	146	-		_	M	
<u> </u>	12.5	5.5	139			1	F	
	1260	~. S	<i>[] [</i>	<u> </u>	V		_M	
Notes:	J_	<u>f</u>			<u> </u>	<u> </u>		
								1

		cation Code		<u>03</u> A				pe (C) / F)
-		EWL					C = crab F	= forage fish
Sampling l		12-14		ì)			
Collection	Method(s):	<u>C</u>	rab	traps				
Collector 1	Name (print	and sign):	J. Roda	jers; f	, Ritch	re, H.	(onn-e	lly
Affiliation	:	usou Un	iversity				<u>650C</u>	22/3_
Address:	Dept	. of pa	respy en	ed Nata	m/ Rese	NOS		
Site Locat	ion				Parish:	Verm	illior)
Latitude:	50	37	86		I ongitude:	32	9055	1 (0
Site Name:				2	Longitude.		1-00	<u> </u>
Site Name:		School School	come E	regar.				
	y Description		Bayon	,				
	-	Water Depth	Say of	meters) / _	(feet)			
Littinated .	(VIAAIIIIUIII Y	water Depth	·	incicis) i _g	(1001)			
	RDO	Temp	pН	Cond	ORP	Turb	Depth	Time
	mg/L	C	F	μS/cm	hav	NTU	feet	
	11,03	8.84	7.49	2303	0,19	134	1	1507
	11,00	1079	'	W 3 6 3	0,,,	()	<u> </u>	1001
			<u> </u>					
						<u>.</u>	<u>-</u> -	
								<u> </u>
Notes:		l						<u> </u>
Notes								
Sample De	secription				.			
Sample De	scription							
Species:	calling	octes	Sapid	ڪن:	Total # of I	ndividuals:	12	
opecies.	الديد	ectes 10 11612/11	NIO	<u>0</u>	10tai # 01 1	marviduais.		 -
Specimen	AC 17414	116 1911	*)! *		Date/Time			
Composite			Weight		Trap	Type of	Sex	Additional Comments
Code	(m m)	\(\chi_{\text{mm}}\)	(grams)	Trap Set	Pulled	Bait		
C .	8	17	298	12/10/10/1300	12/14/10 150	7 cathful	M	<u> </u>
	6	14.5	141		17/14/10/150		M	
\overline{C}	6_	15,5	.146		12/14/10/1507		F	
Č	- 7	17,44			12/14/10/1507		F	
C	5,5	1455 H	152		12/14/10/1507		M	
(16	-	12/10/10/1300				
\overline{C}	7	19		12/10/10/1300			E	-
	6.5	16	201		12/4/10/1507		M	
\overline{z}	9	14.5	149	12/10/10/1300		catfish	M	
	<u></u>	14,5	132		12/14/10/1507	_	F	
C	$\overline{\dot{\gamma}}$	16.5		12/19/13/1300	7		- <u>'</u> -	
- 	4	18		12/16/10/1300	7 7 7		WKX F	
Notes:	<u></u>	10	0-1	HIMINITONE!	141411411111	car vy	12/14/	10

Sampling S	Site Identific	cation Code	: IB	03				/pe ((C) / F)
	tial Code:						$C = \operatorname{crab} F$	= forage fish
Sampling l		12-20						
Collection	Method(s):	CYO	ub tr	450		^		<u> </u>
Collector 1	Name (print	and sign):	P. Pita	chlie,	H. Con	welly	/	
Affiliation	: <u>Cl</u>	ense	30 L	lniver	sity	(804)	<u>650 -</u>	0210
Address:	Dep +	t 70	195Hz	1 + V	atura	- A -	ources	
	<u> </u>			<u> </u>				
Site Locat	ion				Parish:	Verm	ilion	
Latitude:	564	-930			Longitude:	329	1076	i
Site Name:		Sch	oner	Zanon	-			<u> </u>
Site Descri	iption:	Ban	ov-	y				
	ly Descriptic	on:	Banon	Sayon				
1	Maximum V	Water Depth	i:((meters) / 2	(feet)			
	<u></u>	: 						
	RDO	Temp	pН	Cond	ORP	Turb	Depth	Time
	mg/L	С		μS/cm	λųV	NTU	feet	
	11.72	11.66	6,99	2944	0.22	5a.1	1,0	1107
		-	ļ		ļ			
			ļ <u> </u>					
			<u> </u>		<u> </u>			
								<u> </u>
Notes:								
								
Sample De	escription							
	~ (I):		< a.b.	An <			1	
Species:	- con	ntchor	1-11-	_	Total # of I	Individuals:	——	
	calli	(20/10 HC 17	1 10 10 10 10 10 10 10 10 10 10 10 10 10	T	T- 2001	 - 1	·	1
Specimen Composite	Length	Width	Weight	Date/Time	Date/Time Trap	Type of	Say	Additional Comments
Composite	(mm)	(mm)	(grams)	Trap Set	Trap Pulled	Bait	Sex	Additional Comments
C	رياس)	14,5	135	מבולונולנו	12/20/10/1(67	a t-Ciche	/ /\	
	6	15.5	1 - 1	,	12/20/10/1107		F	one claw
<u> </u>		15			12/29/01/107		M	one claw
1 [' 'A ")		11/2/x	12/13/10/13/00				Dre Clow
	6,5				او من ا ما ما ما ما	12 march 1	T	Į.
	(e	13,5	124	12/13/10/1308			F	
الك	و		124	12 13 10 1308 12 13 10 1308	12/20/10/1107	catfish	F	
ں لیل	6,5	13,5 14,5 17	124	12 13 10 1308 2 13 10 1308 12 13 10 1308	12/26/10/1167 12/20/10/1107	catfish	F	
الى	و	13,5	124	12 13 10 1308 12 13 10 1308	12/26/10/1167 12/20/10/1107	catfish	F	
ں لیل	6,5	13,5 14,5 17	124	12 13 10 1308 2 13 10 1308 12 13 10 1308	12/26/10/1167 12/20/10/1107	catfish	F	
ں لیل	6,5	13,5 14,5 17	124	12 13 10 1308 2 13 10 1308 12 13 10 1308	12/26/10/1167 12/20/10/1107	catfish	F	
ں لیل	6,5	13,5 14,5 17	124	12 13 10 1308 2 13 10 1308 12 13 10 1308	12/26/10/1167 12/20/10/1107	catfish	F	
ان ال ال	6,5	13,5 14,5 17	124	12 13 10 1308 2 13 10 1308 12 13 10 1308	12/26/10/1167 12/20/10/1107	catfish	F	
ں لیل	6,5	13,5 14,5 17	124	12 13 10 1308 2 13 10 1308 12 13 10 1308	12/26/10/1167 12/20/10/1107	catfish	F	

Project Ini Sampling I Collection	Site Identific tial Code: Date: Method(s): Same (print	EW L 12-2	1-10 ast	net			Sample Ty C crab I	spe (C F)
Affiliation Address:	Name (print : Cla Dept	emson Fores			al pe	(864) sources		
Site Locat	ion				Parish: \(\square\)	Jermil	1.00.	
		1936 Som: Vater Depth	choron cayou b	ayou (meters)/_	Longitude	329	0761	
	RDO	Temp	- Hq	Cond	ORP	Turb	Depth	Time
	mg/l	C		μS/cm	λιv	NTU	feet	
			50		ab	Doek		
Notes. Sample De	scription	1						
Species:	5 	FAD	alio	 .	Total # of I	ndividuals:	30)
Specimen	146 12 21 1	Width	Weight	Date/Time	Date/Time	Type of	·	
Composite Code	(41711) CV	(mm)	(grams)	Trap Set	Trap Pulled	Bait	Sex	Additional Comments
F	2.5	8	- 11	12/21/10/1400	12/21/10/14	ao none		
F	<u>a,5</u>	8		12/21/10/1400	12/21/10/1400		 	
	2 2,5	8,5	<u>8</u> 7					
F	3	<u>C, ⊄</u>	12			-	·	
F	a.5	9.5	8			 -		
F	2	9.5	-0 .					
F	215	9	8.					
F	3		14-		-			
	2.5	10	- 9 i = 1					
E	3 2.5	10	13	V		-V+		
Notes:				· · · · · · · · · · · · · · · · · · ·	у	<u></u>	i	1
·								

	Site Identifi			- <u>1 Sulp</u>	<i>5</i> ·		Sample Ty	ype (C) F)
Project In	itial Code:	EWL	<u> </u>					= forage fish
Sampling		01-0.	3-LL	•				
Collection	Method(s):	+2	2.O					
Collector	Name (print	and sign):	Joh	n Roda	eve G	Ham H. K	Codier	· Su
Affiliation	1: Clems	ion Unive	s. Fer	7.7.09		(864)	650-	0210
Address:	Dept.	of Fore	e tru an	n Rudg ud Natura	1 Resou	_ 	<u></u>	z
		<u> </u>) 	<u> </u>	. /	, oct.)		
Site Loca	tion (0)	36			Parish:			· <u> </u>
	•	- •			_			
Latitude:					Longitude	•		
Site Name	:			_	~	·	· - ·	
Site Descr						· · · · · · · · · · · · · · · · · · ·		
	ly Description	On.				<u>,, </u>		
	-		1.	(meters) /	(feet)		· · · · · · · · · · · · · · · · · · ·	
Botimiatea	172CANIAITCH I	water Depti		(11101013) /	(1001)			
	RDO	Temp	pН	Cond	ORP	Turb	Depth	Time
	mg/L	C	PLL	μS/cm	h _Q V	NTU	feet	I inte
	- IIIg/D	-		μο/οπ	18(4	NIO	1001	-
	ļ	1			<u> </u>	1		
			<u></u>					
	L	<u> </u>	_,,			<u> </u>		
Notes:	for, 1	at lon	-3, Sit	e name	<u>., etc</u>	37 Sel		
- \$1	<u>evidus</u>	tield	reco	9 tol	M5			·
··-···································								<u>.</u>
Sample Do	escription							
	<i>a</i>		,				$\overline{}$	•
Species:	Callin	ectes -	sa pi dus		Total # of I	Individuals:		
Specimen	Length	Ŵidth	Weight	Date/Time	Date/Time	Type of		
Composite	_		<u> </u>	Trap Set	Trap	Bait	Sex	Additional Comm
Code	(mm)	(mm)	(grams)	_	Pulled			
<u> </u>	17.5	7.5	138	12129/10/0900	01/03/11/1036	calfish.	M	
C	15	7.5	318	'			М	
/ **	13	5.5	107				<u></u>	
<u> </u>			125	1 1 1			F	
<u></u>	14.5	G	135					
<u></u>	14.5	7.5	229				F	
000	14.5	6 7.5 6	229 118				F	
000	14.5	7.5	229 118	1			M	
<u></u>	14.5 18 13	7.5	229	V	V			
0000	14.5 18 13	7.5	229 118	V			M	
0000	14.5 18 13	7.5	229 118				M	
0000	14.5 18 13	7.5	229 118				M	
0000	14.5 18 13	7.5	229 118				M	
000	14.5 18 13	7.5	229 118				M	

rrojectini	nai Coac:	ication Code		04/	t			spe (C ' (F)
		12.2		.+					
	Method(s) Name (print		ast r	Rodge	<u>, </u>				
Affiliation Address:	:C	lemse Fores		nivers + Na	ity_	(864) Res	650-	-0210 es	
			· J						
Site Locat					Parish:	Verm	ilion		
Latitude:	56	Schon: Water Depth	2	~ 0	Longitude	329	1031	6	
Site Name:		Sch	soner	- Bay	jou_				
Site Descri	iption: y Descripti	<u></u>	ayou	·					
	y Descripti Maximum !	on. Water Depth	. Bay	(meters) / S	Z ¹ (feet)				
i semance.		water Depart		(inclors) /	<u> </u>				
	RDO mg/L	Temp	pH ·	Cond µS/cm	ORP NV	Turb NTU	Depth feet	Time	
					X				
			< 0.0)	0 0		50M		
			رعر						
!									
Notes:									
				····					
Sample De	scrintion						 		
Species:	lepom	is ma	croch	irus	Total # of I	ndividuals:	• .		
Specimen Composite	Length	Width	Weight	Date/Time	Date/Time	Type of			
Code	(mm)	(mm)	(grams)	Trap Set	Trap Pulled	Bait	Sex	Additional (omments
F	11,6	4,5	35	12/21/10/1420	12/21/10/142	o none		blue	211
-	15	7	76		12/21/10/142		•	Slue	rill
				, , , , , , , , , , , , , , , , , , , ,	, , ,				-J
			· 						•
							·····		
				. ,					
Notes:							<u> </u>		

	Site Identific		: <u>TR</u> -	<u> 2</u>				/pe (C)/ F)
	tial Code:	U W L	- (-				C = crab F	= forage fish
Sampling l		1214						
	Method(s):			rap				
Collector 1	Name (print			rers,	>, R, td/	40, H.	Conne	olly
Affiliation	: <u>Ceu</u>	son Un	vers 144	<u> </u>		ue, H. (864)	<u>650-0</u>	219_
Address:	Dopt.	of Feress	by and	Nakual.	Resource	<u>්</u>		
Site Locat	ion /				Parish:) or m	illion	
Site Educat		-						
Latitude:	56	0983	2 mallo		Longitude:	32	8897	15
Site Name:	:	Lastro	H2 2	schane	e Bayou			
Site Descri	iption:	Bay	00		_			
	y Description	on:	Bayon	<i>v</i>				
Estimated	Maximum V	Water Depth	:(meters) /	<u>20</u> (feet)			
	RDO	Temp	pН	Cond	ORP	Turb	Depth	Time
	mg/L	C		μS/cm	ληV	NTU	feet	
	10,97	9,89	7.45	2361	0,19	154	1.4	1450
Ì								
Notes:								
Sample De	escription							
	- -						\bigcirc	
Species:	calline	ctes	sapido	<u>S</u>	Total # of I	ndividuals:	<u>D</u>	
	12/14	4/10 - 12	14/10					
Specimen	Length	Width	Weight	Date/Time	Date/Time	Type of		
Composite	an	cm		Trap Set	11ap	Bait	Sex	Additional Comments
Code	(mm)	(mm)	(grams)	•	Pulled	LC	4.0	
	9	16	167			cultish		
<u> </u>	8	20				- catfish	\mathcal{M}	
Ç	Ş.5	14			12/14/10/1337		<i>!</i>	
	6				12/14/10/1332		F	
<u> </u>	5,5	13.5			12/14/10/1337			
	لو	12,5			12/14/10/133		\mathcal{M}	
	5,5	13,5			12/14/10/133		_ ^	
	(0	15				2 catfish	M	
		·	9554	612/14/10				
				,				
Notes:								

Sampling S	Site Identific	cation Code	TR	04				spe (C / F)
Project Inc	tial Code:	EWL	-				C - crab I	Forage fish
Sampling I	Date: Method(s):	12-21	- 10	1_				
Collection	Method(s):	Co	ast n	et.				
	Name (print			odgers		_ A		
Affiliation	:_c(e					(864)	650-	0210
Address:	Dept	700	utria	+ Nat	walk			
Site Locat					Parish:			
Latitude:	56	2233	2_	- 0	Longitude:	32	·	
Site Name:	:	<u> 20</u>	oone	r Ba	you_			
Site Descri	rption:	<u> </u>	uzou	r Bar ayou	·			
1	ly Descriptio	m;	<u> </u>	aizon				
Estimated	Maximum V	Vater Depth	1:	(meters) /	(feet)			
	RDO	Temp	pH ·	Cond	ORP	Turb	Depth	Time
	mg/l	C	1,,,	μS/cm	λγV	NTU	feet	
	7115	`		μονοπ	12.	10.0		
	<u> </u>				1		do	
				00-	Xal		OK	
			1-2	 		Λ		· · · · · · · · · · · · · · · · · · ·
				<u> </u>				
			<u>i</u>		[]			<u></u>
Notes.								
Sample De	escription			! :				
	CII	AD					•	
Species:	\supset Π	1 / //			Total # of h	ndividuals:		
	4c 12/21	110	olla	·	:			÷
Specimen	Length	Width	Weight	Date/Time	Date/Time	÷		
Composite			weight	Trap Set	Trap	Type of Bait	Sex	Additional Comments
Code	<u> </u>	(####)\\	(grams)	Trap Set	Pulled	Dan		
<u> </u>	2	9	7	12/21/10/1470	12/21/10/1420	none		SHAD
=	2,5 2,5	9	12	12/21/10/1420	12/21/10/1420	none		
F	2,5	9	_7	12/21/10/1426	12/4/10/1420	none	·	
F	シ	a a a	7	12/21/10/1420		none		
F	d d	8	7		12/21/10/14-20	none		
F	2_	8	6		12/21/10/1420	none		
F	2	8	4		12/21/10/1420	none		
	à 5	9	Ġ		12/21/10/1420	T'		
E	<u>a</u> ,5	9	7		12/21/10/1420	none		
'F	8,5	9	6		12/21/10/1420	none		
F	7	8.5	4	12/21/10/1420		none		
F	ž	8	5	1 2 1	12/21/10/1420	none		W
Notes:	<u> </u>			1144/10/1444	17/2/1914-6	1000		L
- •		*** **** ****						

Sampling	Site Identifi	cation Code	»:	IR-d	4		Sample Ty	/pe (C F)
Project Ini	tial Code:	EWL						= forage fish
Sampling	Date:	01-0	2-11					· ·
Collection	Method(c)	· 4						
Collector 1	Name (print	and sign):	Tab	2 Rodes		D. 24 E	As .	0
Affiliation	: Cloud	(1)	monda.	7. 7 -0 0g e		()	1	<u></u>
Address:	Danie	of FOXOS	me un	1 Natur	al Associ			
		4 / ez usj	1	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	will accept	,, U <u>u</u>		100 at 140/14 at 1000
Site Locat	tion	1150 1	[†] M		Parish:	Vermi	lion	
						•		
Latitude:				_	Longitude:			
Site Name								
Site Descr	-		-			<u></u>		
	y Description							
Estimated	Maximum V	Water Depth	ı:((meters) /	(feet)			
			····			1		
	RDO	Temp	pН	Cond	ORP	Turb	Depth	Time
	mg/L	С		μS/cm	'nV	NTU	feet	
<u> </u>								
		7		<u> </u>	 			
Notes:	ore viou	long	siten	one, e		⁷ 500_		
	Previo	25 - (-)	eld r	e cord	forms			· · · · · · · · · · · · · · · · · · ·
C1- D-	•							
Sample De	escription							
S-ssiss.	Oa 11:	(/		Tr. 2.1 // CI		10	
Species:	Callin	refes	<u>sapidus</u>	•	I otal # of I	ndividuals:		
Specimen			-	<u> </u>	Date/Time			
Composite	Length	Width	Weight	Date/Time	Date/Time Trap	Type of	Sex	Additional Comments
Code	(mm)	(mm)	(grams)	Trap Set	Pulled	Bait	SCA	Additional Comments
C	19	8.5		12/29/10/0960		catfish	М	
Č	20	8	403	12111010100	1	1	M	
Č	13	5,5	130				M	
Č	13.5	6.5					М	
C.	17.5	7.5	291					
	19	7.5	267				<u> </u>	
	17	7.5	219				F	
\overline{c}	18	7.5	224			1	F	
\overline{c}	1.5	6.5	125			7.	F	
	15,5	75	274		1/-	1//	M	-
	1 70.0	(,,)	<u> </u>	-	Y		_ / v)	
			İ		-			
Notes:			l	!				
						· · · · · · · · · · · · · · · · · · ·		

Project Init Sampling I Collection	tial Code: 5 Date: Method(s):	and sign): Son United	<u>-10</u>	trao		(864)	/Conne 650-0	= forage fish
Site Locat	ion				Parish:`	Jerm	1/102	
	ption: y Descriptic	lak	e leke Lake	meters) /		328	9879	1
	RDO	Temp	pН	Cond	ORP	Turb	Depth	Time
	mg/L	С		μS/cm	VıV	NTU	feet	
	Ц.30	8.81	7.50	2263	,22	137	, 83,3	1440
Notes:					.,			
Sample De	calline	ectes	Sapid	<u>us</u>	Total # of I	ndividuals:		
Specimen	12/11/11°	1+Width		- m	Date/Time	T. 6		
Composite Code	Length (mm)	(m in)	Weight (grams)	Date/Time Trap Set	Trap Pulled	Type of Bait	Sex	Additional Comments
Ċ	7	17	262	rzfielieliled	14/10/1440	catfish	\sim	
\setminus	7	18,5	127	12/10/19/1100	12/14/10/1440) catfish	F	
Ŋ	7	18	189	12/10/10/1100	12/14/10/1440	catfish	<u> </u>	
0	Ţ	١٦	194	12/10/10/1100	14/14/11/14	o catfish	Ē	
<u>C</u>	8,	20		12/10/10/1100	12/14/10/1440	catfish	<u> </u>	
C.	8	18,5	289	12/10/10/1100	14/14/10/1440	catfish	F	
Č	X	19,5	373	12/10/10/1100	12/14/10/1440	catfish	\mathcal{M}	
Ċ	6	15,5	134	12/10/16/1100	12/14/10/1440	Catfish	F	
C	7,5	18,5	273	12/10/10/1100	12/14/10/1440	calfish	<u> </u>	
C	٦	17.5	227	12/10/10/1100	12/14/10/1440	catfish	Μ	
\overline{C}		18	172	1410/10/1100	12/14/10/144	catfish	<u> </u>	
N-4								
Notes:			-					

_			: <u>7 K</u>	<u>- </u>			Sample 13	ype(C / F)
	tial Code:		- . ,				$C = \operatorname{crab} F$	F = forage fish	
Sampling	Date:	01-04	<u>4-11</u>						
	Method(s):								
Collector 1	Name (print	and sign):	John 1	Rodgera	; P. R	itchie	, H.C	onnelly	<u> </u>
Affiliation	: Clen	nson	Univ	V		(864)	<u> 650 - 1</u>	0210 8	
Address:	Dept	rof 7	estry	an d	Nat	ural	Reso	rurces	<u>) </u>
							·		
Site Locat	cion C	930			Parish:	vermil	ion		_
Latitude:					Longitude:				
Site Name	:			_					
Site Descri	iption:								
Water Bod	y Description	on:							
Estimated	Maximum V	Water Depth	1:	(meters) /	(feet)				
	RDO mg/L	Temp C	pН	Cond µS/cm	ORP	Turb NTU	Depth feet	Time	
								 	
							<u> </u>	 	
		·							
				1			·	 	
				<u> </u>			<u>.</u>		
Notes:	iat,	long	, 5, te	name	' ⊃7 5€	2 Pre	ViaU S		
fie		(200	•	OFMS					
	_1 9	,	·-·`						
Sample De	scription								
_	bulkuon			•					
	- 								
Species:	SHA	D			Total # of I	ndividuals:			. ,
	- 	D				ndividuals:			, ,
Specimen	- 	Width	Weight	Date/Time	Date/Time		Cov	Additional C	, ,
Specimen Composite	SHA Length	Width	_	Date/Time Trap Set	Date/Time Trap	ndividuals: Type of Bait	Sex	Additional C	omments
Specimen	SHA		Weight (grams)	1	Date/Time Trap Pulled	Type of Bait	Sex	Additional Co	omments
Specimen Composite	SHA Length	Width	_	1	Date/Time Trap	Type of Bait	Sex	Additional C	omments
Specimen Composite	SHA Length	Width		1	Date/Time Trap Pulled	Type of Bait	Sex	Additional C	omments
Specimen Composite	SHA Length	Width		1	Date/Time Trap Pulled	Type of Bait	Sex	Additional C	omments
Specimen Composite	SHA Length	Width		1	Date/Time Trap Pulled	Type of Bait	Sex	Additional C	omments
Specimen Composite	SHA Length	Width		1	Date/Time Trap Pulled	Type of Bait	Sex	Additional C	omments
Specimen Composite	SHA Length	Width	(grams)	1	Date/Time Trap Pulled	Type of Bait	Sex	Additional C	omments
Specimen Composite	SHA Length	Width	(grams)	1	Date/Time Trap Pulled	Type of Bait	Sex	Additional C	omments
Specimen Composite	SHA Length	Width	(grams)	1	Date/Time Trap Pulled	Type of Bait	Sex	Additional C	omments
Specimen Composite	SHA Length	Width	(grams)	1	Date/Time Trap Pulled	Type of Bait	Sex	Additional C	omments
Specimen Composite	SHA Length	Width	(grams)	1	Date/Time Trap Pulled	Type of Bait	Sex	Additional C	omments
Specimen Composite	SHA Length	Width	(grams)	1	Date/Time Trap Pulled	Type of Bait	Sex	Additional C	omments
Specimen Composite	SHA Length	Width	(grams)	1	Date/Time Trap Pulled	Type of Bait	Sex	Additional C	omments

Sampling	Site Identifi itial Code: Date:	ication Code	»:T_R.	. <u>06</u>				/pe (C) /		
Project In	itial Code:	<u> </u>	<u> </u>				C = crab F	= forage fis	sn	
Sampling	Date:	1 4-12	<u>r-10</u>	1.						
Collection	Method(s): Name (print	: 	<u>crub</u>	trap	- 7.7	·	<i>I</i> :	11		_
					. Ritch	10 , H. (864)	Conne	14x	<u></u>	_
Affiliation	: Clours	ou Un	iverenty			(<u>864</u>)	<u>650 - 0</u>	2 <u>5~19</u>		
Address:	: <u>Clouis</u> Dept	of Fore	stry me	1 Natua	1 Kesow	eas .		<u> </u>		_
Site Locat	tion		· · · · · · · · · · · · · · · · · · ·		Parish:	Jeanilli	2	. 100		
Latitude:	55	7004		_	Longitude	328	87 <i>83</i>		_	
Site Name									•	
Site Descr	•								-	
I .	ly Descripti				- (0)	-			-	
Estimated	Maximum \	Water Deptl	n:	(meters) /	(feet))				
	RDO mg/L	Temp C	pН	Cond µS/cm	ORP	Turb NTU	Depth feet	Time		
	11.21	8.6	7,40	2267	0,24	110	0.91	1347]	
]	
Notes:		1				•			•	
										
Sample De	escrintion							1	211112	
Sample B	i.	1					5 tota	1 HC	[2] [4] I	
Species:	Callin	recte	5 sap	id US	Total # of	Individuals:	2+3	<u>+</u> / =	F1 12	2/14/10
	- aliali	0 2114/19	,	,	,			· · ·		,, , ,
Specimen	Length	Width	Weight	Date/Time	Date/Time	Type of				
Composite Code	(mm)	(mm)	1	Trap Set	Trap Pulled	Bait	Sex	Additional	Comments	
Code			(grams)	int data		1-1 101	A /\	_		1
	7,5	16,5	269		12/14/10/13		<u>M</u>	ļ		1
<u> </u>	<u> </u>	16	332	 	12/14/10/134	, , , , , , , , , , , , , , , , , , , 	M			
	7,5			12/10/10/100						-
	6.5	15	179	12/10/10/1000	(Z/14/10/13	347 cathish	\mathcal{M}_{-}		#(=	1.1.
-6-							<u> </u>		HC 12	14/10
	7	16,5	253	12/10/10/1000	12/14/0 /13	17 catfish	\mathcal{M}			-
		-	<u> </u>			 			. •	
	_					<u> </u>				
					<u> </u>					1
								ļ		1
						ļ		 		1
.			<u> </u>	<u> </u>	1	<u> </u>	1.	<u> </u>		-
Notes:		semalo			www	bac	<u> </u>			
	5 c	rabs	Ship	ped_]

Sampling S	Site Identific	cation Code	TR -	06			Sample Ty	pe (C / ,	(k)
	tial Code: 🟢						$C = \operatorname{crab} F$	= forage fisl	
Sampling I	Onte:	01-04	<u> </u>						
Collogian	Methodica								
Collector N	vame (print	and sign):	J. R	odger	5, 4,0	onnel	ly, P	, Ritch 0210 vnces)	ie
Affiliation	: <u>Cle</u>	MSON	Uni	<u> </u>	, <u> </u>	(864)	650-	0210	
Address:	Dep	+ 701	restru	and	Nati	wal	Resou	rces)	
	(J) 					
Site Locat	ion 09	45			Parish:	<u>Vermi</u>	li'on		*******
Latitude:				_	Longitude:				
Site Name:								·-··	
Site Descri	-								
1	y Descriptio								
Estimated	Maximum V	Vater Depth): ((meters) /	(feet)				
	RDO	Temp	pН	Cond	ORP	Turb	Depth	Time	
	mg L	С		μS/cm	NoV	NTU	feet		
Ì									
t .		1							
E						· <u>-</u>			
Notes:	lat.	long	. S17	e nam	e 0+0	- Se	.e		
Notes:	lat,	long	, 51t	e nam	e etc	se cms	<u>e</u>		
Notes:	lat, previo	long us f	, 51t	e nam	e etc	se rms	e		
Notes: Sample De		long ivs f	, 51t	e nam	e eta	se rms	<u>e</u>		
		long	, 51H	e nam	e eta	se rms	<u>e</u>		
Sample De	escription				e e fo				
Sample De									
Sample De	escription SH	AD				ndividuals:			
Sample De Species: Specimen Composite	escription SH	A D Width	Weight	Date/Time	Total # of h Date/Time Trap	ndividuals:		Additional	Comments
Sample De Species: Specimen	escription SH	AD			Total # of h Date/Time Trap Pulled	ndividuals: Type of Bait		Additional	Comments
Sample De Species: Specimen Composite	escription SH	A D Width	Weight	Date/Time	Total # of h Date/Time Trap	ndividuals: Type of Bait		Additional	Comments
Sample De Species: Specimen Composite	escription SH	A D Width	Weight	Date/Time	Total # of h Date/Time Trap Pulled	ndividuals: Type of Bait		Additional	Comments
Sample De Species: Specimen Composite	escription SH	A D Width	Weight	Date/Time	Total # of h Date/Time Trap Pulled	ndividuals: Type of Bait		Additional	Comments
Sample De Species: Specimen Composite	escription SH	A D Width	Weight	Date/Time	Total # of h Date/Time Trap Pulled	ndividuals: Type of Bait		Additional	Comments
Sample De Species: Specimen Composite	escription SH	A D Width	Weight	Date/Time	Total # of h Date/Time Trap Pulled	ndividuals: Type of Bait		Additional	Comments
Sample De Species: Specimen Composite	escription SH	A D Width	Weight	Date/Time	Total # of h Date/Time Trap Pulled	ndividuals: Type of Bait		Additional	Comments
Sample De Species: Specimen Composite	escription SH	A D Width	Weight	Date/Time	Total # of h Date/Time Trap Pulled	ndividuals: Type of Bait		Additional	Comments
Sample De Species: Specimen Composite	escription SH	A D Width	Weight	Date/Time	Total # of h Date/Time Trap Pulled	ndividuals: Type of Bait		Additional	Comments
Sample De Species: Specimen Composite	escription SH	A D Width	Weight	Date/Time	Total # of h Date/Time Trap Pulled	ndividuals: Type of Bait		Additional	Comments
Sample De Species: Specimen Composite	escription SH	A D Width	Weight	Date/Time	Total # of h Date/Time Trap Pulled	ndividuals: Type of Bait		Additional	Comments
Sample De Species: Specimen Composite	escription SH	A D Width	Weight	Date/Time	Total # of h Date/Time Trap Pulled	ndividuals: Type of Bait		Additional	Comments
Sample De Species: Specimen Composite Code	escription SH	A D Width	Weight	Date/Time	Total # of h Date/Time Trap Pulled	ndividuals: Type of Bait		Additional	Comments
Sample De Species: Specimen Composite	escription SH	A D Width	Weight	Date/Time	Total # of h Date/Time Trap Pulled	ndividuals: Type of Bait		Additional	Comments

Sampling	Site Identific	cation Code	$: \perp \underline{R}$	0/				/pe ((C / F)	
	tial Code:		 : i				$C = \operatorname{crab} F$	= forage fish	
Sampling l		12.14		1 /	_				
	Method(s):		<u>Cr</u>	ab tr	ap	S			
Collector i	Name (print	and sign):	J, RE	dgers.	P.R	, there	, 14.0	on ne lu	
Affiliation	: Cleur	son Univ.	, Dept. F.	westry an	d Natural	Kesonces)	864-6	on ne llu	J
Address:		~		<i>V</i>					
						į.			
Site Locat	ion				Parish:	Verm	illion		
İ									ļ
Latitude:	55-	1004			Longitude:	32,4	8783		ļ
Site Name	:	White	Lake	_					ŀ
Site Descri	iption:	Cake	e_						i
i .	ly Descriptio	White Cake	lake				_		
1	Maximum V	Vater Depth	: ((meters) /	7 (feet)				
		1		· / _	` ′				
	RDO	Temp	Нq	Cond	ORP	Turb	Depth	Time	
	mg/L	C	P-1-	μS/cm	λίΛ	NTU	feet		
	11,42	8,56	7.44	2249	0,21	177.5	1,17	1350	
	11,40	75,06	1,4-4	1007	0,21_	111.0	.,,,	1000	
						<u> </u>		<u> </u>	
	<u> </u>							 	
					<u> </u>				
N T. 4	L			<u> </u>				<u> </u>	
Notes:					 				
									
						<u> </u>			
Sample De	escription							110 12	114/10
	المامان	.100 0	. ۱ (۸ .		m . 1 // C1		10	III HC12	•
Species:	calline	ctes s	<u>apidus</u>	<u>, </u>	I otal # of I	Individuals:			
	Length	2/14/17	>	<u> </u>	<i>-</i>			-	
Specimen	Length	η Width	Weight	Date/Time	Date/Time	Type of	C	Additional Comm	anta
Composite	(mm)	(mm)	()	Trap Set	Trap Pulled	Bait	Sex	Additional Comm	ents
Code		17	(grams)			out Cola	A /		
	7,5		388	12/10/10/0900	12/14/10/135	5 CAT47511	<u> </u>		
<u></u>	7,5	18	258	12/16/16/0900			\mathcal{N}		
<u></u>	6,5	16,5	186	12/10/10/05/00			M		-
C	7,5	19,5	256	12/10/10/0900			Ê		
	7,5	17.5		1410/18/0900	1214/0/135	o cateur	\sim		
C	8	18	<u> 323</u>	12/10/10/090	12/14/10/13:	io catash	- M		
\ \	6,5	16	162	12/1d/dogoo	12/14/10/139	e catfish	MF	HC 12/14/10	
\overline{C}	7,5	18	254	12/10/10/0900			M		
U	8,5	૨૦	398	12/10/0900			7 /		
Ō	5,5	14.5	128	1410/10/0900			. F.		
Ē	6	14	140	12/10/10/0900			-M	· · · · · · · · · · · · · · · · · · ·	
	- U				-7.1.5/1.05		•		\neg
Notes:	L	[•	

Sumbanis :	site Identific	cation Code	: 12.	· <u>0</u> 1			Sample Ty	pe (C / (E	'_ /)
Project Init	tial Code: 🟢	EW L					$C = \operatorname{crab} F$	= forage fish	
Sampling I	Date:	O1-01	411						
	Method(s):								
Collector N	same (print	and sign):	J. Roo	daers.	H. Con	nelly	, P. A	2,tch	رع
Affiliation				intersi		(864)			
Address:	Del		orestr		Natu	val		vice	
									·
Site Locat	ion 109	-			Parish:	Vern	nilior)	
Latitude:					Longitude:				
Site Name:			·.	_	Bongitude.		<u> </u>	··· ··	
Site Descri									
9	y Descriptic								
Letimated	y izesempen Maximum A	ou. Matar Dand		(meters) /	(foot)				
Stimated	Maximum V	water Depth	·	(meters) /	(1661)				
İ	RDO	Temp	pН	Cond	ORP	Turb	Depth	Time	
	mg L	C	_	μS/cm	h(V	NTU	fect		
	******							<u> </u>	
								†	
				_				1	
Į.	1	<u> </u>	 \ 	<u> </u>	1 3	1		1	
Notes:	101	ON Co.	< 1 Le	name	exe	,	7		
Notes:	(at, 1	ong	51/l	rame	tect	-d &	7 ~~~~		
Notes:	lat, 1 see	previ	site ous	name Field	recov	-d fi	7 ~~~~	ر	
Notes: Sample De		previ	51H 005	name Field	, etcov	-d fz	7 5~W}-)	
Sample De	escription			- " • • • • • • • • • • • • • • • • • •	, etc	-d fz	7 ~ W}	j	
Sample De	escription			- " • • • • • • • • • • • • • • • • • •	recov		7 54 W/	j	
Sample De	escription	presi AD		- " • • • • • • • • • • • • • • • • • •			7 ~~~~)	
Sample De	scription SH	A D			Total # of I	ndividuals:	7 		
Sample De Species: Specimen Composite	SH Length	A D Width	Weight	Date/Time	Total # of I Date/Time Trap	ndividuals:	Sex	Additional C	Comments
Sample De Species:	scription SH	A D			Total # of I Date/Time Trap Pulled	ndividuals:		Additional C	Comments
Sample De Species: Specimen Composite	SH Length	A D Width	Weight	Date/Time	Total # of I Date/Time Trap	ndividuals:		Additional C	Comments
Sample De Species: Specimen Composite	SH Length	A D Width	Weight	Date/Time	Total # of I Date/Time Trap Pulled	ndividuals:			Comments
Sample De Species: Specimen Composite	SH Length	A D Width	Weight	Date/Time	Total # of I Date/Time Trap Pulled	ndividuals:		Additional C	Comments
Sample De Species: Specimen Composite	SH Length	A D Width	Weight	Date/Time	Total # of I Date/Time Trap Pulled	ndividuals:			Comments
Sample De Species: Specimen Composite	SH Length	A D Width	Weight	Date/Time	Total # of I Date/Time Trap Pulled	ndividuals:			Comments
Sample De Species: Specimen Composite	SH Length	A D Width	Weight	Date/Time	Total # of I Date/Time Trap Pulled	ndividuals:			Comments
Sample De Species: Specimen Composite	SH Length	A D Width	Weight	Date/Time	Total # of I Date/Time Trap Pulled	ndividuals:			Comments
Sample De Species: Specimen Composite	SH Length	A D Width	Weight	Date/Time	Total # of I Date/Time Trap Pulled	ndividuals:			Comments
Sample De Species: Specimen Composite	SH Length	A D Width	Weight	Date/Time	Total # of I Date/Time Trap Pulled	ndividuals:			Comments
Sample De Species: Specimen Composite	SH Length	A D Width	Weight	Date/Time	Total # of I Date/Time Trap Pulled	ndividuals:			Comments
Sample De Species: Specimen Composite	SH Length	A D Width	Weight	Date/Time	Total # of I Date/Time Trap Pulled	ndividuals:			Comments
Sample De Species: Specimen Composite	SH Length	A D Width	Weight	Date/Time	Total # of I Date/Time Trap Pulled	ndividuals:			Comments
Sample De Species: Specimen Composite	SH Length	A D Width	Weight	Date/Time	Total # of I Date/Time Trap Pulled	ndividuals:			Comments

	tial Code:	cation Code EWL 17-14	<u>-</u>	08			-	/pe (C) / = forage fish	
	Method(s):			i.c.					
		and sign): 、	10.40	trap	Ritehi	. 14 (onne	11, 1	•
Affiliation	vaine (print	and sign).	J 16009	, 1	MACHU	(264)	650-	0200	
Address:	Dens	L Gove	ohan a	nd Na	General De	Kaller.	<u> </u>	<u></u>	
ridaross.	- vop (61 2016	2,109	1004	<u> </u>	200. 45			
Site Locat	ion			 .	Parish:	Vermi	llion)	
Latitude:	55	7563 White			Longitude:	32	897	4	
Site Name:		White	Lake	_			· ·		
Site Descri	ption:	lak	e						
Water Bod	y Descriptio	n:	lake	2					
Estimated 1	Maximum V	Vater Depth		(meters) /	g (feet)				
	RDO mg/L	Temp C	pН	Cond µS/cm	ORP NV	Turb NTU	Depth feet	Time	
	11.42	8,75	7.44	2243	0,24	165	i,6	14_25	
								, '	
Notes:									
Sample De Species:	_	ectes :	sapidu		Total # of I	ndividuals:	<u> </u>	10 HC	12/14/10
•	21.4 12	المالم، د	110						
Specimen Composite			Weight	Date/Time Trap Set	Date/Time Trap	Type of Bait	Sex	Additional	Comments
Code	(mm)	(mm)	(grams)		Pulled			<u></u>	
\mathcal{C}_{-}	7	16,5	187		12/14/10/1475		r F		
C	6,5	16	187		12/14/10/1425		<u>M</u>		,
U	7.5	18	みみく	12/10/10/0820	12/14/10/1425	catfish	F		
U	615	17,5	147	12/10/10/0500	12/14/10/1425	catfish	F		
C	7	16,5	207	12/10/10/0800	12/14/10/142	s catfish	F		
2	8.5	19.5	292		12/14/10/142		F		
C	7,5	17,5	217		14/10/1424		M		
~	8	18,5	302		12/14/10/142		M		
\overline{c}	6	14.5	152		72/14/10/142		M		
Č	7,5	18	263	12/10/10/180			<u> </u>		
-		' '	<u> </u>	-1.411	- 1-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	J (24) 1 17	AA H	42/14/10	,
				,					
Notes:									

Sampling S	Site Identific	ation Code	: IR -	08			Sample Ty	pe (C (F)
Project Ini	tíal Code: 👢	EWL					$C = \operatorname{crab} F$	= forage Nation
Sampling I	Date:	01-04	4					
Collection	Method(s):							
Collector N	Same (print	and sign):	J, R	odgers	5, H, G	conne	Un P	Ritche
Affiliation	Cle	°m≤on	DV.	1V J		(864)	<u>650-</u>	, Ritchie 0210
Address:	Dept	Fore	stry	and	Natur	al Re	sour	
			J					
Site Locat	ion l	05			Parish: _\	Jermi	lion	
Latitude:				_	Longitude:			
Site Name:								· · · · · · · · · · · · · · · · · · ·
Site Descri	•							
	y Descriptic			· · · · · · · · · · · · · · · · · · ·	10 11			
Estimated	Maximum V	vater Depth	i:((meters) /	(1ee1)			
	RDO mg L	Temp C	рН	Cond µS/cm	ORP \qv	Turb NTU	Depth feet	Time
				· · · · · · · · · · · · · · · · · · ·				
Notes: Sample De	presion) S F	ie I d	reco	rd fo	rms		
Species:	SL	AD			Total # of I	ndividuals:		
Specimen	1.ength	Width	Weight	Date/Time	Date/Time	Type of		
Composite Code	(mm)	(mm)	(grams)	Trap Set	Trap Pulled	Bait	Sex	Additional Comments
					61/04/11/100			
						-		
Notes:								

Project Init Sampling I Collection	tial Code: Date: Method(s): Name (print	and sign):	-10 Crab J. Rody	trap	Ritch	Ryource	. Cò nn-	= forage fish
Site Locat	ion			· · ·	Parish: _\	1ermi	llion	
1	ption: y Description	7 6 6 9 Whike Lake on: Water Depth	lake	(meters) /		328	895	7
	RDO	Temp	pН	Cond	ORP	Turb	Depth	Time
	mg/L	C	P	μS/cm	ληV	NTU	feet	
	11, 35	8.47	7.44	2198	0,18	179	0.5	1400
	11, 22	0, 1 (1,41	0, 70	7.0			1,00
	ļ <u></u> .							
			<u> </u>	<u> </u>				
								
Notes:								
Sample De	scription							HC-1110
Species:	calline	ectes s	apidus		Total # of l	Individuals:	<u> </u>	11 12/14/10
Specimen	146	_			Date/Time			
Specimen Composite	Length	Width	Weight	Date/Time	Trap	Type of	Sex	Additional Comments
Code	(mm)	(mmi)	(grams)	Trap Set	Pulled	Bait	JUA	
	7,5	18	231	12/10/0/07		1400 catfiel		
	8	19		12/10/10 076		I	Ń١	
Č		16	199	12/10/10 070	,		_	
	7	, -7	174	, ,)ciZ/14/10/14		_	one claw
	~ (1 - 1	279			1		Ord Cride
0	8	19			>0 2/14/10/1	,		
$\frac{c}{c}$				1 1.	012/14/10/14			
	7,5	17.5	221	12/10/10/07				
<u> </u>	'	18,5	347	12/10/10/070				
C	6,5	15	143	12/10/10/0700				
<u>C</u>		15.5	173	12/10/10/070			›	
C	8	19.5	339	12/10/10/070	0 12/14/16/1	tee taters	, M	
Notes:								

	site Idemilie			09				pe (C / F)	
	ial Code: 🖠						$C = \operatorname{crab} F$	= forage fish	
	Date:	01-04	<u>- </u>						
Collection	Method(s):			1 : .	17		<u> </u>	0:11	
Collector N	same (print	and sign): ,	V, KD	a gers	5 , [+] , (<u>Camel</u>	leg, Pr	Ritchel	
- ATHRIBHOD: - Address or	<u>Creh</u>	$\frac{1}{2}$	JNIU -	1 -1)	A 0	()		Ritchee	
Additess.	DEAT	tore	Stry o	and Na	atural	Juse	rusci		
Site Locat	ion f	028			Parish: \(\sum_{\lambda}\)	lermi	lion		
Latitude:			· · · · · · · · · · · · · · · · · · ·	-	Longitude:				j
Site Name:									
Site Descri	-					 		· · · · · · · · · · · · · · · · · · ·	
1	y Descriptic								
[F-stimated]	Maximum V	Vater Depth	:(meters) /	(feet)				
	RDO mg L	Temp C	pН	Cond µS/cm	ORP \nV	Turb NTU	Depth feet	Time	
	****			діз/еш		1010	1001		
				· · · · · · · · · · · · · · · · · · ·					
									İ
Notest	lat, 1	ona,	siten	ane, e	+c	> se	و	·• · · · · · · · · · · · · · · · · · ·	l
e.	revióu	5 Stic	•	, -					
Sample De	scription								
Speciest	SHI	AD	·		Total # of I	ndividuals:			
Specimen	Length	Width	Weight	Date/Time	Date/Time	Tupo of			\neg
Composite Code	(mm)	(mm)	(grams)	Trap Set	Trap Pulled	Type of Bait	Sex	Additional Comme	nts
2 00.0	(11.1.7)	(,	_ (g:/ __		01/04/11/1028				
					1	<u>'</u>			
	***************************************								\neg
								<u> </u>	
								<u> </u>	
Nime :								<u> </u>	
Notes:				····				wa.	

Chain of Custody and Chain of Custody Corrections Appendix E

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

	Client:	E	W	- Pr	ojec	£	~	D. Lin	role.			(H	ΑI	N	o f	С	US	T 6	01	DΥ	1			Page of
Columbia Analytical Services	. Davis st							د	J		oject:		υL	Ī	1,54	sue	Si	ud	<u> </u>						Method of Shipment
1	Project Manager	<u>Z</u>	shr.	R	oda.	er 5				Tel	lephon	e No.					Fa	ax No!	!						FedEx
800.695.7222 www.caslab.com					7																				Special Detection Limit/Reporting
			-	Mat	rix	Pi	rsv.	1		T	77		<u> </u>		Ŗ										
					700	3		1		15	The Market State of the Mark		10+01 Darium - JUJODO T. J. M. J. M. J. M. J. M. J. M. J. M. J. M. J. M. J. J. M. J. J. M. J. J. M. J. J. J. M. J. J. J. M. J. J. J. M. J. J. J. M. J. J. J. M. J. J. J. M. J. J. J. J. M. J. J. M. J. J. J. J. M. J. J. J. J. J. J. J. J. J. J. J. J. J.	3	Methy/mercury-EPA1630	્ર							ays)		
					Aculo	3					\$ E		<u> </u>		(1)	18							ing d		
			_	<u> </u>		1				12 (4) (4) - 15 11 (12)	5	1			- - -	exce 10°05/1006							Turn Around Time (working days)		
	9	ners	Soil	Water	¥ å	Ϋ́es	ટ		o _D	۾		}	<u> </u>		かい	8							Time		
<u>G</u>	ab Sample No.	of Containers						Sampling Date	Sampling Time			j Š	4 3	Ĭ	-\$	(2)							pund		
Sample I.D.	Sam	ofC						j ig) Jujidit		3			- -	承								ī Ā		
	Lab	Š								15	<u>ا ا</u>	1	9 13	<u> </u>	٤	É							Ţ		
EWLTR-03A C EWL TR-04 C		1	-	ļ <u>.</u>	Ŕ		┼	12-14-10	RM.		+		+1	_		4		_							
EWC TR-05 C		 	╁		×	_	╁	 		+}-	╁┼	+ +	\dashv		+	╁┼		+	+	 		-			
EWL TR-06 C					×	_	†			-11	$\dagger \dagger$		-++	-			_			├─			-		
EWL TR-07 C					×																				1 1 1
FWL TR-08 C EWL TR-09 C			-		×		╁	<u> </u>		1	11.	 ,		_		1.			ļ.						May crabs in
EWL TR-09 C			+	+-+	×	╁	+-	V	<u> </u>	V	\\	 V	-	+-'	V	*		+	_	 			_		weeks of
ENT JUR 12/14/10 ENT JUR 12/14/10										╁╴	+-		-	 			_		+		-				× regained for
EWL-Bait			<u> </u>		X			4	V	₹	1	T	V		\downarrow	V									« Composite can
		_		-		-	\vdash	<u> </u>	ļ	+		-	+	-			-	+	-	ļ			_		= be analyzed
		_	 			+	\vdash	<u> </u>	<u></u>	+	+	┼─	_					-	-	 	_				as whole comb
									 	\top	 	-		1				+	1	╁┈					Samples. Same
Sample Received Intact: Yes	No			··				Temperatu	e received:	 :		·	lce				N	o ice		·!	<u> </u>				Any crabs in UKCESS of MCCESS of MCCOMPOSITE CAM Extra analyzed as whole crab Samples. Samp ready for analyse
Reling. by sampler (Sign & Print Name) Tohn Progres H	n H Roge	, J.	,	Date 12	-14-,	Tim	ie	6:45pm	Received	by (S	ign & l	Print Na	me)	••	-										Lab Work No.
Relinquished by				Date		Tim	\ <u>\</u>	y , re jen	Received	by														_	
Relinquished by																									
				Date		Tim			Received																
Relinquished by				Date		Tim	ıe		Received	by lat	borato	γ					Di	ate			Tim	2	-		

	Client:	EWL	'- Pr	σje	ct		D.	Line	ale			C	: Н	ΑΠ	N d	o f	Сι	JS:	T O	D'	Y		Page _	of
Columbia Analytical Services				_					J	Ргој	ect: E	Ę₩ l No.		Tis	55 L	je	S	tu	dυ	۰			Method of Shipm	nent "
Analytical Services*	Project Manager	Jo	hv	<u>ر</u>	Ro	od.	a e	<u>-</u>		Tele	phone	No.					Fax	No.) -			Trea C	~
800.695,7222 www.caslab.com) 					•									-		Special Detection	
	-		ightharpoons	N	atrix		Prsv.	<u> </u>		िश	¥			T	- 1	9			T	T	ГТ		Limit/Reporting	
Sample I.D.	Lab Sample No.	No. of Containers	Soil	Water		ار	Yes No	Sampling Date	Sampling Time	Total Arsenic Sw 60	Inorganic Arsenic	Total Barium	Total Mercury	Methyl mercury	1111	TPH Texas 1005/1006			9			Turn Around Time (working days)		
EWL TR-01 F						X		12-15-10	1126			i	i	١		1				+				
EWL TR-01 C		_	┷	_		X	-	12-15-11	1126	11	4			\perp	1	11								
EWL T-OIA C EWL bait *			+			X X	+	12-15-10		1	→	1	1	+	/ ,	\bigvee			_	+	\vdash	-	_	
DOCE TO COLL TO THE	-				<u> </u>			21110		•	·V	<u> </u>	 	1		**		╁	+	+		+		
																							- Remind	er;
	<u> </u>	_		-		+	+			<u> </u>				-		+	-		<u> </u>	+		1	- fish, a	re
	-					+	+						-	+		+	+			+-		+	- analy	240 00
		_																-					Comp	ositic
		-		<u> </u>		1	<u> </u>				_			_									- Δ1 ×	0
			-	╁			-						1	+		-				+		+-	1	imples
		-		<u> </u>		+	+	-			_			 	\neg	\dashv				+		+	T ready	ter
Sample Received Intact: Yes N	0		,	•	<u>ا ا ا ا</u>		<u>'</u>	Temperatur	e received:	L.,,,			Ice	1			No	ice					fish a sanaly whole comp All so ready	515
Reling, by sampler (Sign & Print Name) John Rodgers Han	H.Rdy	بكريسا	?.	Date 12	: 15g	UNIF	me	1	Received b	y (Sig	n & P	int Nan	ne)				•						Lab Work No.	
Relinquished by			-	Date	•	Т	ime		Received b	у													1	<u> </u>
Relinquished by				Date	-	Т	ime		Received b	у													-	
Relinquished by				Date	•	Т	ime		Received b	y labo	ratory				_		Date	;		Time	e			

* listed EWL bait on Chain of Custody Sheet from 12/14/10. Actually shipped bait with this group on 12/15/10 on dry ice. Bait is catfish parts.

	Client.	ĘW	L	Pr	0 j 0	ر	- -	- D.	_ingle	2			Э.Н.	AIN	0	f (ะบ	ST	01	ΟY			Page of
Columbia Analytical Services 800.695,7222 www.caslab.com	Project Manager			N							lephon	WL	Ti _S	60e	51	WO	Pay N	,					Method of Shipment Fed Ex
www.casiab.com			Т	M	atrix		Prsv.	1		-,-		γ··			···								Special Detection Limit/Reporting
EWL T-63 C	Lab Sample No.	No. of Containers	Soil	Water		Uther (Lta.)5	ON	Sampling Date	Sampling Time	Total Argonic Simoso	Indraganic Argenic 16324	Total Baring Spice	Total Mercury S.P.A.	Methyl Mercory	1038			€Q.				Tum Around Time (working days)	
EWL T-04 C							+-	12-16-11	D1143 -1238	\$		- -	+-	┼-	++-		-	-		-	_	\	-
EWL T-06 C EWL T-09 C		1			<u> </u>					1	V		V	V	V								
		-				+	 			 		····	-	-	-								
			_												 			+		-		<u> </u>	-
		 		-	_	- -	 		<u> </u>	-									,				σ
						-	 								-	-+		+	-	-	-	<u> </u>	<u>χ</u>
				_		\bot										1	\neg	\square		_	+		≪
	· · · · · · · · · · · · · · · · · · ·				-	+	-			-													Σ
		-				┪								<u> </u>	-	-		-	_				
Sample Received Intact: Yes No								Temperatu	re received:	1			lce	l			lo ice					<u> </u>	-
Relinguished K	ا ۔		- 1	Date / 2	- //-	Tin		 ′53ెల	Received b	y (Sig	n & Pr	int Nami				1	NO ICE				•		l al Maria Na
Relinquished by	<i>O</i> —			Date		Tin			Received b	y			<u> </u>										Lab Work No.
Relinquished by	······································	 -		Date	·	Тип	ne		Received b	у													_
Relinquished by				Date		Tin	ie		Received b	y labo	ratory	<u> </u>				Ic	ate		T	ime		-	
															·								

	Client: E	WL	<u>.</u> Pi	(O)	ec	<u>.</u> +	- t	,Lina	ale								CU	S T	0 [Υ			Page of
Columbia Analytical Services		ш							_	Pro	iect: <i>⊑</i> u	<u></u> 上 丁 No.	145	ve.	51	lu d	<u></u>						Method of Shipment
Analytical Services	Project Manager	JE	shi	1	R	<u> </u>	ge	 rs		Tel	ephone	No.					(Fax N	0.					Fedex
800.695.7222 www.casiab.com			•			_							,										Special Detection Limit/Reporting
-				M	atrix	Ŧ	Prsv.			19	۸,۷	<u>ري</u>		- 57	7	ક્રી	П			Т	Т		- Limitary Copoliting
		İ								Š	7.13 √12	82	6.PA	ζ		900/ 						(S)	
										17		333	Ψ.	12 5	싫	ड्						ng da	
	İ			ı.						ACSONIC SIN 1620	Inorganic Arsenc lusas	Total Barium SW6020	7 A	Methyl Merain	089	-1exas 1005						Turn Around Time (working days)	
	o o	ers	Soil	Water	¥	Other	S S			8	₹		7	علا ۽		ਬੂ ਨ						ime (
Ω̈́	ab Sample No.	of Containers				A T		Sampling Date	Sampling Time	4	3	Æ	Ž	7,0	η Σ/	9			1			T pun	
Sample I.D.	Sam	ပို			(Z Z Z		guild	pling	Tota 1	ر ا	<u> 4</u>	1	ان بو ح		#	1					n Aro	
	Lab	No.			(J		Sam	Sam	10	H	10	15	`	1	=						Ī	
EWLT-01 C		Ī	_			X	$oxed{\bot}$	12-20-10	1107-123	6]			Į.		l								
EWLT-02 C EWLT-04 C	<u> </u>	1	 		_	X Č	+	 	 	+		_	₩-				+	+	+ +	<u> </u>			-
EWLT-05C		1	\dagger			2	+			+		+	+	-	\dashv			+	+	-			-
EWLT-06C		1								\perp													CRABS from
EWL T-08C. EWL T-10 C		1			/	<u>X </u>	 			\coprod		\perp	$\bot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Ц.	\parallel	<u> </u>				_			T-06 are
EWL T-12C		1		-	- /	<u>}</u>	+			╂┪		\dashv	++	+	\dashv	+	+	+	+				for whole
ENLTR-02C		l				Ž	+		1 (\dagger		+			\dashv	,		 -	+	-			T-06 are for whole body analysis
EWLTR-03C						X	$oldsymbol{\perp}$	\bigvee	V	V	Ψ	V	V	V		V						·	T-12 only
		-			-		+						-		\bot	_		_			$\perp \downarrow$		Contains Contains
		<u> </u>	-				+	_	 	-		,	-			+	+	+	+	 [-	+		dissect and
	_	ŀ					\top		<u> </u>										$\dagger \dagger$		1		then hold for
Sample Received Intact: Yes No	-	•	•					Temperatu	re received:				lce	•			No ice	e	1				T-12 only Contains) Scrabs please dissect and then hold for additional crabs we will ship for composite analysis
Reling. by sampler (Sign & Print Name) John Rodgers				Date			ime -	•	Received t	y (Si	gn & Pr	int Nam	e)										
				Ľ	-20																		Lab Work No.
Relinquished by				Date		Ti	ime		Received I	ру	_			·									1
Relinquished by	-			Date		Ti	ime	·	Received t	у					•					-			
Relinquished by			1	Date		Ti	me		Received b	y lab	oratory	-					Date			Time			

	Client:	EW	L	Pro)je	i+	- [2. Lin	gle	T			СН	Α	ΙN	0 1	f C	US	3 T	0 [) Y	·	· · · · · · · · · · · · · · · · · · ·	Page of
Columbia Analytical Services										Pro	ject E	EW) le No		Ti	S50	e	<u> </u>	Lu	ر بها					Method of Shipment
Analytical Services	Project Manager	Jo	sh r	 ጎ	R	290	GP.	· <		Tele	ephor	e No	<u>-</u>				F	ax No	-				 -	Feder
800.695,7222 www.caslab.com	i i i i i i i i i i i i i i i i i i i						<u> </u>			1	-											···		Special Detection
www.casiab.com			L	M	atrix	-	Prsv.			Τ_	La	-]		₹ <u>`</u>	—						$\overline{}$		Limit/Reporting
EWL T-02 C	Lab Sample No.	No. of Containers	Soil	Water	Air	X CRAB Other FISH	oN N	Sampling Date	Sampling Time		- Increase Arsonic 183A	CuS Su	שליים וליים אוריי יישורים	10tal Merana 1631	() ()	Texo			Ŕ				Turn Around Time (working days)	
EWL T-05C		1			<u> </u>	ζ.												\top		1				-
EWL T-OTC EWL T-IIC		1	 	_		<u> </u>				$\bot \!\!\! \bot$														
FWL TR-ORF		- 1				<u> </u>			-	+	+		-	-	+	++-		 						
EWL TR-03F		- 	 		2					╁╁╴			-	-		+-	_		1		+	-	 	-
EWL TR-04F					>								-		+	$\dagger \dagger$					_	+	1	-
EWL TR-04A F					<u> </u>	<u> </u>	_ _			A	V	4	1		V	1				,	1			σ
		 	-			-	-		-	-			- -					-			4	_	<u> </u>	
			+	\vdash		+				 			-	+				-		-	_		-	
			 			+				+				┪-			 	_	 -		+		-	_ ≤
			<u> </u>																					
Sample Received Intact Yes No								Temperatu	re received:				lce	9			N	o ice						
Reling, by sampler (Sign & Print Name)	·			Date 12/2	1/10	Tir	ne		Received b	y (Sig	gn & F	rint Na	me)											Lab Work No.
Relinquished by				Date	;	Tır	ne		Received t	у	•										-			-
Relinquished by				Date	1	Tir	ne	1/10	Received b	у														-
Relinquished by				Date	!	Tir	ne		Received b	y labo	orator	у			-		D	ate		•	Time			

	,																				}		
1	Client:	EW	L	Pa	عزو	ج	T-	2 Lingle	<u>'_</u>			C	H A	JN	o f	Cι	JS.	ΤО	D,	Ϋ́			Page 1 of 1
// Columbia										Pro	ject:												Method of Shipment
Columbia Analytical Services	Project			7		_	_	···		Tele	ephone	No.	<u> </u>	. Tis	SUE	Fax	No.						Fed Ex
800.695.7222	Manager	-70	<u>~/</u>	<u>, r</u>	\o	N/ge	<u>rs</u>	<u> </u>					_										Special Detection
www.caslab.com		_		Ma	trix	- 1	Prsv			_					, .,								Limit/Reporting
			H			_	1134	7		le	1	٥	اپ ا	Ŋ									,
										October 15 - Student	Inorganic Arsenic-EAKSA	Total Bonium - 3W6000	Total Mercury. EPA1631	Methylmercury - EPA1630	002/lang			İ				ays)	
										13	3	S. J.	F	ä	2/18							Turn Around Time (working days)	·
			l_			ايا				"	1 3	1	[, ,	8							Work	
	ó	ers	Soil	Water	Ąį	Other	S S			``	4	3	र्	` <u> </u>	Texas			İ				ime (
<u></u>	ā Z	Itain						Date	Time	}	ږ	Š	اقر ا	يج	اقرا							nd T	
] 의	amp	ြပ္ပို			İ	Salas		ling	. Bij		اق ا	, (, , , ,		<u> </u>	اندا							Arou	
Sample I.D.	ab Sample No.	No. of Containers				J		Sampling Date	Sampling Time	2	2	ام م	ˈs	نوسه	古							T I	
EWL- NO	<u> </u>	l		\vdash		굯	+	12-27-10		K		<u> </u>	×	_ <u>~</u>	X	-	-		+	<u> </u>	Н		
		 	1				<u></u>	W-21 10	1	1	1					\dashv	\vdash	╁	+				-
												_											
		<u> </u>	<u> </u>		_					<u> </u>													
	_	+	ļ		4			-		<u> </u>						_		_ _			Ш		
		+		┼┼	-			 	-	-	-		\vdash			ļ			<u> </u>	_			1
		+	╁┈		\dashv	\dashv	_	 		╁╾				_		-	\vdash	+	+	+	Н		ω
		 			\dashv			 		+						_		+	+		Н		_
										t	<u> </u>										Н		<u>د</u>
]<
										<u> </u>											Ц		≥
		+	-	$\mid \rightarrow \mid$	-	-				-									\downarrow	 -	\sqcup		
Comple Descripted Ltd.		į	<u>L</u>							<u> </u>													4
Sample Received Intact: Yes N Reling. by sampler (Sign & Print Name)				Date			Time	Temperatur		w (Ci	un P Dai	nt Nac-	lce			No	ice						
Partick Ritchie Samb	30				17		iiiie		Received b	ny (Si	gri & Pfi	nt Name	÷)										Lab Work No.
Relinquished by	Lamo			12-6	-1-		T																
				Date			Time		Received b	y													
Relinquished by				Date			Time		Received b	у													1
Relinquished by				Date		•	Time		Received b	y lab	oratory					Date	•		Tim	е			

.

	Client:	٤	ખા	_ ^,	?~;	ec.	٠ ٠	7-) Lingle	2_			С	H A	IN	o f	С	u s	T C	D	Υ			Page of
Columbia Analytical Services					_	<u>.</u>			7		Proj	ect:	Eu	حاك	Ti	SSWE	St	udv						Method of Shipment
Analytical Services	Project Manager	5	2/2		R.	<u>.</u>	**C				Tele	ерһопе	No.				Fa	x No.	_					Fed Ex
800.695.7222 www.caslab.com	Manager	~	<u></u>		1 14	_ 3		•		<u>-</u>	<u> </u>									_				Special Detection
www.casiab.com	- -	7	L	М	latrix	(Pr	SV.		<u> </u>	T						Τ.			\top	Τ	T1		Limit/Reporting
Sample I.D.	Lab Sample No.	No. of Containers	Soil	Water	Air	Craks Other		No	Sampling Date	Sampling Time	Total Arsenic-Stu6030	Inorganic Arsenic 1632 A	Total Barrum-SWEDE	Total Mercury - EPA1631	Methylmercusy - EPA 1630	174- Texas 1005/1006							Turn Around Time (working days)	·
EWL-BR		1				メ			12-27-10		メ		×	メ	γ	Ż								
	ļ <u> </u>		<u> </u>	-		-					<u> </u>				<u> </u>	-		1-1	_		-			
									_								+			-	+			
	_		-			_			_		-													
	 -		 	-		-				-	_					<u> </u>		-	_	-	+	\vdash		
		 	\vdash	╁┈						<u> </u>				-		\vdash		\vdash	\dashv	-		-		ω
											-							\Box		_				×
																							•	<u> </u>
	<u> </u>			<u> </u>							ļ							\perp		\perp	1			
<u> </u>				ļ .							╂							$\frac{1}{1}$		+	+	\vdash]≥
	J			1-	\vdash	 					+					$\vdash \vdash$		+	\dashv	+	+	$\mid \cdot \mid$		
Sample Received Intact: Yes N	lo			<u> </u>	1	<u> </u>			Temperatur	l e received:	1			ice		Ш	l No	ice						1
Reling. by sampler (Sign & Print Name)				Date	è		Time			Received t	y (Siç	ın & Pı	int Name				,,,,							
																								Lab Work No.
Relinquished by				Date	е		Time	3		Received t	у							<u> </u>						
Relinquished by	·			Date	Э		Time	€		Received to	у				<u>.</u>									
Relinquished by				Date	9	_	Time	9		Received b	y labo	oratory			_		Da	te		Tin	ne			

	Client: EV	4//	\mathcal{D}_{α}	100	<u>.</u>	7)	11	ala					Н	ΔΙΝ	Λf	CU	O T S	nv	,		Page of
mm et 1 :	Ollent. 27			ישונ				700		Proj	ect:						 	וט			Page of Method of Shipment
Columbia Analytical Services	Project				_					Tala				ssue							
	Project Manager	Tohn	K	odg	ers					i eie	ерһопе	e No.	86	4-65	D-021	a Fax No	•				Fed EX
800.695.7222 www.caslab.com		, ,		-										•							Special Detection Limit/Reporting
		1		Matri	ix	Pr	SV.			9	7		· (27	ا ا	100	т т	\top	17		1	Limbreporting
					74					Total Arsenic-SW6020	Inorquaic Arsonic-EPA 1624	102 (Rohim - SW 1020	Take Merrury - EPA 11.3	1 2	TPH-TEXES 1005/1006						
					1/3	3				2	8		9	ğ	\(\int\)					days	
		į			Craci					S	7	1	; [·		18 1				i	ĝ	
			_	, l	-	1				z, z	Ž.	3	: 🕏	, <u>ז</u>	37					Turn Around Time (working days)	
	o	ers	Soil	Water Air	Other	Yes	욷	_		3	₹	ž-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	뷝횗					<u>ä</u>	
	<u>9</u>	of Containers		_				Jate	l iii	7	18	8	1 2	*	19			1 1		ם	
<u> </u>	d mg	ខ						ing ([<u>E</u>	2	da	\ -	3	3	البراة					₽go	
Sample I.D	ab Sample No.	o. of						Sampling Date	Sampling Time	12	13	[[5 F							Ę	
	<u> </u>	Š.		-	+					1,-	,,,	,,_		-				$\bot \bot$		<u> </u>	
EWL. TO3 C	<u> </u>	1	\dashv		₩	-		1-3-11	AM.	╀	\vdash		+	\vdash	+H			\bot		<u> </u>	4
EWL TOT C EWL T-08 C		++			╫	-			 	╁╂	⊬		++	++	+H		-	+		-	·
EWL T-10 C		+H		+	╁╂			-\-	 	╁	₩		++	\vdash	+H			+		 	-
FWL T-12 C		+	\dashv	+	╁┼			+	+- -	+	H		+		╅╂┼		+			<u> </u>	977
FWI TR-02 C		\top		+	1†	\Box			 	+			++		+{+			 		-	I nese cross sumples
EWL -TR-03 C.					Ħ				 	$\dagger \dagger$			++		111		-	1 1		<u> </u>	are to complete the
EWL-TR-03 C EWL-THZ-C SHR1- EWL-TR04 C	3-11	*	~		+		\Rightarrow	$\sim \downarrow \sim$		*	*	~	-		1-4				1		These crob samples are to complete the composite samples \times and to provide. \(\times \times \tau \times \tim
EUL-TROAC		V			J				V	1	V	J		1	11				-		× and to provide
	· · · · · ·																				crabs for whole
	<u> </u>																				< crab analyses
	. <u> </u>		_							ļ											
		1	_		ļ	\bot												\perp			other analyes
																				<u>.</u>	(eg. TPH).
Sample Received Intact: Yes N	lo						[-	Temperatur	e received:				Ice			No ice] •
Reling. by sampler (Sign & Print Name)		0		Date		Time	•		Received I	by (Sig	ın & P	rint Nan	ie)							-	<u> </u>
John Rodgers M	m H. Ku	djeg	12	1-3	7/ [4	:05 PM													Lab Work No.
Relinquished by				Date		Time			Received I	ру								_			
Relinquished by				Date		Time			Received I	ру					_						1
Relinquished by				Date		Time	-		Received t	oy labo	oratory	/				Date		Time			

g	Client: E	WL	Pa	ےزو	et	<u>- :</u>	\mathcal{D} .	Li	igle.					() F	ΙA	I	N	0	f	CU	S T	0	D	Υ				Page <u>/</u> of <u>2</u>
Columbia Analytical Services	-	<u> </u>									Pro	ject	t:	W	2	TI	کی	ue	2-	tuc	4								Method of Shipment
Analytical Services	Project Manager	Toh	n h	200	leer	7					Tel	eph	опе (No.	20	1.0	650	0-0	22	0	Fax No),							Fed EX
800.695.7222	Manager •					<u>. </u>			<u> </u>		٠	7	<u>a</u>		0 1					_									Special Detection
www.caslab.com	-		т-	N	atrix		Pr	SV.	<u>.</u>	l	Τ_	┰	Inordanic Arsenc-EPA 1632A			_		•20	Τ.	$\overline{}$			_	_	_	_	_		Limit/Reporting
											Total Arseni-SW6020	;	× ×	T.41 Kinim 541020	3	Total Mercury-EDA 1631		Methy! Morumy-EAILS	- TONAS 1005/1006						ŀ				
											10/	ءَ اِذِ		3	9	Q.		3	1	;							days	ĺ	
			ŀ								५		- <u>V</u>	(A	١	10		2	18			İ					ķing		
			1_	"		75						و	13		2	m)	ξ	ر بر								(wor		
	ó	e is	Soil	Water	Air	Other	Yes	ž			3		7	ĵ	2	2		Ź	8								<u>ä</u>	İ	
	Z Z	Itain			1 1				Date	l iii	₹	₹ '	Ž.	4	3	K		-	٦	4							Turn Around Time (working days)		
<u> </u> 	amp	ပ်				FISH			ing	ing .	12	Ş	4	, 14	₹	中		E	1							İ	Aro		
Sample I.D.	ab Sample No.	No. of Containers				FI			Sampling Date	Sampling Time	100	} \	7	1	0	6		Z	TP II,	•							Ē		
EWL TR-05			1			Ī		H		. o	1	1			\dagger	1		ì	1	 		+			-	╁	-	┪	
-06												T				\top			\sqcap							ĺ			
-07	_					\rightarrow																							
-08	_	-		$oxed{igspace}$	_						$\bot \bot$,	_	Ц						_				
-09			-	╄		4		ļ			$+\!\!\!\!+$	\downarrow	}	_	_			-	Ц			 	_	_	-	_	_	_	
EWL T-01	1	-	-	-		+	_			<u> </u>	+}	+	\Box		_	\Box		 	H				_	_		4	_	_	
-02 -03			+	╁		+	-	 		<u> </u>	╁	╀	${}^{+}$	\dashv	+	\dashv		\vdash	\dashv	-	H	+	+	╬	-	╬	 	4	ග
- 04				\vdash		1		-		<u> </u>	+	+	H	+	-	+			╁	-		+	+	+	+	╁	╁		×
- os		-		\vdash	+	+		\vdash			+	H	\vdash	+	+	\dagger	\dashv		${}^{\rm H}$			-	┿	+		+		\dashv	œ
-06	_		1	1		1				<u> </u>	$\dagger t$	H	\Box	\top	_	7			$\dagger\dagger$	-		-h-	╁	_			1	7	∢
- 07		-								<u> </u>	$\dagger \dagger$	$\dagger \dagger$		\top		T			$\dagger \dagger$	1					+	\top			Σ
- 08						Ι.				Ī							Ì												
- 09						$\overline{\mathbb{V}}$						N		V	,	V	7	/	V										
Sample Received Intact: Yes N	lo								Temperatur							се					No ice	3							
Reling. by sampler (Sign & Print Name)		Λ .		Dat			Time	е		Received t	by (Si	ign 8	& Pri	nt Nai	me)						•							T	
John Rodges Jon H. Relinquished by	Rodgery	yr.		1-	(-l	J.																							Lab Work No.
Relinquished by				Dat	e		Time	e		Received t	ру										-							\exists	
Relinquished by				Dat	e		Time	e		Received t	by																	\dashv	
Relinquished by				Dat	e		Time	e		Received t	by lab	ora	atory								Date			Ti	me			┪	

.

	Client: E	<u>-</u> WI		Pro	016	ات2	- -	- D	D. Lina	ale			(СН	Α	ΙN	0 1	F C	: U	S 1	0	D'	Y	 	Page <u>Z</u> of <u>Z</u>
Columbia					7						Proj	ect:	El	WL		Ti	55U	e	5	<u>'</u>	de	اد			Method of Shipment
Columbia Analytical Services	Project Manager			Λ <i>γ</i> Λ	($\frac{1}{2}$	96	 ie	<i>is</i>		Tele	phone	No.	- 100	50-	- O	210	5	Fax N	0.)			FedEX
800.695.7222 www.caslab.com				.,,	<u></u>			}		-		694	<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>			<u> </u>								Special Detection Limit/Reporting
WWW.Gasiab.com			Г	N	latrix		Prs	٧.			Ŋ	A	(o	2	ľ	위 _		T			Т			Limbreporting
			1								Arsenic-Sw6020	633	;	200	<u>-a</u>	<u> </u>	-TEXAS 1005/1006				1			<u>(§</u>	
								İ			1 m	M	,	$\tilde{\mathfrak{Z}}$	EP4	Ü	- L					İ		g da ₎	
											13,	C. E	J	3	7	,	ड्री है	1						Turn Around Time (working days)	
		5	Soil	Water	₽	Other	Yes	٤				(S)		S S	3	į	2 5							ج ⊒e ع	
	N e	of Containers	"	5		١.			ate	<u>ii</u>	🖔	c.A.	<i>'</i>	T.	Ja	YY	ž ž							흔	
<u> </u>	ldma	Con				北			ing ⊡	l gri	\rightarrow \frac{1}{A}	jani		<u>x</u>	2	•	孙广		İ					Arou	
Sample I.D.	ab Sample No	No. of				FIS			Sampling Date	Sampling Time	15tal	Inorganic Arsenic-EPA 1633 A	Ī	Total Barium - 560 6020	Total Mercony-EPA 163	70	TPH-TEXAS 1005/1006							틸	
EWL T-10 F					-	١					Í	1	Í		i	1	1		_	\top		\dagger			
EWL T-11 F						1					\prod	П				\/									
EWL 7-12 F				-	ļ	V					$\overline{\mathbf{V}}$	V	∀		V	A	7		_	_	- -				-
	-			+-	+-			_							_			\vdash	-		-	┪┈			
<u> </u>	-			+	+												+-		\dashv	+			\vdash		1
				_	-			_			-				4		_		\perp	_		+			ω
	<u> </u>		-	-	1			_			+	_			+				+	-	-	+			<u>κ</u>
			+	+	+			_			╁			_	+				\dashv	-	+-	+			∢
																									Σ
··· ·· -																	_						L_		
•	lo			le -			an'		Temperatur					lc	е				No ic	e					
Reling, by sampler (Sign & Print Name) JOHN Rodgers Print Name)	h~H	fol	Sul	Dat 1	te -(•-	-((Time			Received	by (Sig	gn & Pi	rınt Na	ime)											Lab Work No.
Relinquished by		_/		Dat	te	-	Time	!		Received I	by														-
Relinquished by				Dat	te .		Time	!		Received I	by				-										-
Relinquished by				Dat	te		Time	!		Received	by lab	oratory	,						Date			Tim	ne		

MICHAEL PISANI & ASSOCIATES, INC.

Environmental Consulting Services

13313 Southwest Freeway Suite 221 Sugar Land, Texas 77478 1100 Poydras Street 1430 Energy Centre New Orleans, Louisiana 70163

17431 Jefferson Highway Suite A Baton Rouge, Louisiana 70817

Attn: Lynda Huckestein

Re: EWL Tissue Study

Lynda,

Attached are the corrections required on the final COC, along with the necessary Field Record Forms for the EWL Tissue Study.

If you have any questions/comments, please contact Patrick Ritchie.

(504)582-2472 pmritchie@ix.netcom.com

Thank You

Field Record Form: 07-47 East White Lake (VPSB)

		cation Code		<u>02</u>				/pe (C / F)	
_		EWL					$C = \operatorname{crab} F$	= forage fish	
Sampling 1		12-21							
	Method(s):		<u> </u>						
Collector 1	Name (print	and sign): 1	P. Ritch	e, H. Con	celly J.	Rodgers	1		
Affiliation	: <u>Uemso</u>	n Univers	itv	,	()	(864)	<u>650-0</u>	210	
Address:	Dept.	of Fores	my + D	mural ?	esources				
Site Locat	ion				Parish:	Vermilio	^		
Latitude:		1094		_	Longitude:	<u>3288</u>	612		
Site Name			- Field						
Site Descri	-		<u>inal</u>					·	Ì
	y Descripti		Ca	nal					
Estimated 1	Maximum \	Water Depth	ı:((meters) /	<u> </u>				
	RDO mg/L	Temp C	рН	Cond µS/cm	ORP	Turb NTU	Depth feet	Time	Ì
	8.05	13.84	7.4	4019	0.01	45.2	1. L	1104	
			, , ,					1	
				<u> </u>					
	· · · · · · · · · · · · · · · · · · ·			- 		-			
Notes:			<u> </u>					<u> </u>	
	**							·	
Sample De	escription								
Species:	_Blue	<u>હાા</u>			Total # of I	ndividuals:	_1	<u>-</u>	
Specimen	Length	Width	Weight	Doto/Time	Date/Time	Tuno of			
Composite	Length	YY IU III	Weight	Date/Time Trap Set	Trap	Type of Bait	Sex	Additional Comm	ients
Code	(mm)	(mm)	(grams)	-	Pulled	Dait			
F				12/13/10 1208	אטון מוגלו				
				Ź					
			.,			_			$\neg \neg$
			<u></u>						
						<u> , </u>			\dashv
· -							 -		\dashv
					ļ				-
						-			
NT-4 17 s	01000	<u> </u>							
Notes: K	<u> </u>	-	- -				.		

Field Record Form: 07-47 East White Lake (VPSB)

Sampling 5	site Identifi	cation Code		05				ype (C 👍	
Project Inn	tial Code:	EWL	-				Circlerab I	i forage fish	
Sampling I	Date:	12-21	-10						
Collection	Method(s):	<u>N</u>	10+						
Collector N	Same (print	and sign):	P.Rit	dre H.	Cornelly,	J. Rodge	প্র		
Affiliation	: Clen	who busine	estly	, , , , , , , , , , , , , , , , , , ,	('	(804)	650-	0210	
Address:	Dept	. of Fore	stry + 1	Natural R	sources			0210	
					<u> </u>		····		
Site Locat	ion				Parish:	Vermili	01 <u>/</u> 2		
Latitude:	50	0869			Longitude:	3788	990		
Site Name:			WL Fiel	امًا	<i> </i>			- the second sec	
Site Descri	ption:		Canal						
i	y Descriptio		Can	ما				Address of the latest and the latest	
Estimated	Maximum V	Vater Depth			20' (feet)				
		·							
	RDO	Temp	pН	Cond	ORP	Turb	Depth	Time	
	mg/l	C		μS/cm	my	NTU	feet		
	8.95	13.4	7.26	3512	0.07	46.5	1.3	1033	
									İ
[<u> </u>		J			. <u></u>		
Notes:									
Sample De	ecciption		-	· · · · · · · · · · · · · · · · · · ·	· · ·				
Sample De	scription								
Species:	Rlus	e (31)			Total # of I	ndividuals:			
,		-			rotal in the r	adividuais.	•		
Specimen	Length	Width	Weight	100	Date/Time			1	
Composite	Length	Willin	weight	Date/Time Trap Set	Trap	Type of Bait	Sex	Additional Co	mments
Code	(mm)	(mm)	(grams)	Trap set	Pulled	Dan			
F				12/4/10 1206	10/10 1033				
- -									
			· · · · · · ·						
							<u> </u>	-	
Notes: Klo	13047				L			<u> </u>	
~ NO	117711								
	···								

	Client:	Eh	JL	Pa	<i>⊳j</i> €	:04	<u>T -</u>	Lingle					IN c				O D	Υ			Page <u>V</u> of <u></u>
∕∕∕ Columbia		l				_		3		Project:	Εı	UL_	Tissu	JP.	اصب+	k					Method of Shipment
Columbia Analytical Services	Project Manager	\overline{z}	٣.	7	<u></u>	لمروء	٠			Telephone	No.				Fax No). /					Fed Ex
800,695,7222 www.caslab.com					,	3-															Special Detection Limit/Reporting
WWW.Gasiab.com	-		au	M	atrix		Prsv.			S			۵	_					П		Limitateporting
										-Sukaso	000)MS-1	1- EPA (63)	V-EPAI63	Texas 1005/1006					Course anistration	working days)	
Sample I.D.	Lab Sample No.	No. of Containers	Soil	Water	Air	Cooks Other	Yes	Sampling Date	Sampling Time	Total Arsenic - SWECDO - Longanic Arsenic - EANIGOA	Total Borium - SW6000	Total Mucury - ETAILB31	Methy mercury - EPA1630	I Mt. Texas	:				Trum A control	Lum Around Time (working days)	
EWL-NO		l				メ		12-27-10		XX	×	X		<							
	<u> </u>		\bot						<u> </u>						 	_					
			-				+	<u> </u>										-			
	<u> </u>	_	-	-		_	_	<u> </u>								_		_			
	<u></u>	-	+	-		-	+	 						-		_		-	┝┼		ဟ
			1				_					-						+	\vdash		×
																					c
			_	_				ļ													∢
	 -	<u> </u>	╬	 				 		 			<u></u>						-		Σ
			\parallel				\dashv	<u> </u>								-		-			K1014320
· ·	lo						1	Temperatur	e received:	<u> </u>		ice	I		No ice	:	LI				,,,,,
Reling. by sampler (Sign & Print Name)				Date			ime		Received I	y (Sign & Pri	nt Name))						_			
Parnek Rixelie Samue	Ecolo)	7		12-	27-	-10															Lab Work No.
Relinquished by				Date	•	T	ime		Received t	у					* *						
Relinquished by				Date)	Т	ìme	_	Received I	by			_								
Relinquished by				Date	;	7	ime	_	Received I	y laboratory					Date		Ti	me		_	

	Client: (EW	L	Pro	jec	+	~ D	. Line	ale			С	H	NIA	0 1	F C	U:	S T	0	DΥ			Page of
✓ Columbia										Pro	ject-	۔ اندا		ĪSSL	20	<.	Ļι	ر برا					Method of Shipment
Columbia Analytical Services	Project Manager	70	hr	<u> </u>	Ro	odó	ı e x	ς		Tel	ephon	No No	···			F	ax No						Feder
800,695,7222 www.caslab.com	Manager						<u> </u>			.L													Special Delection
www.casiab.com				M	atrix	Р	rsv.	<u></u>	T	To	ाृट्		Ţ	3	T		1		T	П	Т	Т.	Limit/Reporting
i ·	}]		4					022	Y 52	Sw. 6020	\$7°	3	9							(S)	
	Į				41 21	5			1	[3	- " ا ن	પુજ	Ψ2	30	120	.						g day	
	İ				L	니				ن	i iğ	ع ا	3	1630								orking	
		ş	Soil	Water	Air.	Yes	g			Ş	Increasis Arsonic 1633A	Total Barium	Total Merany	7	- Texas localicola							Turn Around Time (working days)	
	ab Sample No.	No. of Containers	"					ate	e E	A	2	3ar	3	Me Huy	- 5 ,							E T	
Sample 1.D	l sid	Cont			<			Sampling Date	Sampling Time	Total	8	ر بر و	3	からず アクタ				ťη				Arour	
am Edu	l SS di	o. of			,	کا		ilmpli	ild fil	10	S	ુ હ	造	2	TPH							Ē	į
EWL T-02 C		Ž	╫	┼┼	>	ᆜ	┼		1018-1420		1	1	,	,	1		+				_	 	
EWL T-05C		1	+		- / ×			12121710	1018-1420	-					+		+-			\vdash	+	 	-
EWL T-07C		1			X										$\dagger \dagger$						1	- 	
EWL T-11C		1															\perp						<u> </u>
FWL TR-02F EWL TR-03F		1	+	\vdash	X		-		 	H	 	-	-		+-		+		<u> </u>		+	ļ	-
EWL TR-04F		1	 				┢			H	 	-		-	+		-			+			1
EWL TR-04A F		1						4	1	V		V	V	V	1			<u> </u>		rio.		<u> </u>	တ
	 	 	<u> </u>			<u> </u>	 		<u> </u>		 		 -		 	<u>-</u>							×
EWL T-OS F		<u> </u>			>			12/2/10	1018-1400	X	X	× ×	X	×	X			_				-	. Α
		- '	Ļ	Ħ		+	 	~	- -	×	<u> </u>				X		+					+-	Σ
														-							+		V1010047
																			<u></u>				K1013947
Sample Received Intact Yes No	o 					<u>.</u> ,		Temperatur					Ice			N	lo ice						
Reling, by sampler (Sign & Print Name))			Date 12/2	t/io	Tim	е		Received b	y (Sig	gn & P	rint Name	e)										L -l- Mar-il- Ni
Relinguished by		•						-	<u> </u>														Lab Work No.
Relinquished by	VILEE			Date		Tim		•	Received b	у						-]
Relinquished by				Date		Tim	е		Received b	у								·					1
Relinquished by				Date		Time	е		Received b	y labo	oraton	,				D	ate			Time			

	Client: EV	14	Pa	مے اور	st .	. D	. 4	ngle.					CI	ΗА	ΙN	0	f	C U	S	ГΟ	D١	<u> </u>			Page <u>/</u> of <u>2</u>
Columbia Analytical Services		Щ						<u> </u>		Proj	ect:	EV	V L	アル	sue	ر ک	two	ly							Method of Shipment
Analytical Services	Project Manager	Toh	n £	200	ses	•				Tele	phon	e No.	RAG	Tis 4.6	50-	02	10	Fax N	No.	-					Fed EX
800.695.7222 www.caslab.com	manager 0				<u> </u>								00.	<u>, </u>				J							Special Detection
www.casiab.com		Т	L	M	atrix		Prsv.	J	<u> </u>	Īς	<u> </u>		ما		,S	राउ		П	Т	1			$\overline{}$		Limit/Reporting
										020	82		22	163	2		3							(6)	
			l							9/	3		₹	402	0	3 V	3							j day	
			l			1				Total Arsanic-546020	Inordamic Arsonic - EPA 1632A		Total Barium - 54 6020	Total Mercury-EDA 1631	Mother / Marwey - FPA 168	1045 1005/1006	5							orking	
		l yo	ij	Water	Air	other ;	S S			1.5	£ 2		. 3	Ž	7		}		-					e (w	
	. So.	ainer	ľ	≥				ate	e E	₹	1.7] ,	120	Me	7	1/2	2]								
Q.I.	mple.	Son	l			7		º	E P	<u>ā</u> .	Ž		7	7	+									rour	
Sample I.D.	ab Sample No.	No. of Containers	l			トーンナ		ampling Date	Sampling Time	1/2	13		10	101	Ž	107	-							l urn Around I ime (working days)	
EWL TR-05 F	<u> </u>	<u>></u> 1	!			1	 	1-4-11	936	1,-	1	-	ì		ì	1	-		-		-		-		
EWL TR -06 F		<u> </u>	<mark> </mark>			╁╁	╁	10701	945	╂	-		\vdash	$\dashv \dagger$	+-	+	+		+	-	-		+		
EWL TR-07 F						Ħ	╅	† †	1050	1				#	1	+	1		\dashv	-	-		+		
EWL TR-08 F						П			1005					\prod		П									
EWL TR-09 F		<u> </u>	<u> </u>		_	 	 	1 7	1028	4		<u> </u>	\sqcup	$\perp \downarrow \downarrow$		$\perp \downarrow$	<u> </u>				ļ.,		_		Packed in dryice
FWL T-01 F EWL T-02 F		-	 			}	 -	1-511	1230	- <mark> </mark>	\vdash		-	+	+	+	+	-	_	_			-		7
EWL T-03 F		<u> </u>	╂		\dashv	+	╅	+	1330	-			H	++	\dashv	+	+	\vdash	_	- -	+		+		တ
EWL T-04 F									1340	1				11	\top	- -		\Box	_		1		\dagger		ス
EWL T-05 F						Ш			1320			. '				П									K
EWL T-06 F EWL T-07 F		<u> </u>	 			$oxed{oxed}$	-	 	1350	4	$oxed{oxed}$	<u> </u>		41		$\bot \downarrow$	ļ				<u> </u>		_		∀
EWL T-07 F		<u>-</u>	 -		\dashv	\vdash	+	 	1210	++	\vdash	\vdash		+	+	+-	+	\vdash	_	-	\vdash				×
EWL T-09 F	···	<u> </u>	ı		一	\bigvee	+	1	1455	∜	H	+		1	\forall	1	<u>r</u>	-			╁		_		
Sample Received Intact: Yes N	0					<u>v </u>	 -	Temperatur	'	-1 -74	W			lce	<u> </u>	Į V	1	No io	e ce	l	1				
Reling. by sampler (Sign & Print Name)				Date			ime		Received b	y (Sig	n & F	Print N	lame)) '			_		·	•					
John Rodges Jlant.	Rodgery	Æ.		1-1)ا-ما		110	5		•															Lab Work No.
Relinquished by			—	Date	!	I	ıme		Received b	у															
Relinquished by	· · · · ·			Date	!	T	ime		Received b	у											,				
Relinquished by				Date	: :	1	ime		Received b	y labo	orator	у						Date			Time	_			

	1 6	21. \1	_	_	•	. 1.			, –	T			• • •			_			_				
	Client:	<u> </u>	<u>-</u> .	rre	Je	<u> </u>	- [D. Lina	91 <u>e</u>	<u> </u>				IN						Y			Page <u>2</u> of <u>2</u>
Columbia Analytical Services*	_									Proje		EL	J_	Ti	55U	e	51	vd	ب				Method of Shipment
Analytical Services	Project		$\frac{1}{2}$	\ <u>\</u>	R	·	Jac	15		Telep	hone	No.	سر سر ا	-08	210	Fa	x No.	,)				FedEX
800.695,7222	Manager	7	<u>() </u>	17 1		-00	3-10	<u>・1フ</u>		<u> </u>	1860	4-(050	<u></u>	×1C								Special Detection
www.caslab.com				- R.B.	atrix		Dear	, .	γ						31					,			Limit/Reporting
		1	H	IV	aurix	-	Prsv.	-		3	βA	20	33	7	او اهَ								
		ļ								Arsenic-5w6020	63	ું	A 1	82								3ys)	,
		-	ı							3	Z.	<u> 3</u>	EP	7-7		. [ည် ဤ	
			l			1				Ϋ́	3	נט	1,5	, 9	31, 51							ואָר פֿראַ	
		ß	Soil	ater	Ę ,	Other	S S			ŀξ	8	Ş	ج	,								<u>ح</u> و	
	Š.	iller	ľ	>	`	٥Į	~ ~	g P	<u>a</u>	₩.	¥	1	ال ا	74/	3							Ĕ	
₫	ple	onta]:	土		J Da	<u>⊨</u>	A	3	প্র	₩	6	Texas 1005/1066							j J	
<u>ə</u> ldi	ab Sample No.	Ų,				(V)		Sampling Date	sampling Time	- ਤ	25	75	- 공	7	₹Y.							Turn Around Time (working days)	
Sample I.D.	Lab	No. of Containers			N	Ī		Sam	Sam	<u>प्रि</u>	Inorganic Arsenic-EPA 1633A	70ta / Barium - 5W6020	Total Mercury-EPA 1631	Nothil Morris - FIBILS	TPH TPH							Ē	
EWL T-10 F		1			一	1		1-5-11	1355	77	1	Ť	Ì	1	1							,	
EWL T-11 F								1	1405	171			1	,	111		-				П		
EWL T-12 F					\Box	V			1445	V	V	V	V	V	74								
		Ĺ	Ĺ																				
	ļ		<u> </u>						ļ														Packed in dryice
		_	_			_	_								_	\perp					Щ		(, -
	<u> </u>	-			_	_	ļ								$\downarrow \downarrow \downarrow$	_	ļ		_	4	Ш		
	_	┼	├	_	_					-	_		ļ		+		+-	_ .					· Δ
	<u>-</u>	-	┢		_					-			┞		+			\vdash	-		\vdash		α. -
	-	+	 	H	\dashv		\dashv			-	\dashv		\vdash		++		-	 		+	\vdash		∀
		╁	\vdash	\vdash	\dashv	\dashv				+	\dashv		┞┈┤		+	-	-	\vdash	+	+	$\vdash \vdash$		N I
		+	\vdash		\dashv	\dashv					\dashv		\vdash		+	+	_	\vdash	\dashv	+	\vdash		- -
		+	 		\dashv	\dashv					+				+ +	\dashv	+-	\vdash	+	+	 		
Sample Received Intact: Yes N	lo		Ь	I I			!	Temperatur	e received:	1	1		lce			NI.	o ice						
				Dale			me		Received b	y (Sigr	n & Pri	nt Name				14	- 100						
Reling, by sampler (Sign & Print Name) JOHN Rodgers P	hw H	Toly	W.	1-	(L-()]	llo	5					•										Lab Work No.
Relinquished by		_//	<u> </u>	Date		-	ime		Received b	y													
Relinquished by				Date		Т	ïme		Received b	y													
Relinquished by				Date		ĭ	ime		Received b	y labor	ratory				_	Da	ate		Tin	ne			"

Scientific Fish Collection Permit Appendix F

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

BOBBY JINDAL GOVERNOR

State of Louisiana

DEPARTMENT OF WILDLIFE AND FISHERIES OFFICE OF SECRETARY

ROBERT J. BARHAM SECRETARY

SALTWATER SCIENTIFIC COLLECTING PERMIT

ISSUED TO: John H. Rogers

PERMITTEE # 1907

COMPANY: Clemson University

Department of Forestry and Natural Resources, 261 Lehotsky Hall, Clemson, SC 29634-ADDRESS:

ISSUE DATE: 1/5/2011

EXPIRATION DATE: 31 December 2011

PERMITTED ACTIVITIES:

This permits the holder to take the fish listed in Attachment A of this permit, by the means and in the areas authorized in Attachment A, provided that the Region Captain of the Louisiana Department of Wildlife and Fisheries, Enforcement Division is notified in advance and shall accompany you, or direct somebody to accompany you, if he deems it necessary, when fish are taken under the authority of this permit. If electric seines, electrofishers or chemicals are to be used, it will be necessary that the District Fisheries Biologist be notified in addition to Enforcement personnel. This permit does not allow anyone to use chemicals that are not approved for use in Louisiana by other state and federal agencies or exempt permit holders from any regulations by other state or federal agencies. This permit is good in SALTWATER areas only does not allow the taking of oysters from private leases unless accompanied by written permission of the lease holder.

RESTRICTIONS:

- (1) Gill nets must be attended to at all times with tags on each end of the net clearly identifying the owner and operator of the
- (2) This permit may be cancelled at any time if in the judgment of the designated authority; the permit is being used for purposes other than those for which the permit was issued. Sale of any organisms collected under this permit, or their progeny, is prohibited. No item collected under this permit may be used for human consumption. One of the permittees must be in the company of the samples at all times. This permit and Attachment A must be in possession when taking or possessing organisms under the conditions of the permit.
- (3) Alligators are not permitted to be taken with this permit.
- (4) Holder agrees to submit an annual report giving a detailed description and inventory of all specimens collected within 60 days following expiration of this permit to: Louisiana Department of Wildlife and Fisheries, Office of Fisheries - Permits Manager, P.O. Box 98000, Baton Rouge, LA 70898-9000. Reports are mandatory even if no collections were made during the permit year.
- (5) Failure to report may result in denial of future permit requests or suspension of existing permits.
- (6) See Attachment A for additional information regarding permit restrictions.

PERMIT COMPLIANCE - PERMIT IS NOT VALID UNLESS SIGNED BY PERMITTEE

(Permittee Signature)

agree to abide by all State and Federal fish and wildlife laws and regulations, and all State and Federal laws and regulations which relate to this permit or the permitted activity, and by all other terms and conditions of this permit.

LEGAL AUTHORITY: R.S. 56:318

APPROVED - authority delegated by the Secretary of the Louisiana Department of Wildlife and Fisheries in memo dated 7/29/2010:

Harry Blanchet, Biologist Director:

R. H. Blanchet

cc: Col. Winton Vidrine, Enforcement

BOBBY JINDAL GOVERNOR

State of Louisiana DEPARTMENT OF WILDLIFE AND FISHERIES OFFICE OF SECRETARY

ROBERT J. BARHAM SECRETARY

The following individuals are sub-permitted under the 2011Saltwater Scientific Collecting **Permit # 1907**, for **John H. Rogers**, **Jr**, Department of Forestry and Natural Resources, Clemson University, SC, issued 01/05/2011, expiring 12/31/2011. This permit allows you and all subpermittee's to use the following gears listed in Attachment A.

Sub-Permittee's on Mamretto Permit #1907

Patrick W. Richie Helen Connelly

Legal Authority: R.S. 56:318

R. HB lanche

Approved – authority delegated by the Secretary of the Louisiana Dept. of Wildlife and Fisheries in memo dated 7/29/2010:

Harry Blanchet

Biologist Director - MarineFisheries

Cc: Col. Winton Vidrine, Enforcement

APPLICATION FOR SCIENTIFIC COLLECTING PERMIT Louisiana Department of Wildlife & Fisheries

APPLICATION DATE: 1-3-2011	PERMIT # ASSIGNED LAST Y	EAR: (If applicable)
APPLICANT'S NAME: John H. Ro	dgers, Jr.	
	Professor, Clems	
ADDRESS: Dept. of Forestry a CITY/STATE: Clemson, SC	and Natural Res	sources, 261 Lehotsky Hall
CITY/STATE: Clemson, SC	ZIP CODE: 29634	PARISH: Pickens
TELEPHONE #: 864 -656 -0492	FAX#: 864-656-1034	E-MAIL: j rodger@demson.ed

Patrick W. Richie Helen Connelly

PURPOSE OF SCIENTIFIC COLLECTION: (Attach support information as appropriate)

measure concentrations of analytes such as arsenic and barium in crab and forege fish tissue

AREA(S) WHERE COLLECTIONS WILL BE MADE:

Vermilion Parish - White Lake, Schooner Bayou and East White Lake Field (canals).

METHOD(S) OF COLLECTION:

Trawl, Cast Net, Hoop Net /Trap, Crab Trap

TYPES AND NUMBERS OF ORGANISMS TO BE COLLECTED:

Crabs - Callinectes sapidus - ~21 stations, -10/station Forage Fish - bluegill, shad, mosquito fish - ~21 stations,

HOW WILL SPECIMENS BE DISPOSED OF? Specimens will be consumed in unalyses and residual disposed at analytical laboratory

I have been advised and do understand that by applying for and accepting a permit issued by the La. Dept. of Wildlife & Fisheries, I am being allowed to engage in an activity which would otherwise be prohibited by law or for which a permit is required. I understand that the permit is not a license and confers no property right upon me. I specifically agree to abide by all State and Federal wildlife laws and regulations, and all State and Federal laws and regulations which relate to this permit or the permitted activity, and by all other terms and conditions of this permit. I understand that the permit for which I am applying may be suspended, canceled or revoked at anytime by the La. Dept. of Wildlife & Fisheries. I agree to immediately surrender the permit issued to me upon demand made upon me by any authorized employee of the Louisiana Dept. of Wildlife & Fisheries. I understand that my failure to fully and completely comply with the laws, regulations, terms and conditions referred to herein could result in the immediate suspension, cancellation or revocation of this and other permits issued to me by the Dept. and that I may be denied future permits as a consequence of my actions. I understand and agree that any permit issued to me by the La. Dept. of Wildlife & Fisheries is in the nature of a privilege, which is being voluntarily extended to me by the Dept. and the failure on my part to cooperate fully and completely with the Dept. or its employees can result in the loss of the privilege conferred and the denial of future requests for permits. By accepting this permit, I evidence my agreement to be bound by all conditions and stipulations set forth herein.

SIGNATURE OF APPLICANT.

Chemical Analytical Data

Appendix E

Project No. 0116008 UNOCAL Vermilion Parish, Louisiana

Environmental Resources Management Southwest, Inc.

3838 North Causeway Boulevard, Suite 3000 Metairie, Louisiana 70002 (504) 831-6700

East White Lake Field Vermilion Parish, Louisiana

						Ars	senic		As A	verage		Bai	rium		Ba Ave	rage		Cadı	mium		Cd Av	verage		Chro	mium		Cr A	verage		Lea	ad		Lead A	verage
			Moistu	re Content	IC	ON	,	sani	71371	T	IC	ON		sani	Da Ave.	age	ICO		Pisa	ani	Cun	l	IC	ON		sani	CIA	Terage	ICC		Pis	ani	Leau A	verage
	Core				IC	I	FI	Satu			IC	ON	T I	Sain			ICC	JIN	1156	alli			IC	ON	FIS	satu			icc)IN	FIS	aiii	i	
	Interval		ICON	1004		mg/kg-		mg/kg-		mg/kg-			mg/kg-		mg/kg-				mg/kg-		mg/kg-				mg/kg-			mg/kg-	mg/kg-			mg/kg-	mg/kg-	
Boring ID	(ft bgs)	Date 8-Aug-06	ICON	+	dry 13.8	3.13	dry -	wet	13.8	3.13	dry 3590	wet 815	dry -	wet	dry 3590	wet 815	0.81	wet 0.184	dry -	wet	0.81	wet 0.184	dry -	wet	dry -	wet	dry	wet	dry 48	wet 10.9	dry -	wet	dry 48	wet 10.9
B2	4-6	8-Aug-06	0.773	-	7.07	1.56	-	-	7.07	1.56	717	158	-	-	717	158	0.664	0.164	-	-	0.664	0.147	-	-	-	-	-	-	36	7.96	-	-	36	7.96
B2 Rerun	6-8	8-Aug-06	0.866	-	10.6	1.42	-	-	10.6	1.42	307	41.1	-	-	307	41.1	1.07	0.143	-	-	1.07	0.143	-	-	-	-	-	-	10	1.34	-	-	10	1.34
B2 Rerun	10-10.5	8-Aug-06	0.276	-	39	28.2	-	-	39	28.2	209	151	-	-	209	151	1.12	0.811	-	-	1.12	0.811	-	-	-	-	-	-	32.3	23.4	-	-	32.3	23.4
B3 B3 Rerun	4-7 9-12	9-Aug-06 9-Aug-06	0.705 0.528	-	30 7.55	8.85 3.56	-	-	30 7.55	8.85 3.56	130	61.4	-	-	130	61.4	0.489	0.231	-	-	0.489	0.231	-	-	-	-	-	-	18.4	8.68	-	-	18.4	8.68
B4 Rerun	0-1	9-Aug-06	0.328	-	10	2.16	-	-	10	2.16	631	136	-	-	631	136	0.489	0.231	-	-	0.439	0.231	-	-	-	-	-	-	28.7	6.2	-	-	28.7	6.2
B4 Rerun	3-5	9-Aug-06	0.525	-	6.7	3.18	-	-	6.7	3.18	138	65.6	-	-	138	65.6	0.447	0.212	-	-	0.447	0.212	-	-	-	-	-	-	16.7	7.93	-	-	16.7	7.93
B4	5-8	9-Aug-06	0.826	-	4.67	0.813	-	-	4.67	0.813	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B5	0-1.5 4-5.5	9-Aug-06 9-Aug-06	0.71	-	6.57 4.22	1.91 1.75	-	-	6.57 4.22	1.91	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B5 Rerun	8-10	9-Aug-06	0.596	-	6.23	2.52	-	-	6.23	2.52	160	64.6	-	-	160	64.6	0.458	0.185	-	-	0.458	0.185	-	-	-	-	-	-	13.4	5.41	-	-	13.4	5.41
B6	1.5-3	9-Aug-06	0.623	_	5.17	1.95	-	-	5.17	1.95	220	82.9	-	-		82.9	0.353	0.133	-	-	0.353	0.133	-	-	-	-	-	-	17.2	6.48	-	-	17.2	6.48
B7	3-10.5 4-5	9-Aug-06 9-Aug-06	0.466	-	8.25	3.63	-	-	8.25	3.63	141	62	-	-	141	62	0.475	0.209	-	-	0.475	0.209	-	-	-	-	-	-	16.7	7.35	-	-	16.7	7.35
B7	8-11	9-Aug-06	0.287	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	,	-	-	-
B8 Rerun B8	5.5-7 9.5-11.5	9-Aug-06 9-Aug-06	0.562 0.329	-	7.6 6.15	3.33 4.13	-	-	7.6 6.15	3.33 4.13	175 -	76.7	-	-	175 -	76.7	0.382	0.167	-	-	0.382	0.167	-	-	-	-	-	-	17 -	7.45 -	-	-	17 -	7.45 -
B9 Rerun	0-0.5	9-Aug-06	0.744	-	8.17	2.09	-	-	8.17	2.09	368	94.2	-	-	368	94.2	0.644	0.165	-	-	0.644	0.165	-	-	-	-	-	-	23.1	5.91	-	-	23.1	5.91
B9 Rerun	0.5-3.5 8-9	9-Aug-06 9-Aug-06	0.711	-	27.8	18.2	-	-	27.8	18.2	298	195	-	-	298	195	0.839	0.55	-	-	0.839	0.55	-	-	-	-	-	-	16.1	10.5	-	-	16.1	10.5
B10	1.5-4	9-Aug-06	0.702	-	7.19	2.14	-	-	7.19	2.14	173	51.6	-	-	173	51.6	0.306	0.0912	-	-	0.306	0.0912	12.4	3.7	-	-	12.4	3.7	13.2	3.93	-	-	13.2	3.93
B10 B12	4-7.5 0-1.5	9-Aug-06 10-Aug-06	0.465	-	5.81	3.11	-	-	5.81	3.11	190	102	-	-	190	102	0.562	0.301	-	-	0.562	0.301	-	-	-	-	-	-	17.2	9.2	-	-	17.2	9.2
B12 Rerun	3.5-5	10-Aug-06	0.496	-	7.66	3.86	-	-	7.66	3.86	92.6	46.7	-	-	92.6	46.7	0.539	0.272	-	-	0.539	0.272	-	-	-	-	-	-	19.8	9.98	-	-	19.8	9.98
B12 B13 Rerun	6.5-7.5 3-5	10-Aug-06 10-Aug-06	0.242	-	4.88	3.7 2.04	-	-	4.88	3.7 2.04	162 125	123 59.1	-	-	162 125	123 59.1	3.45 0.424	2.62 0.201	-	-	3.45 0.424	2.62 0.201	-	-	-	-	-	-	16.4 16	12.4 7.57	-	-	16.4 16	12.4 7.57
B13 Rerun	7.5-9.5	18-Aug-06	0.305		23.1	16.1	-	-	23.1	16.1	266	185	-	-	266	185	0.734	0.51	-	-	0.734	0.51	-	-	-	-	-	-	16.5	11.5	-	-	16.5	11.5
B14 B14	0-1 4-8	10-Aug-06 10-Aug-06	0.502	-	4.15	2.05	-	-	4.15	2.05	- 117	- 57.8	-	-	117	- 57.8	0.262	0.129	-	-	0.262	0.129	-	-	-	-	-	-	13.8	6.82	-	-	13.8	6.82
B15 Rerun	4-6	10-Aug-06	0.581	_	6.31	2.64	-	-	6.31	2.64	124	52	-	-	124	52	0.413	0.123	-	-	0.413	0.173	-	-	-	-	-	-	13.2	5.53	-	-	13.2	5.53
B15 B17	8-11.5 0-3	10-Aug-06 10-Aug-06	0.481	-	7.02 7.75	3.64 1.47	-	-	7.02 7.75	3.64 1.47	- 453	86.1	-	-	453	86.1	0.236	0.0448	-	-	0.236	0.0448	11.9	2.26	-	-	- 11.9	2.26	12.3	2.34	-	-	12.3	2.34
B17 Rerun	3-6	10-Aug-06	0.509	-	9.6	4.71	-	-	9.6	4.71	212	104	-	-	212	104	0.236	0.0448	-	-	0.344	0.169	-	-	-	-	-	-	24	11.8	-	-	24	11.8
B17 B17 Rerun	8.5-10.5 10.5-12	10-Aug-06 10-Aug-06	0.587 0.219	-	7.29 3.2	3.01 2.5	-	-	7.29	3.01 2.5	148 95.4	61.1 74.5	-	-		61.1 74.5	0.215	0.168	-	-	0.215	0.168	-	-	-	-	-	-	9.75	7.61	1 1	-	9.75	7.61
B18	2-4	10-Aug-06	0.535	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.100	-	-	-	-	-	-	-	-	-	-	-		-	-	- 9.75	-
B18 B18	4-5 7.5-10	10-Aug-06	0.573	-	4.42	1.89	-	-	4.42	1.89	105	44.8	-	-		44.8	0.304	0.13	-	-	0.304 0.295	0.13	-	-	-	-	-	-	15.8	6.75	-	-	15.8	6.75
B18	10-11.5	10-Aug-06 10-Aug-06	0.462	-	4.67	2.51	-	-	4.67	2.51	94.9	51.1	-	-	94.9	51.1	0.295	0.159	-	-	-	0.159	-	-	-	-	-	-	15.6	8.39	-	-	15.6	8.39
B19	1-2.5	10-Aug-06	0.875	-	15.4	1.93	-	-	15.4	1.93	989	124	-	-	989	124	0.419	0.0524	-	-	0.419	0.0524	-	-	-	-	-	-	-	-	-	-	-	-
B19 B19	2.5-4 4-6.5	10-Aug-06 10-Aug-06	0.839	-	15.3	2.46	-	-	15.3	2.46	234	37.7	-	-	234	37.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B19 Rerun	6.5-9.5	10-Aug-06	0.533	-	7.68	3.59	-	-	7.68	3.59	175	81.7	-	-	175	81.7	0.368	0.172	-	-	0.368	0.172	-	-	-	-	-	-	14.1	6.58	-	-	14.1	6.58
B20 B20	3-4.5 7.5-10	10-Aug-06 10-Aug-06	0.598	-	7.31 6.15	2.94	-	-	7.31 6.15	2.94	186 91.2	74.8 41.2	-	-	186 91.2	74.8 41.2	0.373	0.15	-	-	0.373	0.15 0.184	-	-	-	-	-	-	15.5 14.4	6.23 6.51	-	-	15.5 14.4	6.23
B21	0-2	10-Aug-06	0.764	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B21 SS1	2-4 0-2.1	10-Aug-06 25-Apr-06	0.531	_	8.27	3.88	-	-	8.27	3.88	139	65.2	-	-	139	65.2	0.353	0.166	-	-	0.353	0.166	-	-	-	-	-	-	16.9	7.93	-	-	16.9	7.93
SS1	2.1-2.5	25-Apr-06 25-Apr-06	0.626	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS2 SS2	0-1 1-1.5	25-Apr-06 25-Apr-06	0.535	_	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
SS3	0-0.6	25-Apr-06 25-Apr-06	0.789	_	8.79	3.28	-	-	8.79	3.28	1600	597	-	-	1600	597	-	-	-	-	-	-	17.9	6.68	-	-	17.9	6.68	28.8	10.7	-	-	28.8	10.7
SS3 SS3	0.6-2.2 2.2-2.6	25-Apr-06	0.593	_	10.9 9.61	4.44 3.32	-	-	10.9	4.44	2330	948 555	-	-	2330	948 555	-	-	-	-	-	-	16.4 7.15	6.67 2.47	-	-	16.4	6.67 2.47	27.2 13.3	11.1 4.59		-	27.2 13.3	
SS4	0-0.6	25-Apr-06 26-Apr-06	0.655		9.61	3.32	-	-	9.61	3.32	1610	-	-	-	1610	-		-		-	-	-	7.15	- 2.47	-	-	7.15	-	-	4.J9 -	-	-	- 13.3	4.59
SS4 SS4	0.6-2.7	26-Apr-06	0.688	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS4 SS5	2.7-3.8 0-2.15	26-Apr-06 26-Apr-06	0.831	_	11.4	4.85	-	-	11.4	4.85	- 7450	3170	-	-	7450	3170	-	-	-	-	-	-	21.8	9.27	-	-	21.8	9.27	117	49.7	-	-	- 117	49.7
SS6	0-1.65	26-Apr-06	0.708	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS6 SS7	1.65-2.5 0-1.4	26-Apr-06 26-Apr-06	0.785 0.717		22	6.23	-	-	22	6.23	15700	4440	-	-	15700	4440	-	-	-	-	-	-	20	5.66	-	-	20	5.66	- 67.5	19.1	-	-	67.5	
SS7	1.4-2.5	26-Apr-06	0.617	-	21.5	8.23	-	-	21.5	8.23	13500	5170	-	-	13500	5170	-	-	-	-	-	-	13.3	5.09	-	-	13.3	5.09	117	44.8	-	-	117	44.8
SS7 SS8	2.5-3.5 0-1.9	26-Apr-06 27-Apr-06	0.663		9.1	3.07	-	-	9.1	3.07	3780	1270	-	-	3780	1270	-	-	-	-	-	-	8.3	2.8	-	-	8.3	2.8	20	6.74	-	-	20	6.74
SS8	1.9-2.3	27-Apr-06	0.531	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS8 SS8	0-2 2-4	26-Feb-10 26-Feb-10	0.64		8.12 8.01	2.92 3.02	7.89 6.84	2.85 2.47		2.89	871 1010					345 380	0.538 0.534		0.175	0.063	0.356 0.447	0.128 0.166	15.8 17.1	5.69 6.45		1.79 1.46	10.4 10.6	3.74 3.95	24.5 41	8.82 15.5	35.2 26.9	12.7 9.72	29.8 34	
SS9	0-1.7	27-Apr-06	0.623		- 0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	
SS9 SS9	1.7-3.2 3.2-3.7	27-Apr-06 27-Apr-06	0.61		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
SS10	0-1.5	27-Apr-06 27-Apr-06	0.596		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS10	1.5-2.5	27-Apr-06	0.378	_	- 0.02	-	- (F2	- 1.07	7.20	-	- 042	-	- 007	- 201	- 020	-	- 0.E10	- 0.17	- 0.211	- 0.004	- 0.415	- 0.122	- 147	- 4.92	- 4.64	- 1.4	- 0.67	-	- 20.2	- 0.20	-	7.04	- 25.0	- 016
SS10 SS10	0-2 2-4	26-Feb-10 26-Feb-10	0.672	_	8.03 7.29	2.63 2.87	6.52 6.66	1.97 2.51	7.28 6.97	2.3 2.69	843 907	277 357	997 1010	301 381	920 959	289 369	0.519 <0.498	0.17 ND	0.311 0.318	0.094 0.12	0.415 0.318	0.132 0.12	14.7 15.1	4.82 5.95	4.64 4.69	1.4 1.77	9.67 9.9	3.11 3.86	28.3 30.6	9.28 12.1	23.3 24.3	7.04 9.15	25.8 27.4	
SS11	0-2.5	27-Apr-06	0.292		5.28		-	-	5.28			1950	-	-		1950	-	-	-	-	-	-	25.1			-	25.1		63.6	45	-	-	63.6	

East White Lake Field Vermilion Parish, Louisiana

ABI3										l																							T	$\overline{}$
Tennal Control Contr				Moistur	e Content					As Av	erage					Ba Ave	erage			•	Cd A	verage					Cr Av	verage					Lead A	verage
Martin M		Carra	1		I	ICO	ON	Pis	sani			ICO	ON	Pis	sani			ICC	ON	Pisani			ICO	ON	Pis	sani			ICC	DN	Pis	sani	 	\vdash
1. 1. 1. 1. 1. 1. 1. 1.						mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg- mg/kg	- mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-
111 Total 111 Total	Boring ID				ļ	,						-		dry	wet			dry	wet	dry wet	dry								,		dry	wet		
Second Column Second Colum	SS11 SS11				1									-	-			-	-		-	_			1		+	_			-	-		
Column C	-		-				 	-	-					-	-			-	-		-	-		1	-	-	+	_			-	-	+ +	
Section Sect		_			+	1	 		1		-	-	-	-	-	-		-	-					1			1	-	-	-	-	-	- 1	$\overline{}$
Column C					+	_	 		-		-	-	-	-	-	-	-	-	-				-		+				-	-	-	-		- -
Section Sect	SS14	0-0.8	28-Apr-06	0.439	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	1	-		-	-	-	-	-	-		-
Column	-						t					-	-	-	-			-	-			+		 	+			_		-	-	-		
Second S					+		1		-			-		-	-	-	-	-			+		-	-		1		-	-	-	-	-	-	- -
09	AB1	0-3	13-Nov-06	0.819	-			-	_					-	-										-						-	-		
Column C					+				_					-	-										+		+				-	-		
March Marc									+					-	-						_				-		_	_			-	-	+	
March Marc					+				-					-	-										-							-		
10		_							+					-	-										-			_			-			
100		10-12	31-Oct-06	0.402	-	8.5	5.08		-	8.5	5.08	125	74.8	-	-	125	74.8	0.176	0.105		0.176	0.105		-	-	-		-	14.1	8.43	-	-	14.1	8.43
100 140 150					+				_					-	-										-						-	-		
10	AB3	4-6	1-Nov-06	0.48		6.06	3.15		+	6.06	3.15	83.4	43.4	-	-	83.4	43.4	0.147	0.0764		_	0.0764					+	-	12.4	6.45	-	-	12.4	
150 150		_							_					-											-							-		
Second Color Col									+					-	-																-	-		
No. Co.					-				-					-	-		26.1				0.124		-	-	-	-	-	-			-	-	12.7	4.14
ASS		_							_					-	-						_				-			2 36			-	-		
1.10					1									-	-						_		7.04	1	+		+	-			-	-		
April Decoration Decorati		_							-		3.74	155	99	-	-	155	99	0.165	0.105		0.165	_			-		+	-			-	-	12.4	7.92
Section Sect		_			1				-		3.43	132	106	-	-	132	106	<0.0991	ND		ND				+						-	-	15.1	12.1
Section Sect		_	3-Nov-06		-			-	-	12.6				-	-						_		-		-	-	+	-			-	-		
APP 10.12 Nices					1				1					-	-						_			1			1	-			-	-		
ABS 1917 Sevent				-	+	-	-				-	-	-	-	-	-	-	-	-		-	-	-	-	-		+	-	-	-	-	-	-	-
ABB									1					-	-																	-		
No. 1211 6-Nov-08 0.514 0.527 6.11 0.577 1.12 1.12 0.577 1.12 1.12 0.577 0.112 0.0806 0.113 0.522 0.514 0.52 0.544 0.58				0.498	+	- 10.7	5.37				5.37	-	75.3	-	-	-	75.3	0.185	-		0.185	0.0929	8.58	4.31	-		+	4.31	- 13	-	-	-	-	-
No. No.					1				-					-	-						_					-					-			
ABID 4.6 6No. 60 6No. 60 6357				0.344	+	6.27	4.11				4.11	120	78.7	-	-	120	78.7	0.132	0.0866		0.132	0.0866	8.41	5.52	-		+	_	14.6	9.58	-	-	14.6	9.58
ABID 14-16 CNNec60 7-2 - - - - - - - - -	AB10	_		0.537	+	3.69	1.71		_		1.71	88.6	41	-	-	88.6	41	< 0.10	ND		ND	ND	13.4	6.2	-				18.4	8.52	-	-	18.4	8.52
ANII				0.341	+	3.96	2.61				2.61	75.6	49.8	-	-	75.6	49.8	<0.0993	ND		ND	ND	6.79	4.47	-		+	4.47	10.1	6.66	-	-	10.1	6.66
ABI				0.749	1	6.25	1.57		-		1.57	437	110	-	-	437	110	0.158	0.0397		0.158	0.0397	14.5	3.64	-	-		3.64	20.3	5.1	-	-	20.3	5.1
ABI2 6-8 7.Navo6a 0.54				0.531	-	4.97	2.33	-	-		2.33	92.7	43.5	-	-			0.151	0.0708				13.1	6.14	-				15.7	7.36	-	-	15.7	7.36
ABI2 12-14 7-Nov-06 0.519 . 5.05 2.43 . 5.05 2.43 1.09 81.5 . . 1.09 81.5 0.156 0.0752 . . 0.156 0.0752 . . 0.470 0.0626 . . 7.73 1.084 . 0.6626 . . 0.471 0.0626 . 0.473 1.084 . 0.0626 . . 0.473 1.084 . 0.0626 . . 0.473 1.084 . 0.0626 . 0.473 1.084 . 0.0626 . 0.473 1.084 . 0.0626 . 0.473 1.084 . 0.0626 . 0.473 1.084 . 0.0626 . 0.473 1.084 . 0.0626 . 0.473 1.084 . 0.0626 . 0.473 1.084 . 0.0626 . 0.473 1.084 . 0.0626 . 0.473 1.084 . 0.0626 . 0.473 1.084 . 0.0626 . 0.473 1.084 . 0.0626 . 0.473 1.084 . 0.0626 . 0.473 1.084 . 0.0626 . 0.473 1.084 . 0.0626 . 0.0752 . 0.0753 . 0.085 . 0.003 0.0855 . 0.003 0.003 0.003 0	1 D 1 0			0.54	-	5.07	2.33		-		2.33	148	67.9	-	-			<0.0995	ND				14.3	6.56	-		+	1	15.3	7.02	-	-	15.3	7.02
ABIS 3-6 13-Nov-66 0.88 - 5.48 2.3 - 5.48 2.3 - 5.48 2.3 208 87.4 - 208 57.4 0.265 0.111 - 0.265 0.112 - 0.265 0.111 1.22 5.12 - 1.22 5.12 1.33 5.59 - 1.35 5.59 5.48 5.3 5.48 5.4	AB12	12-14	7-Nov-06	0.519	-	5.05	2.43	-		5.05	2.43	169	81.5			169	81.5	0.156	0.0752		0.156	0.0752	7.46	3.6	-	-	7.46	3.6	12.1	5.83	-		12.1	5.83
AB15									+						-					-											-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AB13	_																			_													
AB14 0.3 13-Nov-06 0.628 - 551 2.05 551 2.05 2.07 74.4 - 2.00 74.4 - 2.00 74.6 0.719 0.0815 0.219 0.0815 12.8 4.76 12.8 4.76 14.4 5.36 - 14.4 5.36 14.4 5.		_					1 1		+						-			0.203			_		14.1								-		+ + +	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AB13 AB14	_													-			0.219					12.8								-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AB14	3-6	13-Nov-06	0.694	-	7.23	2.21	-	-	7.23	2.21	551	168	-	-	551	168	0.366	0.112		0.366	0.112	19.1	5.83	-	-	19.1	5.83	23.5	7.17		-	23.5	7.17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_							+												_					1					-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																																		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					-				-					-	-																-	-		
AB16 8-10 7-Nov-06 0.593 - 4.66 1.9 - 4.66 1.9 193 78.6 - 193 78.6 - 193 78.6 < 0.0992 ND - ND ND 12.2 4.97 - 12.2 4.97 15 6.11 - 15 6.1		_																			_					1					-			
AB16	AB16	8-10							_					-											1						-			
AB18		_																			_													
AB18	AB18	_							+						_											1								
AB19	AB18	10-12	8-Nov-06	0.356	-	26.6	17.1	-	-	26.6	17.1	254	164	-	-	254	164	0.415	0.267		0.415	0.267	8.64	5.56	-	-	8.64	5.56	14.9	9.6	-	-	14.9	9.6
AB19 8-10 8-Nov-06 0.409 - 5.18 3.06 5.18 3.06 280 165 280 165 280 165 < 0.0992 ND ND ND 9.47 5.6 9.47 5.6 14.2 8.39 14.2 8.39 AB19 12-14 8-Nov-06		_												-	-																			
AB20 6-8 8-Nov-06 0.612 - 4.98 1.93 4.98 1.93 138 53.4 13.8 53.4	AB19								+											-	_													
AB20 10-12 8-Nov-06 0.544 - 7.88 3.59 - 7.88 3.59 143 65.2 - 143 65.2 0.206 0.0939 - 0.206 0.0939 11.9 5.43 - 11.9 5.43 15.4 7.02 - 15.4 7.02 AB20 14-16 8-Nov-06															-																			
AB20 14-16 8-Nov-06									_						-						_													
AB21 4-6 8-Nov-06 0.861 - 8.4 1.17 8.4 1.17 232 32.2 232 32.2 0.2 0.0278 0.2 0.0278 10.7 1.49 10.7 1.49 13.3 1.85 13.3 1.85	AB20	14-16	8-Nov-06	-	-	-	-	-	-	-	-		-				-		-		-	-	-	-	-	-	-	-	-	-		-	-	-
					+							232		-	-	- 222		- 0.2													-			
	AB21	_																			_													

East White Lake Field Vermilion Parish, Louisiana

		İ							Ι									6.1			614			- Cl			6.4							
			Moisture	Content	IC	Ars			As Average Barium ICON					:	Ba Aver	age	ICC	Cadr		:	Cd A	verage	IC	Chron		:	Cr Av	erage	100	Le			Lead A	verage
	Core				ICO	ON	Pi	isani			ICC	JIN	P18	sani			ICC	JN	1718	sani			ICO	ON	1'18	ani			ICC	ON	PIS	sani		
Paring ID	Interval	Data	ICON	MPA		mg/kg-		mg/kg-		mg/kg-					mg/kg- m		mg/kg-				mg/kg-		mg/kg-		mg/kg-			mg/kg- wet	mg/kg-			mg/kg-		
Boring ID AB21	(ft bgs) 8-10	Date 8-Nov-06	-	-	dry -	wet	dry -	wet	dry -	wet	dry -	wet -	dry -	wet -	dry -	wet	dry -	wet	dry -	wet	dry -	wet -	dry -	wet	dry -	wet -	dry -	-	dry -	wet	dry -	wet	dry -	wet
AB21 AB22	12-14 4-6	8-Nov-06 8-Nov-06	0.774	-	6.73	1.52	-	-	6.73	1.52	- 244	- 55.1	-	-	- 244	- 55.1	0.188	0.0425	-	-	0.188	0.0425	12.5	2.83	-	-	12.5	2.83	14.8	3.34	-	-	14.8	3.34
AB22	6-8	8-Nov-06	0.668	-	3.64	1.21	-	-	3.64	1.21	141	47	-	-		47	0.100	0.039	-	-	0.117	0.039	11.3	3.76	-	-	11.3	3.76	12.6	4.2	-	-	12.6	4.2
AB22 AB22	12-14 16-18	8-Nov-06 8-Nov-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED4	0-2	25-Feb-10	0.614	0.406	5.42	2.09	1.58	0.94	3.5	1.52	662	256	342	203		229	0.594	0.229	ND	ND	0.594	0.229	16.4	6.33	5.27	3.13	10.8	4.73	22.4	8.65	11.9	7.07	17.2	7.86
SED5 SED6	0-2 0-2	25-Feb-10 25-Feb-10	0.576 0.648	0.5 0.51	4.75 8.06	2.01 2.84	6.18 3.31	3.09 1.62	5.47 5.68	2.55 2.23	216 522	91.6 184	123 227	61.4 111		76.5 147	<0.496	ND 0.426	ND 2.1	ND 1.03	ND 1.66	ND 0.728	15.3 24.1	6.49 8.48	ND 3.57	ND 1.75	15.3 13.8	6.49 5.12	15.4 55.2	6.53 19.4	14.9 18.7	7.43 9.18	15.1 37	6.98 14.3
SED7 SED7	0-2	25-Feb-10 25-Feb-10	0.696	0.686	3.93	1.19	3.47 5.36	1.09	3.7	1.14	686 1010	209	726 1250	228 497		218	<0.496 <0.498	ND	0.0955 0.0977	0.03	0.0955	0.03 0.039	19	5.78 7.32	6.91	2.17	13	3.97	19.9	6.05	21 24.1	6.59	20.4	6.32 8.92
SED7	2-4 4-6	25-Feb-10 25-Feb-10	0.619	0.601 0.716	4.72 5.45	1.8 1.66	4.08	2.14 1.16	5.04 4.77	1.97 1.41	847	385 258	880	250		254	<0.498	ND ND	0.0977 ND	0.039 ND	0.0977 ND	ND	19.2 16.9	5.15	6.54 5.77	2.61 1.64	12.9 11.3	4.96 3.4	21.6 19.3	8.23 5.89	24.1	9.61 6.84	22.8 21.7	6.36
SED8 SED8	0-2 2-4	25-Feb-10 25-Feb-10	0.694	0.679 0.631	5.37	1.22 1.98	4.42 3.96	1.42 1.46	4.21 4.66	1.32 1.72	587 883	180 325	741 724	238 267		209 296	<0.497 <0.496	ND ND	ND ND	ND ND	ND ND	ND ND	18 18.1	5.51 6.66	4.67	1.5 1.76	11.3 11.4	3.5 4.21	20.1	6.15 7.8	22.8 21.1	7.31 7.8	21.4 21.2	6.73 7.8
SED9	0-2	25-Feb-10	0.66	0.648	5.11	1.74	3.92	1.38	4.52	1.56	493	168	457	161	475	164	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED9 SED10	2-4 0-2	25-Feb-10 25-Feb-10	0.63	0.597 0.618	6.4 5.2	2.37 1.8	4.81 4.37	1.94 1.67	5.61 4.79	2.15 1.73	687 769	254 266	556 691	224 264		239 265	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED10	2-4	25-Feb-10	0.62	0.612	5.62	2.14	5.39	2.09	5.5	2.11	999	380	603	234		307	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED11	0-2 2-4	25-Feb-10	0.649	0.659	6.5	2.28	7.68	2.62	7.09	2.45	1260 1130	442	2020 1350	689		566	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED11 SED12	0-2	25-Feb-10 25-Feb-10	0.632	0.632 0.679	6.54 3.8	2.41 1.14	7.96 3.43	1.1	7.25 3.61	1.12	933	416 281	1020	498 326		457 303	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED12	2-4	25-Feb-10	0.668	0.716	5.93	1.97	6.97	1.98	6.45	1.97	1500	498	2000	567	1750	533	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED12	4-6	25-Feb-10	0.641	0.672	4.78	1.72	3.84	1.26	4.31	1.49	1360	488	1450	477		483	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-
SED13 SED13	0-2 2-4	26-Feb-10 26-Feb-10	0.749	0.734 0.666	4.32 3.47	1.08 1.14	4.47 4.25	1.19 1.42	4.4 3.86	1.14 1.28	773 682	194 224	632 1140	168 382		181 303	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED14	0-2	26-Feb-10	0.707	0.719	3.33	0.976	3.56	1	3.44	0.988	1180	346	1020	287	1100	316	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED14	2-4	26-Feb-10	0.657	0.638	5.74	1.97	4.01	1.45	4.87	1.71	1540	528	1240	448		488	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED16 SED17	0-2 0-2	26-Feb-10 26-Feb-10	0.786	0.815 0.697	5.09 3.31	1.09	5.24 4.42	0.97 1.34	5.17 3.87	1.03	270 1720	57.8 550	324 1730	60 524		58.9 537	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
SED17	2-4	26-Feb-10	0.649	0.64	4.93	1.73	5.28	1.9	5.1	1.82	1990	698	2330	838	2160	768	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED18	0-2	26-Feb-10	0.745	0.741	5.48	1.4	6.91	1.79	6.2	1.59	1430	365	2140	554		459	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED18 SED19	2-4 0-2	26-Feb-10 26-Feb-10	0.722 0.688	0.59 0.646	5 4.74	1.39 1.48	3.49 4.89	1.43	4.24 4.81	1.41	1380 2610	384 814	1490 4890	611 1730		497 1270	-	-	- ND	- ND	- ND	- ND	-	-	17.6	6.22	17.6	6.22	-	-	37.6	13.3	37.6	13.3
SED19	2-4	26-Feb-10	0.594	0.596	6.31	2.56	4.46	1.8	5.38	2.18	1180	479	2130	860	1650	670	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
SED20	0-2	26-Feb-10	0.672	0.694	5.11	1.68	4.77	1.46	4.94	1.57	686	225	804	246		236	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED20 SED21	2-4 0-2	26-Feb-10 26-Feb-10	0.635	0.648	5.96 3.61	2.18 1.09	5.48 3.47	1.93	5.72 3.54	2.05	846 578	309 175	807 486	284 154		296 164	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED21	2-4	26-Feb-10	0.594	0.641	4.63	1.88	4.62	1.66	4.63	1.77	1040	422	933	335		379	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED21	4-6	26-Feb-10	0.604	0.605	6.26	2.48	5.77	2.28	6.02	2.38	1040	412	1110	437		424 469	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-
SED21 SED22	6-8 0-2	26-Feb-10 26-Feb-10	0.592 0.683	0.574 0.688	5.24 3.14	2.14 0.995	3.52 4.58	1.5 1.43	4.38 3.86	1.82	1160 639	473 203	1090 824	465 257		230	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
SED22	2-4	26-Feb-10	0.64	0.624	6.66	2.4	5.77	2.17	6.22	2.28	649	234	585	220		227	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED23	0-2 2-4	2-Mar-10 2-Mar-10	0.679	0.646	6.73 5.67	2.16 1.73	3.76 3.52	1.33 1.11	5.24 4.6	1.75 1.42	888 951	285 290	1230 1360	437 429		361	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- -
SED23 SED24	0-2	2-Mar-10	0.695 0.582	0.685 0.652	4.97	2.08	4.14	1.11	4.55	1.76	706	295	885	308		360 302	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
SED24	2-4	2-Mar-10	0.62	0.674	-	-	4.6	1.5	4.6	1.5	-	•	589	192	589	192	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-
SED25 SED25	0-2 2-4	2-Mar-10 2-Mar-10	0.666	0.666 0.677	5.95 4.66	1.99 1.4	4.13 3.68	1.38	5.04 4.17	1.68	1070 1300	357 391	1450 1790	484 579		421 485	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-		-
SED26	0-2	2-Mar-10	0.616	0.653	4.77	1.43	4.27	1.19	4.52	1.66	791	304	1090	377		340	-	<u>-</u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED26	2-4	2-Mar-10	0.78	0.773	6.51	1.11	5.29	1.2	5.9	1.15	810	138	978	222	894	180	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED27 SED27	0-2 2-4	2-Mar-10 2-Mar-10	0.729 0.682	0.721 0.697	4.95 4.97	1.34 1.58	3.3 4.13	0.92 1.25	4.12 4.55	1.13 1.42	548 855	149 272	584 1090	163 330		156 301	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED27	0-2	2-Mar-10	0.767	0.786	5.04	1.17	3.27		4.16	0.937	495	115	486	104		110	<0.498		0.224	0.048	0.224	0.048	17.5	4.08	6.54	1.4	12	2.74	17.9	4.17	19.4	4.16	18.7	4.17
SED28	2-4	2-Mar-10	0.843	0.851	6.23	0.978	3.15		4.69	0.724	332	52.1	378	56.3		54.2	< 0.496	ND	ND	ND	ND	ND	9.39	1.47	2.08	0.31	5.74	0.892	8.36	1.31	8.99	1.34	8.68	1.33
SED29 SED29	0-2 2-4	2-Mar-10 2-Mar-10	0.834 0.827	0.792 0.816	4.47 6.86	0.742 1.19	ND 3.8	ND 0.7	4.47 5.33	0.742 0.943	539 486	89.5 84.1	659 761	137 140		113 112	<0.496 <0.496	ND ND	0.111 0.0457	0.023	0.111 0.0457	0.023 0.0084	16.9 19.3	2.81 3.34	13.7 7.88	2.85 1.45	15.3 13.6	2.83	16.3 11.4	2.71 1.97	20.2 15.2	4.2 2.79	18.2 13.3	3.45 2.38
SED30	0-2	2-Mar-10	0.827	0.861	4.97	0.939	3.6	0.5	4.28	0.72	493	93.2	856	119		106	<0.496	ND	0.0437	0.0034	0.0437	0.038	17.3	3.21	26.8	3.72	21.9	3.47	16.6	3.14	32.4	4.5	24.5	3.82
SED30	2-4	2-Mar-10	0.824	0.844	5.75	1.01	4.55	0.71	5.15	0.861	457	80.4	539	84.1	498	82.3	< 0.497	ND	0.0641	0.01	0.0641	0.01	12.2	2.15	6.73	1.05	9.47	1.6	11.1	1.95	12.6	1.97	11.9	1.96
SED31 SED31	0-2 2-4	1-Mar-10 1-Mar-10	0.701 0.849	0.706 0.798	3.13 7.76	0.936 1.17	1.16 3.81	0.34	2.14 5.79	0.638 0.971	585 334	175 50.4	544 395	160 79.8		167 65.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED31	4-6	2-Mar-10	0.681	0.798	4.38	1.17	1.63	0.77	3.01	0.949	168	53.6	168	51.3		52.4	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
SED32	0-2	1-Mar-10	0.723	0.719	4.47	1.24	2.21	0.62	3.34	0.929	460	127	473	133	467	130	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED32 SED32	2-4 4-6	1-Mar-10 2-Mar-10	0.839	0.853 0.841	7.84 6.79	1.26 1.3	5.03 3.21	0.74 0.51	6.44	0.903	348 198	56 37.8	431 233	63.3 37.1		59.7 37.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED32 SED33	0-2	1-Mar-10	0.809	0.841	3.21	0.854	2.6	0.51	2.91	0.903	395	105	670	134		120	-		-	-	-	-		-		-	-	-	-	-	-	-	-	-
SED33	2-4	1-Mar-10	0.868	0.833	8.24	1.09	5.09	0.85	6.66	0.969	318	42	411	68.7	365	55.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED33 MPA-Sed 15-N	4-6 0-2	2-Mar-10 8-Jun-10	0.733 0.546 (a)	0.779	3.92	1.05	2.53	0.56	3.23	0.803	154	41.1	159	35.2	157	38.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MPA-Sed-15-W	0-2	8-Jun-10	- (a)	-	-	-	-	-	-	-		-	-	-	-	-	-	<u>-</u>	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-

East White Lake Field Vermilion Parish, Louisiana

						Δ			4 - 4 -			D	•	P-	A	I	C- 1-	nium		CAA			Clauser			C:: 4-			T	1		T 1 A	
			Moisture	e Content	IC	Arse ON		sani	As Av	rerage	ICO		ium Pisani	Ба	Average	ICO			sani	Ca A	verage	ICC	Chron		ani.	CFA	rerage	ICO	Lea		ani	Lead A	verage
	Core				IC	ON	rı	sam			ICC	JIN	risani			ici	JIN	F18	sam			ICC	JIN	Pisa	am			icc	JIN	Pis	anı		
	Interval		ICON	MDA	mg/kg-		mg/kg-			mg/kg-		mg/kg-		-	g- mg/kg-				mg/kg-	mg/kg-		mg/kg-	0. 0	mg/kg-		mg/kg-		mg/kg-		mg/kg-			mg/kg-
Boring ID MPA-Sed-15-W-2	(ft bgs) 0-2	Date 8-Jun-10	ICON	MPA	dry -	wet	dry -	wet	dry	wet	dry	wet -	dry we		wet	dry -	wet -	dry -	wet	dry -	wet	dry -	wet	dry -	wet	dry -	wet	dry -	wet	dry -	wet	dry -	wet -
MPA-Sed-15-E	0-2	8-Jun-10	0.546 (a)		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MPA-Sed-15-E-2	0-2	8-Jun-10	0.546 (a)		-	-	-	-	-	-	-	-		_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
MPA-AB5 (A) MPA-AB5 (B)	4-6 4-6	19-May-10 19-May-10	0.64 (a)	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MPA-AB5 (C)	4-6	19-May-10		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MPA-AB-6	8-10	19-May-10	-	0.861	9.3	1.3	10.4	1.45	9.85	1.37	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MPA-AB8 MPA-AB13	6-8 0-3	19-May-10 19-May-10	-	0.772 0.874	5.28 5.41	1.2 0.682	7.5 11.5	1.71 1.45	6.39 8.46	1.46 1.07	-	-		-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB-6	8-10	10-Aug-10	-	0.861 (a)	-	-	8.35	1.16	8.35	1.16	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB-13	0-3	10-Aug-10	-	0.874 (a)	-	-	17.6	2.22	17.6	2.22	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB-13 SO-E AB-14	0-3 0-3	10-Aug-10	-	0.874 (a) 0.628 (a)	-	-	10.6 6.29	1.33 2.34	10.6 6.29	1.33 2.34	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB-14 AB-8	6-8	10-Aug-10 10-Aug-10	-	0.628 (a) 0.772 (a)	-	-	7.98	1.82	7.98	1.82	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB-8 SO-S	6-8	10-Aug-10	-	0.772 (a)	-	-	7.59	1.73	7.59	1.73	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB-5 SO-NE AB-5 SO-NW	4-6 4-6	10-Aug-10 10-Aug-10	0.64 (a)	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB-5a	4-5.5	10-Aug-10	0.64 (a)	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB-15	4-5.5	10-Aug-10	0.64 (a)	- 0.611		-	4.06	1 50	106	1 00	720	200	406 10		- 227		-0.10	- -0.51		- ND	- ND	- 12.4	102	14.0	- E 74	12.6	- E 20	10.0	7.25	- 21.2	- 9.24	- 20	- 70
SED-8 SED-9	0-0.5 0-0.5	6-May-10 5-May-10	0.611 0.71	0.611 0.696	5.65 3.36	2.2 0.974	4.06 6.61	1.58 2.01	4.86 4.99	1.89 1.49	720 455	280 132	496 193 671 20-			<0.498 <0.498	<0.19	<0.51 <0.66	<0.2 <0.2	ND ND	ND ND	12.4 13.8	4.82	14.8 13.9	5.74 4.24	13.6 13.9	5.28 4.12	18.9 19.6	7.35 5.68	21.2	8.24 6.19	20 20	7.8 5.94
SED-11	0-0.5	6-May-10	0.679	0.658	4.8	1.54	4.39	1.5	4.59	1.52	713	229	550 18	_		<0.498	<0.16	<0.58	<0.2	ND	ND	13.6	4.37	14.5	4.95	14	4.66	19.3	6.2	18.8	6.42	19	6.31
SED-13	0-0.5	6-May-10	0.756	0.725	3.11	0.759	5.02	1.38	4.06	1.07	586	143	909 25		_	<0.499	<0.12	<0.73	<0.2	ND	ND	15.7	3.83	18.5	5.09	17.1	4.46	18.1	4.42	22	6.06	20.1	5.24
SED-19 SED-24	0-0.5 0-0.5	6-May-10 5-May-10	0.787 0.689	0.784	2.3 3.15	0.49	3.7 10.5	0.8 3.5	6.81	0.645 2.24	516 434	110 135	509 110 1200 40	_	_	<0.497 <0.499	<0.11	<0.93 0.0257	<0.2 0.0086	ND 0.0257	ND 0.0086	13.8 12.7	2.94 3.95	20.5 14.8	4.43	17.2 13.7	3.68 4.44	17 18	3.62 5.6	23.4 25.1	5.06 8.4	20.2	4.34 7
SED-24 SED-26	0-0.5	5-May-10	0.705	0.686	3.28	0.968	5.13	1.61	4.2	1.29	406	120	538 16	_		<0.497	<0.15	< 0.64	<0.2	ND	ND	11.6	3.42	17.2	5.39	14.4	4.41	16.7	4.93	23.1	7.24	19.9	6.08
SED-31	0-0.5	5-May-10	0.679	0.68	4.8	1.54	8.03	2.57	6.42	2.06	554	178	1100 35			< 0.497	<0.16	0.0594	0.019	0.0594	0.019	12.9	4.14	17	5.44	15	4.79	18.5	5.94	24.8	7.92	21.6	6.93
SED-120 * Hg-MPA-01	0-0.5 0-0.5	7-May-10 6-Oct-10	0.822	0.825 0.649	5.69	1.01	3.66	0.64	4.67	0.826	410	73	754 13	_	102	<0.498	<0.0886	0.217	0.038	0.217	0.038	9.14	1.63	35.8	6.27	22.5	3.95	8.16	1.45	34	5.95 -	21.1	3.7
Hg-MPA-01	0.5-2	6-Oct-10	-	0.626	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-01 Hg-MPA-02	5-7 0-0.5	6-Oct-10 6-Oct-10	-	0.536 0.727	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-02	0.5-2	6-Oct-10	-	0.638	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-02	5-7	6-Oct-10	-	0.554	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-03 Hg-MPA-03	0-0.5 0.5-2	6-Oct-10 6-Oct-10	-	0.671 0.594	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-03	4-6	6-Oct-10	-	0.569	-	-	-	-	-	-	-	- -			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-04	0-0.5	6-Oct-10	-	0.678	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-04 Hg-MPA-04	0.5-2 3-5	6-Oct-10 6-Oct-10	-	0.481 0.537	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-05	0-0.5	6-Oct-10	-	0.724	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-05 Hg-MPA-05	0.5-2 6-8	6-Oct-10 6-Oct-10	-	0.63 0.56	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-06	0-0.5	7-Oct-10	-	0.679	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Hg-MPA-06 Hg-MPA-06	0.5-2 5-6	7-Oct-10 7-Oct-10	-	0.602 0.516	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-07	0-0.5	7-Oct-10	-	0.566	-	-	-	-	-	-		-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-07 Hg-MPA-07	0.5-2 6.5-7	7-Oct-10 7-Oct-10	-	0.475 0.47	-	-	-	-	-	-	-	-		_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-08	0-0.5	7-Oct-10	-	0.667	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-08 Hg-MPA-08	0.5-2 7.5-8	7-Oct-10 7-Oct-10	-	0.609 0.558	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-09	0-0.5	7-Oct-10	-	0.688	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-09 Hg-MPA-09	0.5-2 6-7	7-Oct-10 7-Oct-10	-	0.635 0.444	-	-	-	-	-	-	-	-		_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-09dup	0.5-2	7-Oct-10	-	0.612	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-01 SP-MPA-01	0-0.5 0.5-2	5-Oct-10 5-Oct-10	-	0.593 0.585	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-01	2-4.3	5-Oct-10	-	0.538	-	-	-	-	-	-	-	-		_		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-01 SP-MPA-01	4.3-4.7 8-9	5-Oct-10 5-Oct-10	-	0.635 0.376	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-02	0-0.5	5-Oct-10	-	0.65	-	-	-	-	-	-	-	-		_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-02 SP-MPA-02	0.5-2 3-4	5-Oct-10 5-Oct-10	-	0.649 0.663	-	-	-	-	-	-	-	-		_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-02 SP-MPA-02a	4-5 3.5	5-Oct-10	~	0.648	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-02a SP-MPA-02a	3-5 7-8	6-Oct-10 6-Oct-10	-	0.718 0.354	-	-	-	-	-	-	-	-		_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-03	0-0.5	5-Oct-10	-	0.444	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-03 SP-MPA-03	0.5-2 4-6	5-Oct-10 5-Oct-10	-	0.661 0.474	-	-	-	-	-	-	-	-		_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-03	9-10	5-Oct-10	-	0.448	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-04	0-0.5	6-Oct-10	-	0.222	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

East White Lake Field Vermilion Parish, Louisiana

						Ars	senic		As As	verage		Bari	um		Ba Av	rerage		Cad	lmium		Cd Av	rerage		Chro	mium		Cr Av	erage		Le	ead		Lead A	verage
			Moisture	Content	ICO	ON		sani		T	ICO	ON		ani		1	IC	ON	_	sani			IC	ON	Pis	ani			IC	ON		isani		
Boring ID	Core Interval (ft bgs)	Date	ICON	MPA		mg/kg- wet		mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet				mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry			mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	Ī	- mg/kg- dry	mg/kg- wet
SP-MPA-04	0.5-2	6-Oct-10	-	0.368	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-04	5-7	6-Oct-10	-	0.649	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	- '	-
SP-MPA-04	9-10	6-Oct-10	-	0.455	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-1	0-2	1/5/2015	0.436	0.463	3.41	1.92	4.26	2.29	3.84	2.11	319	180	251	135	285	158	0.58	0.327	0.577	0.31	0.579	0.319	14.9	8.4	15.1	8.1	15	8.25	12.5	7.05	12.6	6.74	12.6	6.9
WL-1	2-4	1/5/2015	0.488	0.516	5.21	2.67	6.49	3.14	5.85	2.91	106	54.3	99.6	48.2	103	51.3	< 0.5	< 0.256	< 0.537	< 0.26	ND	ND	14.4	7.37	15.6	7.57	15	7.47	14.4	7.37	14.6	7.07	14.5	7.22
WL-1	6-8	1/5/2015	0.755	-	5.89	1.44	-	-	5.89	1.44	181	44.3	-	-	181	44.3	< 0.5	< 0.123	-	-	ND	ND	10.2	2.5	-	-	10.2	2.5	9.72	2.38	-	-	9.72	2.38
WL-1	9-13	1/5/2015	0.526	0.563	4.03	1.91	4	1.75	4.02	1.83	89.9	42.6	107	46.9	98.5	44.8	< 0.5	< 0.237	< 0.572	< 0.25	ND	ND	15	7.11	12	5.25	13.5	6.18	14.8	7.02	11.1	4.86	13	5.94
WL-2	0-2	1/5/2015	0.38	0.374	< 0.99	< 0.614	0.911	0.57	0.911	0.57	180	112	224	140	202	126	< 0.5	< 0.31	< 0.415	< 0.26	ND	ND	12.6	7.81	12.4	7.77	12.5	7.79	15.9	9.86	11	6.89	13.5	8.38
WL-2	2-4	1/5/2015	0.455	0.543	1.59	0.867	2.8	1.28	2.2	1.07	92	50.1	105	48.2	98.5	49.2	< 0.5	< 0.273	< 0.569	< 0.26	ND	ND	13.9	7.58	16.4	7.49	15.2	7.54	14.6	7.96	15.8	7.22	15.2	7.59
WL-2	8-10	1/5/2015	0.496	0.508	6.01	3.03	7.28	3.58	6.65	3.31	87.4	44	82.3	40.5	84.9	42.3	< 0.5	< 0.252	< 0.528	< 0.26	ND	ND	15.3	7.71	16.3	8.02	15.8	7.87	15.3	7.71	16.2	7.97	15.8	7.84
WL-2	14-16	1/5/2015	0.288	0.291	4.13	2.94	4.96	3.52	4.55	3.23	160	114	144	102	152	108	< 0.5	< 0.356	< 0.353	< 0.25	ND	ND	10.6	7.55	10.2	7.24	10.4	7.4	10.5	7.48	11.9	8.46	11.2	7.97
WL-3	0-2	1/6/2015	0.363	0.245	4.11	2.62	1.07	0.81	2.59	1.72	351	224	234	177	293	201	2.7	1.72	3.54	2.67	3.12	2.2	20.6	13.1	8.99	6.79	14.8	9.95	99.9	63.6	150	113	125	88.3
WL-3	4-6/4-8	1/6/2015	0.659	0.701	4	1.36	4.85	1.45	4.43	1.41	161	54.9	178	53.1	170	54	< 0.5	< 0.171	< 0.903	< 0.27	ND	ND	10.2	3.48	10.3	3.07	10.3	3.28	15.4	5.25	13.5	4.05	14.5	4.65
WL-3	10-13	1/6/2015	0.489	0.497	3.5	1.79	4.12	2.07	3.81	1.93	91.7	46.9	95	47.8	93.4	47.4	< 0.5	< 0.256	< 0.497	< 0.25	ND	ND	13.5	6.9	14.4	7.25	14	7.08	13.8	7.05	14.5	7.3	14.2	7.18
WL-4	0-2	1/6/2015	0.542	0.532	3.15	1.44	4.25	1.99	3.7	1.72	492	225	658	308	575	267	< 0.5	< 0.249	< 0.556	< 0.26	ND	ND	12.4	5.68	13.6	6.35	13	6.02	20.3	9.3	20.7	9.7	20.5	9.5
WL-4	2-4	1/6/2015	0.503	0.5	5.12	2.54	4.48	2.24	4.8	2.39	1070	532	862	431	966	482	< 0.5	< 0.25	< 0.5	< 0.25	ND	ND	12.2	6.06	12.7	6.35	12.5	6.21	18	8.95	17.3	8.66	17.7	8.81
WL-4	4-11	1/6/2015	0.374	0.34	2.18	1.36	1.38	0.91	1.78	1.14	436	273	597	394	517	334	< 0.5	< 0.313	< 0.409	< 0.27	ND	ND	11	6.89	12.1	8	11.6	7.45	10.8	6.76	10.8	7.14	10.8	6.95
WL-4	11-12.5	1/6/2015	0.487	0.481	3.04	1.56	2.1	1.09	2.57	1.33	246	126	177	92.1	212	109	< 0.5	< 0.257	< 0.482	< 0.25	ND	ND	10.4	5.34	8.05	4.18	9.23	4.76	15.4	7.9	9.83	5.1	12.6	6.5
WL-5	0-2	1/6/2015	0.484	0.536	4.88	2.52	4.33	2.01	4.61	2.27	1070	552	1030	477	1050	515	0.57	0.294	< 0.582	< 0.27	0.57	0.294	13.3	6.86	11.5	5.32	12.4	6.09	20.9	10.8	18.2	8.45	19.6	9.63
WL-5	2-13	1/6/2015	0.311	0.291	1.31	0.903	1.96	1.39	1.64	1.15	328	226	357	253	343	240	< 0.5	< 0.345	0.381	0.27	0.381	0.27	11.3	7.79	13.2	9.33	12.3	8.56	14.9	10.3	14.5	10.3	14.7	10.3
WL-6	0-2	1/6/2015	0.492	0.51	4.29	2.18	5.69	2.79	4.99	2.49	641	326	761	373	701	350	< 0.5	< 0.254	< 0.531	< 0.26	ND	ND	11.5	5.84	12.3	6.02	11.9	5.93	15.3	7.77	18.2	8.93	16.8	8.35
WL-6	4-6	1/6/2015	0.711	0.75	5.07	1.47	5.56	1.39	5.32	1.43	226	65.3	238	59.6	232	62.5	< 0.5	< 0.145	<1	< 0.25	ND	ND	7.93	2.29	5.36	1.34	6.65	1.82	7.64	2.21	4.72	1.18	6.18	1.7
WL-6	8-10	1/6/2015	0.551	0.515	4.8	2.16	2.91	1.41	3.86	1.79	115	51.6	99.2	48.1	107	49.9	< 0.5	< 0.225	< 0.557	< 0.27	ND	ND	11.5	5.16	11.9	5.79	11.7	5.48	11.1	4.98	10.5	5.07	10.8	5.03
WL-6	10-13	1/6/2015	0.75	0.675	5.06	1.27	7.69	2.5	6.38	1.89	223	55.8	172	55.8	198	55.8	< 0.5	< 0.125	< 0.8	< 0.26	ND	ND	8.77	2.19	12.1	3.92	10.4	3.06	8.09	2.02	9.26	3.01	8.68	2.52
WL-7	0-2	1/6/2015	-	0.235	-	-	3.49	2.67	3.49	2.67	-	-	136	104	136	104	-	-	< 0.34	< 0.26	ND	ND	-	-	8.29	6.34	8.29	6.34	-	-	8.88	6.79	8.88	6.79
WL-7	2-4	1/6/2015	-	0.244	-	-	2.35	1.78	2.35	1.78	-	-	114	86.2	114	86.2	-	-	< 0.344	< 0.26	ND	ND	-	-	9.93	7.51	9.93	7.51	-	-	6.22	4.7	6.22	4.7
WL-7	4-6	1/6/2015	-	0.738	-	-	8.63	2.26	8.63	2.26	-	-	412	108	412	108	-	-	<1.03	< 0.27	ND	ND	-	-	22.3	5.85	22.3	5.85	-	-	12.4	3.24	12.4	3.24
WL-7	6-8	1/6/2015	-	0.615	-	-	5.92	2.28	5.92	2.28	-	-	262	101	262	101	-	-	< 0.701	< 0.27	ND	ND	-	-	8.88	3.42	8.88	3.42	-	-	7.64	2.94	7.64	2.94
WL-8	0-2	1/6/2015	-	0.296	-	-	6.14	4.32	6.14	4.32	-	-	163	115	163	115	-	-	< 0.369	< 0.26	ND	ND	-	-	10.2	7.15	10.2	7.15	-	-	12.4	8.72	12.4	8.72
WL-8	2-4	1/6/2015	-	0.242	-	-	3.26	2.47	3.26	2.47	-	-	127	96.3	127	96.3	-	-	< 0.33	< 0.25	ND	ND	-	-	9.43	7.15	9.43	7.15	-	-	7.64	5.79	7.64	5.79
WL-8	4-6	1/6/2015	-	0.383	-	-	4.47	2.76	4.47	2.76	-	-	190	117	190	117	-	-	< 0.405	< 0.25	ND	ND	-	-	10.7	6.61	10.7	6.61	-	-	11.5	7.08	11.5	7.08
WL-8	6-8	1/6/2015	-	0.627	-	-	3.7	1.38	3.7	1.38	-	-	303	113	303	113	-	-	< 0.724	< 0.27	ND	ND	-	-	8.71	3.25	8.71	3.25	-	-	16.3	6.08	16.3	6.08
SED-BK-01	0-0.5	10-May-10	0.723	0.683	4.99	1.38	1.04	0.33	3.02	0.855	897	248	155	49	526	149	< 0.496	< 0.137	< 0.631	<0.2	ND	ND	12.6	3.49	11.5	3.66	12.1	3.58	< 0.1	< 0.0277	0.104	0.033	0.104	0.033
SED-BK-02	0-0.5	10-May-10	0.715	0.664	4.26	1.21	4.17	1.4	4.22	1.31	317	90.3	288	96.8	303	93.6	< 0.495	< 0.141	< 0.595	<0.2	ND	ND	17.9	5.1	18.5	6.2	18.2	5.65	0.132	0.0376	0.0952	0.032	0.114	0.0348
SED-BK-03	0-0.5	10-May-10	0.722	0.712	2.83	0.787	4.51	1.3	3.67	1.04	319	88.7	347	100	333	94.4	< 0.5	< 0.139	0.0486	0.014	0.0486	0.014	17	4.73	22.3	6.41	19.7	5.57	< 0.1	< 0.0278	0.0799		0.0799	0.023
SED-BK-04	0-0.5	10-May-10	0.684	0.636	4.79	1.51	3.87	1.41	4.33	1.46	388	123	582	212	485	168	< 0.497	< 0.157	0.0989	0.036	0.0989	0.036	17.6	5.56	20.3	7.38	19	6.47	< 0.1	< 0.0316	0.0962		0.0962	0.035
SED-BK-05	0-0.5	11-May-10	0.779	0.675	6.32	1.4	2.37	0.77	4.35	1.09	388	85.7	388	126	388	106	< 0.499	<0.11	< 0.615	<0.2	ND	ND	8.21	1.81	7.85	2.55	8.03	2.18	<0.1	<0.0221	0.0769	0.025	0.0769	0.025
SED-BK-06	0-0.5	10-May-10	0.641	0.702	4.33	1.55	3.26	0.97	3.8	1.26	753	270	768	229	761	250	<0.497	<0.178	<0.671	<0.2	ND	ND	18.7	6.71	26.8	8	22.8	7.36	<0.1	< 0.0359	0.094	0.028	0.094	0.028
SED-BK-07	0-0.5	11-May-10	0.796	0.771	2.16	0.441	3.93	0.9	3.05	0.671	397	81	463	106	430	93.5	< 0.497	< 0.101	<0.873	<0.2	ND	ND	18.6	3.79	23.1	5.28	20.9	4.54	0.185	0.0377	0.568	0.13	0.377	0.0839
SED-BK-08	0-0.5	11-May-10	0.71	0.771	5.98	1.73	4.71	1.14	5.35	1.44	313	90.8	383	92.6	348	91.7	< 0.498	< 0.144	<0.826	<0.2	ND	ND	17.3	5.02	24	5.82	20.7	5.42	<0.1	<0.029	0.14	0.034	0.377	0.034
SED-BK-09	0-0.5	11-May-10	0.755	0.758	9.45	2.32	8.47	2.05	8.96	2.19	231	56.6	264	63.8	248	60.2	< 0.497	<0.122	<0.826	<0.2	ND	ND	11	2.7	11.4	2.77	11.2	2.74	<0.1	< 0.0245	0.0826	0.034	0.0826	0.034
SED-BK-10	0-0.5	19-May-10	0.651	0.738	6.79	2.37	4.86	1.22	5.83	1.8	205	71.5	274	68.8	240	70.2	< 0.499	< 0.174	<0.797	<0.2	ND	ND	13.8	4.82	27.2	6.82	20.5	5.82	<0.1	< 0.0349	<0.0398	<0.01	ND	ND
OLD DIC-10	0-0.5	19-May-10	0.051	0.802	0.77	2.57	9.95	1.97	9.95	1.97	203	/1.5	319	63.1	319	63.1	-0.133	-0.171	<1.01	<0.2	ND	ND	15.0	7.02	21.3	4.21	21.3	4.21	-0.1	-0.0343	<0.0505		ND	ND

Page 5 of 36 2015\116008\24472MappE.xls

East White Lake Field Vermilion Parish, Louisiana

			1./	ercury		Merc	ury Average		Sele	enium		Se Av	rerage		Stro	ntium		St Av	erage		Zino	2		Zn Average		ТРН	-DRO			-DRO		TPH-	-ORO		TPH-0		ТРН.	GRO
		IC	ON		isani		117 614 6		ON	Pis	ani		l l	IC	ON	,	sani		crage	ICO		Pisa	ni	Zarrenage	IC	ON	Pisa	mi	Ave	erage	ICC		Pis	ani	Aver	age	ICC	
	Core	IC	I	1.	Isaiii			ic	OIN	1 15	аш			ic	ON	113	Sain			icc)1 \	1 150	111		IC	I	1 150	шп			icc	J1 V	1 15	aru				71
	Interval		mg/k	g- mg/kg	- mg/k		kg- mg/kg-		mg/kg-	mg/kg-	mg/kg-				mg/kg-	mg/kg-	mg/kg-			0. 0	mg/kg-	ng/kg-	mg/kg-	mg/kg- mg/kg	0. 0	mg/kg-	0. 0	mg/kg-			0. 0	mg/kg-	0. 0	mg/kg-	mg/kg-		0. 0	mg/kg-
Boring ID	(ft bgs)	dry	wet		wet			dry	wet ND	dry	wet	dry	wet ND	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry 841	wet	dry	wet
B2 B2	2-4 4-6	-	-	-	-	+ -	-	<4.76 <4.6	ND	-	-	ND ND	ND ND	234 119	53.1 26.3	-	-	234 119	53.1 26.3	-	-	-	-		1030 633	233 140	-	-	1030 633	233 140	841 511	191 113	-	-	511	191 113	-	-
B2 Rerun	6-8	-	-	-	-	-	-	<8.31	ND	-	-	ND	ND	86.9	11.6	-	-	86.9	11.6	-	-	-	-		ND	<10	-	-	ND	ND	ND	<50	-	-	ND	ND	-	-
B2 Rerun	10-10.5	-	-	-	-	-	-	<1.64	ND	-	-	ND	ND	15.4	11.1	-	-	15.4	11.1	-	-	-	-		ND	<10	-	-	ND	ND	ND	<50	-	-	ND	ND		-
B3 B3 Rerun	4-7 9-12	-	-	-	-	-	-	<2.53	- ND	-	-	- ND	- ND	34.9	16.5	-	-	34.9	16.5	-	-	-	-		- ND	<10	-	-	- ND	- ND	- ND	- <50	-	-	- ND	- ND		-
B4 Rerun	0-12	-	-	-	-	-		<4.72	ND	-	-	ND	ND	59.3	12.8	-	-	59.3	12.8	-	-	-	-		2040	440	-	-	2040	440	1610	347	-	-	1610	347	_ -	-
B4 Rerun	3-5	-	-	-	-	-	-	<2.57	ND	-	-	ND	ND	40	19	-	-	40	19	-	-	-	-		ND	<10	-	-	ND	ND	ND	<50	-	-	ND	ND	-	-
B4	5-8	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		ND	<10	-	-	ND	ND	ND	<50	-	-	ND	ND		-
B5 B5	0-1.5 4-5.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-		386	112	-	-	386	112	479	139	-	-	479	139	-	-
B5 Rerun	8-10	-	-	-	-	-	-	<2.86	ND	-	-	ND	ND	37.5	15.2	-	-	37.5	15.2	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	_	
B6 B6	1.5-3 3-10.5	-	-	-	-	-		<3.07	ND	-	-	ND -	ND	77.9	29.4	-	-	77.9 -	29.4	-		- 1	-		ND ND	<10 <10	- 1		ND ND	ND ND	ND ND	<50 <50	-	- 1	ND ND	ND ND		-
B7	4-5	-	-	-	-	-		<2.56	ND	-	-	ND	ND	69.9	30.8	-	-	69.9	30.8	-	-	-	-		ND	<10	-	-	ND	ND	ND	<50	-	-	ND	ND	-	
B7 B8 Rerun	8-11 5.5-7	-	-		-	-		<2.67	- ND	-	-	- ND	- ND	- 57.3	25.1	-	-	- 57.3	25.1	-	-	-	-		ND ND	<10 <10	-	-	ND ND	ND ND	ND ND	<50 <50	-	-	ND ND	ND ND	-	-
B8	9.5-11.5	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		ND	<10	-	-	ND	ND	ND	<50	-	-	ND	ND		-
B9 Rerun B9	0-0.5 0.5-3.5	-	-	-	-	-		<4.01	ND	-	-	ND -	ND	64.1	16.4	-	-	64.1	16.4	-	-	-	-		51.6 ND	13.2	-	-	51.6 ND	13.2 ND	ND ND	<50 <50	-	- 1	ND ND	ND ND		-
B9 Rerun	8-9		-	-	-	-		<1.54	ND	-	-	ND	ND	23.4	15.3	-	-	23.4	15.3	-	-	-	-		ND ND	<10	-	-	ND ND	ND ND	ND ND	<50 <50	-	-	ND ND	ND ND	-	
B10 B10	1.5-4 4-7.5	-	-	-	-	-		<2 <2.22	<0.596 ND	-	-	ND ND	ND ND	43.8	23.4	-	-	43.8	23.4		-	-	-		- ND	<10	-		- ND	- ND	- ND	- <50	-	- 1	- ND	- ND		-
B12	0-1.5		-	-	-			-	-	-	-	-	-	-	-		-	-	-	-	-	-	-		ND	<10	-	-	ND	ND	ND	<50	-	-	ND	ND	-	-
B12 Rerun B12	3.5-5 6.5-7.5	-	-	-	-	-		<2.02 <1.37	ND ND	-	-	ND ND	ND ND	49.3 15.3	24.8 11.6	-	-	49.3 15.3	24.8 11.6	-	- T	-	-		ND ND	<10 <10	-	-	ND ND	ND ND	ND ND	<50 <50	-	- 1	ND ND	ND ND		-
B13 Rerun	3-5	-	-		-	-		<2.44	ND	-	-	ND	ND	44	20.8		-	44	20.8	-	-	-	-		ND	<10	-	-	ND	ND	ND	<50	-	-	ND	ND	-	-
B13 Rerun B14	7.5-9.5 0-1	-	-	-	-	-		<1.64	ND -	-	-	ND -	ND -	16.5	11.5	-	-	16.5	11.5	-	-	-			ND 24.9	<10 12.4	-		ND 24.9	ND 12.4	ND ND	<50 <50	-	- 1	ND ND	ND ND		-
B14	4-8	-	-	-	-	-		<2.35	ND	-	-	ND	ND	44.5	22	-	-	44.5	22	-	-	-	-		ND	<10	-	-	ND	ND	ND	<50	-	-	ND ND	ND	-	-
B15 Rerun B15	4-6 8-11.5	-	-	-	-	-		<2.82	ND -	-	-	ND -	ND -	67.8	28.4	-	-	67.8	28.4	-	-	-	-		ND ND	<10 <10	-	-	ND ND	ND ND	ND ND	<50 <50	-	-	ND ND	ND ND	-	-
B17	0-3	-	-	-	-			<1.99	<0.38	-	-	ND	ND	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-		-
B17 Rerun B17	3-6 8.5-10.5	-	-	-	-	-		<2.31	ND -	-	-	ND -	ND -	51.1	25.1	-	-	51.1	25.1	-	-	-	-		ND ND	<10 <10	-	-	ND ND	ND ND	ND ND	<50 <50	-	-	ND ND	ND ND	-	-
B17 Rerun	10.5-12	-	-	-	-	-		<1.45		-	-	ND	ND	55.2	43.1	-	-	55.2	43.1	-	-	-	-		ND	<10	-	-	ND	ND	ND	<50	-	-	ND	ND	-	-
B18 B18	2-4 4-5	-	-	-	-	-		- <2.42	- ND	-	-	ND	- ND	53.1	22.7	-	-	53.1	22.7	-	-	-	-		ND ND	<10 <10	-	-	ND ND	ND ND	ND ND	<50 <50	-	-	ND ND	ND ND		-
B18	7.5-10	-	-	-	-	-	-	<2.1	ND	-	-	ND	ND	30.7	16.5	-	-	30.7	16.5	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-		
B18 B19	10-11.5 1-2.5	-	-	-	-	-		<1.99	<0.25	-	-	- ND	- ND	-	-	-	-	-	-	-	-	-	-		ND -	<10	-	-	ND -	ND -	ND -	<50	-	-	ND -	ND -	-	-
B19	2.5-4	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
B19 B19 Rerun	4-6.5 6.5-9.5	-	-	-	-	-		<2.26	- ND	-	-	- ND	- ND	39.1	18.3	-	-	39.1	18.3	-	-	-	-		ND -	<10	-	-	ND -	ND -	ND -	<50	-	-	ND -	ND -	-	
B20	3-4.5	-	-	-	-	-		<2.73	ND	-	-	ND	ND	38.7	15.6	-	-	38.7	15.6	-	-	-	-		ND	<10	-	-	ND	ND	ND	<50	-	-	ND	ND		
B20 B21	7.5-10 0-2	-	-	-	-	-		<2.26	ND -	-	-	ND -	ND -	43.5	19.7	-	-	43.5	19.7	-	-	-	-		- ND	<10	-	-	- ND	- ND	- ND	- <50	-	-	- ND	- ND	-	-
B21	2-4	-	-	-	-	-		<2.31		-	-		ND	47.7	22.4	-	-	47.7	22.4	-	-	-	-		ND	<10	-	-	ND	ND	ND	<50	-	-	ND	ND	-	
SS1 SS1	0-2.1 2.1-2.5	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		110 46.4	41.1 16.8	-	-	110 46.4	41.1 16.8	<134 <138	<50 <50	-	-	ND ND	ND ND	-	-
SS2	0-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		230	107	-	-	230	107	169	78.6	-	-	169	78.6		-
SS2 SS3	1-1.5 0-0.6	-	-	-	-	-		-	-	-	-	-	-	74.3	27.7	-	-	74.3	27.7	92.5	34.5	-	-	92.5 34.5	<47.4 121	<10 45.1	-	-	ND 121	ND 45.1	<237 <134	<50 <50	-	-	ND ND	ND ND	<134	<50
SS3 SS3	0.6-2.2	-	-	_	-	-	-	-	-	-	-	-	-	96.1	39.1	-	-	96.1	39.1	75.9	30.9	-	-	75.9 30.9	115	46.8	-	-	115	46.8	<123	<50	-	-	ND	ND	<123	<50
SS4	2.2-2.6 0-0.6	-	-	-	-	-		-	-	-	-	-	-	87.1	30	-	-	87.1 -	30 -	47.7	16.5	-	-	47.7 16.5	128 <40	44.2 <10	-	-	128 ND	44.2 ND	<145 <200	<50 <50	-	-	ND ND	ND ND	<145 -	<50 -
SS4 SS4	0.6-2.7	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		52.6	16.4	-	-	52.6	16.4	<160	<50	-	-	ND	ND	-	-
SS5 SS5	2.7-3.8 0-2.15	<u> </u>	-	-	-	-		-	-	-	-	-	-	140	- 59.5	-	-	140	59.5	- 174	74	-	-	174 74	72.3 185	12.2 78.6	 	-	72.3 185	12.2 78.6	<296 <118	<50 <50	- -	-	ND ND	ND ND	<118	- <50
SS6 SS6	0-1.65	-	-		-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		89.2	26	-	-	89.2	26	<171	<50	-	-	ND	ND	-	-
SS7	1.65-2.5 0-1.4	<u> </u>	-	-	-	-		-	-	-	-	-	-	231	65.4	-	-	231	65.4	- 111	31.4	-	-	111 31.4	54.3 386	11.7 109	 	-	54.3 386	11.7 109	<233 553	<50 156	-	-	ND 553	ND 156	<177	- <50
SS7 SS7	1.4-2.5	-	-		-			-	-	-	-	-	-	337	129	-	-	337	129	98.1	37.6	-	-	98.1 37.6	1770	678	-	-	1770	678	496	190	-	-	496	190	<131	<50
SS8	2.5-3.5 0-1.9	-	-		-	-		-	-	-	-	-	-	130	43.8	-	-	130	43.8	63.1	21.3	-	-	63.1 21.3	33.7 124	11.4 53.7	-	-	33.7 124	11.4 53.7		<50 <50	-	-		ND ND	<148	- >00
SS8 SS8	1.9-2.3	- 0.96	- 0.21		-	- 12		-	- NID	- 114	- 0.41	- 1 14	- 0.41	- 6E 2	- 22 5	- 74 -	- 26.0	-	- 25.2	-	-	-	-		<21.3		- 100	- 65.0	ND	ND	<107	<50	- ND	-	ND	ND 450	-	-
SS8 SS8	0-2 2-4	0.86 0.468	0.31		0.59 10.1		5 0.45 2 5.14	<2 <1.98		1.14 1.52	0.41 0.55		0.41	65.3 76.2	23.5 28.7		26.9 24.6	69.9 72.2	25.2 26.7	-	-	-	-		2300	829	182	65.8 -	1240	447	1250	450	ND -	<50 -	1250	450 -	-	-
SS9 SS9	0-1.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		36.5	14	-	-	36.5	14	<131	<50	-	-	ND ND	ND	-	-
SS9	1.7-3.2 3.2-3.7	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		64.4 <20.3	25.1 <10	-	-	64.4 ND	25.1 ND	<128 <101	<50 <50	-	-	ND ND	ND ND	-	-
SS10 SS10	0-1.5 1.5-2.5	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		152	61.4	-	-	152	61.4	134	54.1	-	-	134	54.1	-	-
SS10 SS10	0-2	0.276	0.090	5 0.152	0.046	_		<1.99	- ND	1.32	0.4	1.32	0.4	65.3	21.4	61.3	18.5	63.3	20	-	-	-	-		<16.1 1160	<10 379	464	140	ND 809	ND 260	<80.4 802	<50 263	30.6	9.23	ND 416	ND 136	-	-
SS10	2-4	0.368	0.145	0.318	0.12	0.34	13 0.132	<1.99	ND	1.46	0.55	1.46	0.55	91.8	36.2	84.6	31.9	88.2	34	- 104	- 127	-	-		4190	1650	422	159	2300	905	2160	849	36.9	13.9	1100	431		-
SS11	0-2.5	-	-	-	-	-	-	-	-	-	-	-	-	64.8	45.9	-	-	64.8	45.9	194	137	-	-	194 137	326	231	-	-	326	231	317	224	-	-	317	224	<70.6	<50

East White Lake Field Vermilion Parish, Louisiana

			Mo	rcury		Moroury	Average		Salar	nium		Se Ave	orago		Stror	atium		St Aver	2000		Ziı	nc		7n A1	verage		TPH-I	OPO		TPH	-DRO		TPH-0	OPO.		TPH-ORO	тры	-GRO
		IC				Mercury	Average	IC				Se Avi	erage	IC				5t Avei	age	IC				ZII AV	verage	ICC				Ave	erage	ICON				Average		
	Corro	IC	ON	P18	ani			IC	ON	Pis	sani			IC	ON	Pisa	anı			ICO	JN	Pisa	anı			ICC	DΝ	Pisa	ını			ICON		Pisa	anı		IC	ON
	Core Interval	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg- n	ng/kg- n	ng/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg- n	g/kg-	mg/kg-	mg/kg-	mg/kg- mg/k	g- mg/kg-	mg/kg-
Boring ID	(ft bgs)	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry		_	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry wet		wet
SS11	2.5-3.4	-	-	-	-	-	-	-	-	-	-	-	-	80.2	44.4	-			44.4	120	66.5	-	-	120	66.5	192	106	-	-	192	106		90.3	-	-	163 90.3	_	<50
SS11 SS12	3.4-3.7 0-3.7	-	-	-	-	-	-	-	-	-	-	-	-	63.2 72.9	34.1 39.5	-			34.1 39.5	77.1 73.5	41.6 39.8	-		77.1 73.5	41.6 39.8	51.8 412	28 223	-	-	51.8 412	28 223		<50 254	-	-	ND ND 468 254	_	<50 <50
SS13	0-3.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<29.2	<10	-	-	ND	ND		<50	-	-	ND ND		-
SS13	1-2.75	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	31	12.1	-	-	31	12.1		<50	-	-	ND ND	-	-
SS13 SS14	2.75-3.2 0-0.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<45.5 <17.8	<10 <10	-	-	ND ND	ND ND		<50 <50	-	-	ND ND	-	-
SS14	0.8-1.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<44.2	<10	-	-	ND	ND		<50	-	-	ND ND		-
SS15	0-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<28.0	<10	-	-	ND	ND	<140	<50	-	-	ND ND	-	-
SS15 AB1	3-3.25 0-3	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	106	19.2	-	-	106	19.2	46.4	8.4	-	-	46.4	8.4	24.8 ND	12.4 <21.5	-	-	24.8 ND	12.4 ND	<99.6 ND	<50 <22.5	-	-	ND ND	-	-
AB1	3-6	-	-	-	-	-	-	-	-	-	-	-	-	69.9	21.2	-			21.2	36.9	11.2	-	-	36.9	11.2	ND	<10	-	-	ND	ND		<50	-	-	ND ND	_	-
AB1	6-8	0.075	0.0374	-	-	0.075	0.0374	<2.0	ND	-	-	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	ND	<10	-	-	ND	ND		<50	-	-	ND ND	-	-
AB1 AB2	12-14 0-3	0.0676	0.042	-	-	0.0676	0.042	<1.99	ND -	-	-	ND -	ND -	87.2	12.6	-	-	87.2	12.6	45.9	6.61	-	-	45.9	6.61	ND ND	<10 <10	-	-	ND ND	ND ND		<50 <50	-	-	ND ND	+	-
AB2	3-6		-	-	-	-	-	-	-	-	-	-	-	91.2	20.3	-		91.2	20.3	40.1	8.94	-	-	40.1	8.94	ND	<10	-	-	ND	ND	ND	<50	-	-	ND ND		-
AB2 AB2	4-6 10-12	<0.05 <0.05	ND ND	-	-	ND ND	ND ND	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	ND ND	<10 <10	-	-	ND ND	ND ND		<50 <50	-	-	ND ND	-	-
AB3	0-3	-0.03	-	<u> </u>		ND -	-							63.9	11		-	63.9	11	46.8	8.05	<u>-</u>		46.8	8.05	ND ND	<21.5			ND ND	ND ND		<22.5			ND ND		-
AB3	3-6		-	-	-	- ND	-	-	-	-	-	-	-	59.8	22.7	-	-	59.8	22.7	45.9	17.4	-	-	45.9	17.4	ND ND	<10	-	-	ND	ND		<50	-	-	ND ND	-	-
AB3 AB3	4-6 8-10	<0.05	ND ND	-	-	ND ND	ND ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	ND ND	<10 <10	-	-	ND ND	ND ND		<50 <50	-	-	ND ND		-
AB4	0-3	-	-	-	-	-	-	-	-	-	-	-	-	100	13.9	-			13.9	40.9	5.69	-	-	40.9	5.69	ND	<10	-	-	ND	ND	ND	<50	-	-	ND ND	-	-
AB4 AB4	3-6 4-6	<0.05	- ND	-	-	- ND	- ND	- <1.99	- ND	-	-	- ND	- ND	53.2	21.9	-	-	53.2	21.9	45.8	18.8	-	-	45.8	18.8	ND ND	<10 <10	-	-	ND ND	ND ND		<50 <50	-	-	ND ND		-
AB4	10-12	<0.05	ND	-	-	ND	ND	<1.99	ND	-	-	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	ND	<10	-	-	ND	ND		<50	-	-	ND ND	_	-
AB5 AB5	0-6	-	- ND	-	-	- N/D	- ND		- ND	-	-	- ND	- ND	237	71.3	-	-	237	71.3	20.4	6.14	-	-	20.4	6.14	ND 2070	<21.0	-	-	ND	ND	ND 1240	<25	-	-	ND ND	-	-
AB5 AB5	4-6 10-12	<0.05 0.0792	ND 0.0506	-	-	ND 0.0792	ND 0.0506	<1.99 <1.99	ND ND	-	-	ND ND	ND ND	-	-	-	-	-	-	-	-	-		-	-	2070 ND	746 <10	-	-	2070 ND	746 ND	1340 ND	481 <50	-	-	1340 481 ND ND	-	-
AB5	14-16	-	-	-	-	-	-	<1.99	ND	-	-	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	ND	<10	-	-	ND	ND		<50	-	-	ND ND	-	-
AB5 AB6	18-20 8-10	<0.05 <0.05	ND ND	-	-	ND ND	ND ND	<1.98 <1.98	ND ND	-	-	ND ND	ND ND	-	-	-	-	-	-	-	-	-		-	-	- ND	- <10	-	-	- ND	- ND	- ND	- <50	-	-	ND ND	-	-
AB6	12-14	<0.05	ND	-	-	ND	ND	<1.99	ND	-	-	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	ND	<10	-	-	ND	ND		<10	-	-	ND ND	_	-
AB7	6-8	< 0.05	ND	-	-	ND	ND	<1.98	ND	-	-	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	ND	<10	-	-	ND	ND		<10	-	-	ND ND		-
AB8	10-12 6-8		-	-	-	-	-	-	-	-	-	-	-	261	62.1	-	-	261	62.1	-	-	-		-	-	ND -	<10	-	-	ND -	ND -	ND -	<50 -	-	-	ND ND	-	-
AB8	10-12	-	-	-	-	-	-	-	-	-	-	-	-	87.5	43.9	-			43.9	-	-	-	-	-	-	ND	<10	-	-	ND	ND		<50	-	-	ND ND		-
AB8 AB9	14-16 6-8	-	-	-	-	-	-	-	-	-	-	-	-	199	- 71	-	-	199	<i>-</i> 71	-	-	-	-	-	-	ND	<10	-	-	ND	ND	ND	<50	-	-	ND ND	-	-
AB9	12-14	-	-	-	-	-	-	-	-	-	-	-	-	54	35.4	-	-		35.4	-	-	-	-	-	-	ND	<10	-	-	ND	ND	ND	<50	-	-	ND ND	-	-
AB10	18-20	-	-	-	-	-	-	-	-	-	-	-	-	- 20.0	- 10.4	-	-	-	- 10.4	-	-	-	-	-	-	ND	<10	-	-	ND	ND	ND	<50	-	-	ND ND	-	-
AB10 AB10	4-6 12-14	-	-	-	-	-	-	-	-	-	-	-	-	39.8 25.3	18.4 16.7	-		39.8 25.3	18.4 16.7	-	-	-	-	-	-	- ND	<10	-	-	ND	ND	- ND	<50	-	-	ND ND	+	-
AB10	14-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	ND	<10	-	-	ND	ND		<50	-	-	ND ND		-
AB11 AB11	4-6 6-8	-	-	-	-	-	-	-	-	-	-	-	-	83.4 44.7	20.9	-		83.4 44.7	20.9	-	-	-	-	-	-	1990	499	-	-	1990	499	984	247	-	-	984 247	-	-
AB11	16-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	<10	-	-	ND	ND	ND	<50	-	-	ND ND	-	-
AB12 AB12	6-8 12-14	-	-	-	-	-	-	-	-	-	-	-	-		33.8 36	-			33.8 36	-	-	-	-			ND ND		-	-		ND ND	ND ND		-	-	ND ND		-
AB13	0-3	-	-	-	-	-			-		-	-	-		64.3					24.8						ND ND	<10	-	-		ND ND				-	ND ND		-
AB13	3-6	-	-	-	-	-	-	-	-		-	-	-	156	65.5	-	-	156	65.5	64.5	27.1	-	-	64.5	27.1	ND	<10	-	-	ND	ND	ND	<50	-	-	ND ND	-	-
AB13 AB13	4-6 8-10	-	-	-	-	-			-	-	-	-	-		25 49		-		25 49		-		-		-	8400	2100	-	-	8400		5760			-	5760 1440		_
AB13	10-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	221	90.6	-	-	221	90.6	173	70.9	-	-	173 70.9	-	-
AB14 AB14	0-3 3-6	-	-	-	-	-	-	-	-		-	-	-	121 210	45 64.1				45 64.1		23.8 20.3		-		23.8	ND 869	<10 265	-	-	ND 869	ND 265			-	-	ND ND 240 73.3		-
AB14	3-6 4-6	-	-	-	-	-	-	-	-	-	-	-	-	259	66	-			66	- 00.4	-	-	-		-	317	80.8	-	-	317	80.8			-		ND ND		-
AB14	8-10	-	-	-	-	-	-	-			-	-	-	137					70.7		-		-		-	ND 50.6	<10	-	-	ND					-	ND ND		-
AB15 AB15	0-6 4-6	-	-	-	-	-	-	-	-	-	-	-	-	251 211	53.5 49.8	-			53.5 49.8	32.2	6.86	-	-	32.2		59.6 218	12.7 51.4	-	-	59.6 218		ND ND		-	-	ND ND	_	-
AB15	12-14	-	-	-	-	-	-		-	1	-	-	-		26.3	-	-		26.3	-	-		-	-	-	ND	<10	-			ND	ND	<50		-	ND ND	-	-
AB16	4-6	-	-	-	-	-	-	-			-	-	-	105					35.3	-	-	-	-		-	-	-	-	-	-	-	-		-	-			-
AB16 AB16	8-10 10-12	-	-	-	-	-	-	-			-	-	-	113	46				46 -	-	-		-		-	70.8	21.6	-	-	70.8	21.6	- ND			-	ND ND		-
AB16	12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	<10	-	-	ND	ND	ND	<50	-	-	ND ND	-	-
AB18 AB18	4-6 10-12	-	-	-	-	-	-	-	-		-	-	-		22.2 16.6				22.2 16.6	-	-	-	-		-	- ND	- <10	-	-	- ND	- ND		- <50	-	-	ND ND		-
AB18	12-14	-	-	-	-	-	-	-			-	-	-	-	-	-		-	-	-	-		-	-	-	ND ND	<10	-	-		ND				-	ND ND		-
AB19	4-6	-	-	-	-	-	-	_	-		-	-	-		17.7				17.7		-		-		-	- ND		-	-	- ND	-	- ND			-			-
AB19 AB19	8-10 12-14	-	-	-	-	-	-	-			-	-	-	32.9	19.4				19.4	-	-		-		-	ND ND	<10 <10	- -			ND ND			-	-	ND ND		-
AB20	6-8	-	-	-	-	-			-		-	-	-	72	27.9	-	-	72	27.9	-		-	-	-	-	-	-		-			-			-			-
AB20 AB20	10-12 14-16	-	-	-	-	-	-	-	-	-	-	-	-	47	21.4	-		47 -	21.4	-	-	-	-		-	- ND	- <10	-	-		- ND	- ND		-	-	ND ND		-
AB20	16-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-		-	ND ND	<10	-	-	ND ND	ND ND	ND ND			-	ND ND		-
AB21	4-6	-	-	-	-	-	-	-	-		-	-	-	141		-	-	141	19.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
AB21	6-8	-	-	-	-	-	-	-	-	-	-	-	-	79	31.9	-	-	79	31.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-

East White Lake Field Vermilion Parish, Louisiana

			Me	ercury		Merc	cury Average	e	Sele	nium		Se Av	erage		Stroi	ntium		St Av	erage		Zi	nc		Zn Av	verage		TPH-	DRO			DRO		TPH-O)RO		TPH-ORO	TPH	-GRO
]	CON	Pi	isani		1	IC	ON	Pi	isani			ICO	ON	Pi	sani		Γ	ICO	ON	Pisa	ani		Ι	ICO	N	Pisa	ni	Ave	rage	ICON		Pisa	ani	Average	IC	ON
	Core																																				1	
Boring ID	Interval (ft bgs)	mg/kg dry	g- mg/kg wet	- mg/kg dry	mg/kg wet	g- mg/k dry	kg- mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- i	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- m	ig/kg- n wet	ng/kg- dry	mg/kg- wet	mg/kg- mg/kg- dry wet	mg/kg- dry	mg/kg- wet
AB21	8-10	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	<10	-	-	ND	ND	ND	<50	-	-	ND ND	-	-
AB21 AB22	12-14 4-6	-	-	-	-	-	_	-	-	-	-	-	-	163	36.8	-	-	163	36.8	-	-	-	-	-	-	ND	<10	-	-	ND -	ND	ND	<50	-	-	ND ND		-
AB22	6-8	-	-		-			-	-	-	-	-	-	110	36.6	-	-	110	36.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		<u> </u>	-
AB22 AB22	12-14 16-18	-	-	-	-	-	· -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND ND	<10 <10	-	-	ND ND	ND ND		<50 <50	-	-	ND ND	-	-
SED4	0-2	0.22			0.026			<1.98	ND	ND	ND	ND	ND	91.7	35.4	59.1	35.1	75.4	35.2	-	-	-	-	-	-	744	287	ND	<50	744	287	948	366	ND	<50	948 366		-
SED5 SED6	0-2 0-2	0.623		0.042	0.021	0.33 7.5		<1.99 <1.98	ND ND	ND ND	ND ND	ND ND	ND ND	58.9 140	25 49.3	36.2 80.2	18.1 39.3	47.6 110	21.5 44.3	-	-	-	-	-	-	228 1020	96.8 360	ND 67.1	<50 32.9	228 545	96.8 196	283 3070	120 1080	ND 100	<50 49.1	283 120 1580 565	-	-
SED7	0-2	0.119	0.0362	0.0828	0.026	0.10	01 0.0311	<1.98	ND	ND	ND	ND	ND	48.3	14.7	47.1	14.8	47.7	14.7	-	-	-	-	-	-	536	163	ND	<50	536	163	1040	316	ND	<50	1040 316	<u> </u>	-
SED7	2-4 4-6	0.218		0.00	0.06	0.18		<1.99 <1.99	ND ND	ND ND	ND ND	ND ND	ND ND	80.4 101	30.6 30.8	74.4 123	29.7 34.9	77.4 112	30.2 32.9	-	-	-	-	-	-	5380 2800	2050 853	737 602	294 171	3060 1700	1170 512		1410 478	235 162	93.6 46	1970 752 865 262	-	-
SED8	0-2	< 0.1	ND	0.0685	0.022	0.06	685 0.022	<1.99	ND	ND	ND	ND	ND	51.3	15.7	48.9	15.7	50.1	15.7	-	-	-	-	-	-	353	108	ND	<50	353	108	315	96.4	ND	<50	315 96.4	<u> </u>	-
SED8 SED9	2-4 0-2	0.177			0.028	0.12		<1.98 <1.99	ND ND	ND ND	ND ND	ND ND	ND ND	58.5	21.5	48	17.7	53.2	19.6	-	-	-	-	-	-	924 169	340 57.4	398 ND	147 <50	661 169	244 57.4	541 303	199 103	70.5 ND	26 <50	306 113 303 103	-	-
SED9 SED10	2-4	0.195		_		_		<1.98	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	217	80.3	ND	<50	217	80.3			ND	<50	212 78.4		-
SED10	0-2 2-4	0.197	_			0.14		<1.99 <1.99	ND ND	ND 0.799	ND 0.31	ND 0.799	ND 0.31	-	-	-	-	-	-	-	-	-	-	-	-	353 503	122 191	ND 110	<50 42.8	353 306	122 117			ND 12.7	<50 4.91	410 142 247 94	-	-
SED11	0-2	0.192	0.0674	0.085	0.029	0.13	39 0.0482	<1.99	ND	1.11	0.38	1.11	0.38	-	-	-	-	-	-	-	-	-	-	-	-	960	337	ND	<50	960	337	741	260	ND	<50	741 260	1 -	-
SED11	2-4	0.142		_	+	_		_	ND	1.06	0.39	1.06	0.39	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	929	342	156	57.4	543	200			ND ND	<50	723 266	-	-
SED12 SED12	0-2 2-4	0.128			0.023	0.09		<1.99 <1.99	ND ND	1.53 1.41	0.49	1.53 1.41	0.49	-	-	-	-	-	-	-	-	-	-	-	-	718 3670	216 1220	ND 637	<50 181	718 2160	216 701		194 682	ND 131	<50 37.1	645 194 1090 360	-	-
SED12	4-6	0.134				_		<1.98	ND	1.16	0.38	1.16	0.38	-	-	-	-	-	-	-	-	-	-	-	-	4900	1760	521	171	2710	966		979	91.2	29.9	1410 504	<u> </u>	-
SED13	0-2	0.231			0.018	_		<1.99	ND	1.65	0.44	1.65	0.44	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-
SED13 SED14	2-4 0-2	<0.1 0.103		0.0449				<1.98 <1.99	ND ND	ND 1.42	ND 0.4	ND 1.42	ND 0.4	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-
SED14	2-4	0.124						<1.99	ND	1.24	0.45	1.24	0.45	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		 -	-
SED16	0-2	0.604			0.016	0.34		<1.99	ND	2.11	0.39	2.11	0.39	-	-	-	-	-	-	-	-	-	-	-	-	331	70.8	ND	<50	331	70.8			ND	<50	551 118		-
SED17 SED17	0-2 2-4	0.145			0.02	0.10		<2 <1.98	ND ND	1.52 1.58	0.46	1.52 1.58	0.46	-	-	-	-	-	-	-	-	-	-	-	-	981 769	314 270	ND ND	<50 <50	981 769	314 270			ND ND	<50 <50	603 193 496 174		-
SED17 SED18	0-2	0.27		_	0.033	0.13		<1.98	ND ND	1.58	0.37	1.58	0.37	-	-	-	-	-	-	-	-	-	-	-	-	1820	465	312	80.7	1070	273			24.7	6.4	595 152	-	-
SED18	2-4	0.147						<1.99	ND	1.07	0.44	1.07	0.44	-	-	-	-	-	-	-	-	-	-	-	-	2290	637	206	84.5	1250	361			32.2	13.2	763 214	1 -	-
SED19	0-2 2-4	0.22	_		0.074	0.21		<1.99 <1.99	ND ND	0.904 1.29	0.32 0.52	0.904 1.29	0.32	-	-	117	41.4	117	41.4	-	-	-	-	-	-	7530 2930	2350 1190	2140 757	758 306	4840 1840	1550 748		798 562	432 58.2	153 23.5	1490 476 721 293		-
SED19 SED20	0-2	0.193	_	_	0.034			<2	ND ND	1.29	0.32	1.29	0.32	-	-	-	-	-	-	-	-	-		-	-	341	1190	ND	<50	341	112			ND	<50	305 100	-	-
SED20	2-4	< 0.1	ND	0.071	0.025	0.07	71 0.025	<1.98	ND	1.48	0.52	1.48	0.52	-	-	-	-	-	-	-	-	-	-	-	-	521	190	ND	<50	521	190	433	158	ND	<50	433 158	1 -	-
SED21	0-2 2-4	< 0.1		0.041	0.013	0.04		<1.98	ND	1.17	0.37	1.17	0.37	-	-	-	-	-	-	-	-	-	-	-	-	457	138	ND	<50	457	138			ND	<50	447 135		-
SED21 SED21	4-6	<0.1 0.14	_	0.0306	0.011	_		<1.99 <1.99	ND ND	0.864 1.14	0.31 0.45	0.864 1.14	0.31	-	-	-	-	-	-	-	-	-		-	-	906 1420	368 561	ND 347	<50 137	906 883	368 349		383	ND 46.1	<50 18.2	719 292 507 201	-	-
SED21	6-8	< 0.1		0.0869	+	0.08		<1.98	ND	0.587	0.25	0.587	0.25	-	-	-	-	-	-	-	-	-	-	-	-	5150	2100	165	70.3	2660	1090			ND	<50	2840 1160	-	-
SED22	0-2	<0.1		0.0705	0.022			<1.99	ND ND	1.54	0.48	1.54	0.48	-	-	-	-	-	-	-	-	-	-	-	-	404	128	ND ND	<50	404	128			ND	<50	363 115		-
SED22 SED23	2-4 0-2	0.3 <0.1		0.0638	0.024	0.18		<2 <1.98	ND ND	1.57 1.61	0.59 0.57	1.57 1.61	0.59 0.57	-	-	-	-	-	-	-	-	-	-	-	-	339 5200	122 1670	ND 1170	<50 414	339 3180	122 1040		106 907	ND 311	<50 110	294 106 1570 509		-
SED23	2-4	< 0.1		0.0635				<1.99		1.71	0.54	1.71	0.54	-	-	-	-	-	-	-	-	-	-	-	-	6950	2120	1790	563	4370			1200	390	123	2160 662		-
SED24	0-2	<0.1		0.109		_	09 0.038			1.72	0.6	1.72	0.6	-	-	-	-	-	-	-	-	-	-	-	-	711	297	ND	<50	711	297	703		ND	<50	703 294		-
SED24 SED25	2-4 0-2	<0.1				_	583 0.019 778 0.026		- ND	1.72 1.56	0.56 0.52	1.72 1.56	0.56 0.52	-	-	-	-	-	-	-	-	-	-	-	-	266 2980	101 996	ND 253	<50 84.4	266 1620	101 540	266 1580		ND 25.1	<50 8.38	266 101 801 268	+-	-
SED25	2-4	0.104	_			_	12 0.0352	_	ND	1.11	0.36	1.11	0.36		-	-	-	-	-		-	-	-	-	-	1160	348	48.9	15.8	604	182			ND	<50	930 280	<u> </u>	-
SED26	0-2	0.454		0.317		_	86 0.142			0.836	0.29	0.836	0.29	-	-	-	-	-	-	-	-	-	-	-	-		10900	6770	2350	17600		12400		1010	352	6720 2560	-	-
SED26 SED27	2-4 0-2	0.393		0.0969		_	753 0.021			1.19 0.968	0.27	1.19 0.968	0.27	-	-	-	-	-	-	-	-	-	-	-	-		2940 179	1320 380	299 106	7360 520	1620 143	7820 646		255 71.7	57.9 20	4040 694 359 97.5	-	-
SED27	2-4	0.125		0.0733		_	07 0.0334			1.32	0.4	1.32	0.27	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	1960	623	482	146	1220	385	1420		82.5	25	750 238	<u> </u>	-
SED28	0-2	1.21		0.607		_	09 0.206			ND	ND	ND	ND	-	-	293			62.7	-	-	-	-	-	-		8420	25300		30700	6920	14400		4230	906	9330 2130		-
SED28 SED29	2-4 0-2	0.228		0.101 0.111		_	64 0.0254 11 0.023			ND ND	ND ND	ND ND	ND ND	366 223	57.5 37	417 214		391 218	59.8 40.8	-	-	-	-	-	-	3270 9160	514 1520	1030 4950		2150 7060	334 1280	2240 7770		70.5 1380	10.5 287	1150 181 4580 789	-	-
SED29 SED29	2-4	<0.1		_	0.023 ND	NI.		_		ND ND	ND ND	ND ND	ND ND	382	66.1	461	84.9	422	75.5	-	-	-	-	-	-	855	148	4950 ND	<50	855	148			ND	<50	861 149	 	-
SED30	0-2	< 0.1	ND	0.0791	0.011	0.07	791 0.011	<1.98	ND	ND	ND	ND	ND	220	41.6	381	52.9	300	47.2	-	-	-	-	-	-	41100	7770	12700	1770	26900	4770	22100	4180	2810	390	12500 2290		-
SED30	2-4	<0.1					D ND 767 0.0228			ND 0.884	ND	ND	ND	320	56.3		64.5	367	60.4	-	,	-	-	-	-	3670	646	463	72.3	2070		3660		30.8	4.81	1850 325	-	-
SED31 SED31	0-2 2-4	0.116					213 0.0043			0.884 ND	0.26 ND	0.884 ND	0.26 ND	-	-	-	-	-	-	-	-	-	-	-	-	4950 3640	1480 550	1500 1480	299	3230 2560		2230 526		296 133	87 26.8	1270 378 330 53.2	-	-
SED31	4-6	<0.1	ND	ND	ND	NL	D ND	<2	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	674	215	66	20.2	370	118	392		ND	<50	392 125		-
SED32	0-2	0.132				_	874 0.0243			0.925	0.26	0.925	0.26	-	-	-	-	-	-	-	-	-	-	-			1430	3220	905	4190	1170	1290		630	177	961 268		-
SED32 SED32	2-4 4-6	0.165		0.0578	0.0085		11 0.0175 314 0.005			ND 2.2	ND 0.35	ND 2.2	ND 0.35	-	-	-	-	-	-	-	-	-	-	-	-	510 475	82.1 90.8	140 ND	20.6 <50	325 475	51.4 90.8	ND 385		ND ND	<50 <50	ND ND 385 73.5	-	-
SED33	0-2	<0.1					08 0.016	_		ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	489	130	775	155	632	143	207		177	35.3	192 45.2	<u>t - </u>	-
SED33	2-4	<0.1	_			_	24 0.004			1.56	0.26	1.56	0.26	-	-	-	-	-	-	-	-	-	-	-	-		50.6	ND	<50	383	50.6	ND		ND	<50	ND ND		-
SED33 MPA-Sed 15-N	4-6 0-2	<0.1	_	ND -	ND -	NL -		<1.99	ND -	1.45	0.32	1.45	0.32	-	-	-	-	-	-	-	-	-	-	-	-	202 67.2	53.9 30.5	ND -	<50	202 67.2	53.9 30.5	322 124		ND -	<50	322 85.9 124 56.3	-	-
MPA-Sed-15-W	0-2	-	_	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	<20	-	-	ND	ND		<50	-	-	ND ND	 	-
				1	1	1	1	-		<u> </u>					·	1	1	<u> </u>	1					1												1.2		1

East White Lake Field Vermilion Parish, Louisiana

			Mei	cury		Mercur	ry Average		Sele	nium		Se Av	erage		Stron	ıtium		St Ave	erage		Ziı	nc		Zn A	verage		TPH-DR	 D		TPH-D			TPH-0	ORO		ТРН-С		TPH-C	GRO
		ICO	ON	Pis	ani		1		ON		sani		8-	ICO	ON	Pisa	ani			ICC		Pisa	ani	1	T	ICC		Pisani		Avera	age	ICO		Pis	ani	Avera	ıge	ICO	
	Core	10.	-	- 10				10.		110				10.						100	,,,	1100					-	1104111						113					
n : m	Interval										mg/kg-									mg/kg-	0. 0	0. 0	0. 0			0. 0			-		_	mg/kg- r				mg/kg-		0. 0	mg/kg-
Boring ID MPA-Sed-15-W-2	(ft bgs) 0-2	dry -	wet	dry -	wet -	dry -	wet -	dry -	wet	dry -	wet -	dry -	wet	dry -	wet -	dry -	wet	dry -	wet -	dry -	wet -	dry -	wet	dry -	wet	dry -	wet -			dry -	wet	dry -	wet	dry -	wet -	dry	wet -	dry -	wet -
MPA-Sed-15-E	0-2	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	441	200	-	-	141	200	317	144	-	-	317	144		-
MPA-Sed-15-E-2	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	134	60.7	-		134	60.7		69.6	-	-		69.6	-	-
MPA-AB5 (A) MPA-AB5 (B)	4-6 4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND 65.8	<20 23.7	-		ND 55.8	ND 23.7	ND ND	<50 <50	-	-	ND ND	ND ND		-
MPA-AB5 (C)	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND ND	<20			ND	ND	ND	<50	-	-	ND	ND	-	-
MPA-AB-6	8-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-		-
MPA-AB8 MPA-AB13	6-8 0-3	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	<u>-</u>	-	-		-	-	-	-	-	-		-	-		-	-	-	-	-	-	-
AB-6	8-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	- 	-	-	-	-	-		-
AB-13	0-3	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB-13 SO-E AB-14	0-3 0-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-		-
AB-8	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-		-
AB-8 SO-S	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-			
AB-5 SO-NE AB-5 SO-NW	4-6 4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-
AB-5a	4-5.5	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
AB-15	4-5.5	0.121	0.0474	- 0.0077	0.029	- 0.100	- 0.0425			111		- ND	- ND	40.77	- 177	41.1	- 1/	- 42.4	- 16 E	40.0	100	- E2	20.6	- E0.6	10.7	- 244	- 124			-	- 124	- 215	122	-	-	- 21E	122	-	-
SED-8 SED-9	0-0.5 0-0.5	0.121 <0.1	0.0471	0.0977	0.038	0.109 0.115		<1.99 <1.99	<0.77 <0.58	<4.11 <5.26	<1.6 <1.6	ND ND	ND ND	43.7 43.5	17 12.6	41.1 46.1	16 14	42.4 44.8	16.5 13.3	48.3 54.3	18.8 15.7	53 53.6	20.6	50.6 54	19.7 16	344 92.3	134 26.8			344 02.3	134 26.8	315 <172	123 <50	-	-		123 ND	-	-
SED-11	0-0.5	<0.1	<0.03	0.0965	0.033	0.0965		<1.99	< 0.64	<4.68	<1.6	ND	ND	45.1	14.5	44.2	15.1	44.6	14.8	51.4	16.5	51.8	17.7	51.6	17.1	200	64.2			200	64.2		66.8	-	-		66.8	-	-
SED-13	0-0.5	< 0.1	<0.02	0.105	0.029	0.105		<2.00	< 0.49	<5.82	<1.6	ND	ND	49.4	12.1	55.3	15.2	52.3	13.6	61.4	15	65.1	17.9	63.2	16.4	168	41	-		168	41	<205	<50	-	-	ND	ND	-	-
SED-19	0-0.5 0-0.5	0.16 <0.1	<0.0341	0.176 0.111	0.038	0.168		<1.99 <1.99	<0.42	<7.41 <4.79	<1.6 <1.6	ND ND	ND ND	47.4 41.5	10.1 12.9	58.3 68.9	12.6 23	52.9 55.2	11.3 18	57.1 50.3	12.2 15.6	70.4	15.2 20.7	63.7 56.1	13.7 18.2	<93.9 175	<20 54.4	-		ND 175	ND 54.4	<235 176	<50 54.7	-	-	ND 176	ND 54.7	-	-
SED-24 SED-26	0-0.5	0.314	0.0926	0.111	0.057	0.111		<1.99	<0.59	<5.1	<1.6	ND	ND ND	44.2	13	53.8	16.9	49	15	50.7	15.6	62 64	20.7	57.4	17.5	2360	696	-		360	696	1440	425	-	-	1440	425		-
SED-31	0-0.5	0.115	0.0369	0.159	0.051	0.137	0.044	<1.99	< 0.64	<5	<1.6	ND	ND	43.6	14	63.1	20.2	53.4	17.1	49.7	16	64.7	20.7	57.2	18.3	160	51.4	-	-	160	51.4	<156	<50	-	-	ND	ND	-	-
SED-120 * Hg-MPA-01	0-0.5 0-0.5	<0.1 0.39	<0.0178 0.137	0.411 0.245	0.072	0.411	_	<1.99	<0.354	<9.14	<1.6	ND -	ND -	313	55.7	442	77.4	378	66.6	62.1	11.1	414	72.5	238	41.8	14300	2550			1300	2550	8150	1450	-	-	8150	1450	-	-
Hg-MPA-01	0.5-2	0.526	0.197	0.294	0.000	0.41		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-			-
Hg-MPA-01	5-7	0.196	0.0911	0.183	0.085	0.189	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
Hg-MPA-02 Hg-MPA-02	0-0.5 0.5-2	0.281	0.0767	0.322	0.088	0.302		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-		-
Hg-MPA-02	5-7	<0.1	<0.0446		0.038	0.0852	_	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-03	0-0.5	0.203	0.0668	0.173	0.057	0.188	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-
Hg-MPA-03 Hg-MPA-03	0.5-2 4-6	0.263 0.151	0.107	0.18 0.153	0.073	0.222		<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-
Hg-MPA-04	0-0.5	0.137	0.0047	0.135	0.037	0.132		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-		-
Hg-MPA-04	0.5-2	< 0.1	< 0.052	0.0462	0.024	0.0462		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-04 Hg-MPA-05	3-5 0-0.5	<0.1	<0.0464	0.0259 0.254	0.012	0.0259		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-05	0.5-2	-	-	0.127	0.047	0.127	0.047	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-05 Hg-MPA-06	6-8 0-0.5	0.222	0.0715	0.341	0.15		0.15 0.0572	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-
Hg-MPA-06	0.5-2	0.807	0.321	0.113	0.045	0.46	0.183	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-		-	-	-	-	-		-
Hg-MPA-06 Hg-MPA-07	5-6 0-0.5			0.031			0.015	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-
Hg-MPA-07	0.5-2	16.7	8.77	0.343	0.18	8.52	4.47	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-
Hg-MPA-07 Hg-MPA-08	6.5-7 0-0.5	<0.1 0.172		0.0283	0.015		0.015	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-
Hg-MPA-08	0.5-2	0.304	0.119	0.716	0.28	0.51	0.199	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-	-		-
Hg-MPA-08 Hg-MPA-09	7.5-8 0-0.5	0.297 11		0.104 0.141	0.046		0.0886 1.74	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-
Hg-MPA-09	0.5-2	0.248	0.0903	0.126	0.046	0.187	0.0681	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-	-		-
Hg-MPA-09 Hg-MPA-09dup	6-7 0.5-2	<0.1	<0.0556	0.0306	0.017			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-
SP-MPA-01	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-		-
SP-MPA-01 SP-MPA-01	0.5-2 2-4.3	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-
SP-MPA-01	4.3-4.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-		-
SP-MPA-01 SP-MPA-02	8-9 0-0.5	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-
SP-MPA-02	0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-		-
SP-MPA-02 SP-MPA-02	3-4 4-5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-
SP-MPA-02a	3-5	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
SP-MPA-02a SP-MPA-03	7-8 0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-
SP-MPA-03	0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u>-</u>	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-
SP-MPA-03	4-6	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
SP-MPA-03	9-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-
SP-MPA-04	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

East White Lake Field Vermilion Parish, Louisiana

			M	ercury		Merc	cury Av	erage		Sele	nium		Se A	verage		Stroi	ntium		St Av	/erage		Z	inc		Zn Av	erage		TPH-	DRO			-DRO rage		TPH-0	ORO		TPH-		TPH-0	GRO
		IC	CON	Pis	sani				ICC	ON	Pi	sani			IC	ON	Pi	sani			IC	ON	Pis	ani			IC	ON	Pisar	ni			IC	ON	Pis	ani		Ŭ	ICC	N
Boring ID	Core Interval (ft bgs)	mg/kg- dry	mg/kg	g- mg/kg- dry	mg/k	_		g/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- r	ng/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet
SP-MPA-04	0.5-2	ary -	-	- ury	*****	-	_	_	- ury	-	- ury	-	-		ary -	-	- ury	-	-	-	- ury	-	dry	-	-		- cary	-	-	-	-	-	- ciry		- ury	-	-		- ury	
SP-MPA-04	5-7		_	+	 	 -										_			 -				 											\vdash			_	 	\vdash	
SP-MPA-04	9-10		-	_	+	-		_			_	<u> </u>		_	_	_	_	-	+ -	-		_	 -		-			_		_				 	_			_		
WL-1	0-2	0.62	0.35	0.764	0.41			0.38	<1.99	<1.12	<1.97	<1.06	ND	ND	_	-	_	-	-	-	45.2	25.5	45.1	24.2	45.2	24.9	2770	1560		_	2770	1560	2020	1140	_		2020	1140		_
WL-1	2-4	<0.1	<0.051	_		_		ND	<1.99	<1.02	<2.17	<1.05	ND	ND	_	_	-	-	-	-	73.8	37.8	75.8	36.7	74.8	37.3	114	58.6		_	114	58.6	129	66	_		129	66		-
WL-1	6-8	<0.1	<0.024		-0.1	NI		ND ND	<1.99	<0.488	-2.17	-1.00	ND	ND	_	-	-	-	_	-	30.4	7.45	-	-	30.4	7.45	ND	<50		_	ND	ND	ND	<50	_		ND	ND		_
WL-1	9-13	<0.1	<0.047		<0.1			ND ND	<1.98	<0.939	<2.31	<1.01	ND	ND	_	_	_	-	-	-	64.7	30.7	41.4	18.1	53.1	24.4	ND	<50		_	ND	ND	ND	<50	_		ND	ND		
WL-2	0-2	0.1	0.062	_	<0.1			.062	<1.99	<1.23	<1.68	<1.02	ND	ND	_	_	_	-	-	_	70.2	43.5	59.6	37.3	64.9	40.4	294	182	_	_	294	182	202	125	_		202	125		_
WL-2	2-4	<0.1	< 0.054	_				ND	<1.98	<1.08	<2.23	<1.02	ND	ND	_	_	_	-	-	_	59.7	32.5	60.4	27.6		30.1	ND	<50	_	_	ND	ND	ND	<50	_		ND	ND		
WL-2	8-10	<0.1	<0.050		<0.1			ND ND	<1.99	<1	<2.11	<1.04	ND	ND	_	_	_	-	-	_	74.7	37.6	78.3	38.5	76.5	38.1	ND	<50	_	_	ND	ND	ND	<50	_		ND	ND		
WL-2	14-16	<0.1	<0.071			_		ND ND	<1.99	<1.42	<1.41	<1	ND	ND		-		-	+ -	 	21.3	15.2	21.3	15.1		15.2	ND	<50			ND	ND	ND	<50			ND	ND ND	<u> </u>	
WL-3	0-2	4.29	2.73	7.59	5.73			1.23	<1.99	<1.12	<1.38	<1.04	ND	ND		_			 	<u> </u>	1370	873	2190	1650	1780	1260	1220	775			1220	775	1030	656			1030	656		-
WL-3	4-6/4-8	1.58	0.539		3.12			1.83	<1.99	<0.679	<3.55	<1.06	ND	ND		-			 	<u> </u>	118	40.2	113	33.7		37	16200	5540			16200	5540	8180	2790			8180	2790		
WL-3	10-13	<0.1	<0.051					ND	<1.99	<1.02	<1.99	<1	ND	ND		-		-	-	-	59.9	30.6	77.1	38.8	68.5	34.7	ND	<50		-	ND	ND	ND	<50			ND	ND	 	-
WL-4	0-2	<0.1	<0.049			_		ND ND	<1.99	<0.989	<2.26	<1.06	ND	ND	_	_	_	-	-	-	51	23.4	44.4	20.8	47.7	22.1	2050	937		_	2050	937	1690	774	-		1690	774		-
WL-4	2-4	0.13	0.0646		<0.1	_		0646	<1.98	<0.99	<2	<1	ND	ND	_	-	_	-	-	-	127	63.1	115	57.6	121	60.4	13100	6490		_	13100	6490	3400	1690	_		3400	1690		_
WL-4	4-11	<0.13	<0.062					ND	<1.98	<1.24	<1.64	<1.08	ND	ND	_	_	-	-	-	-	112	70.1	87.7	57.9	99.9	64	22800	14300	-	-	22800	14300	6880	4310	-	_	6880	4310		-
WL-4	11-12.5	<0.1	< 0.051			_		ND	<1.99	<1.02	<1.93	<1	ND	ND	-	-	-	-	_	-	140	71.8	67.2	34.9	104	53.4	7680	3940	-	-	7680	3940	2200	1130	-	_	2200	1130	r - 1	_
WL-5	0-2	< 0.1	< 0.051	6 <0.216	< 0.1	! NI	D N	ND	<1.99	<1.03	<2.31	<1.07	ND	ND	-	-	-	-	-	-	171	88.2	112	51.9	142	70.1	13800	7140	-	-	13800	7140	11600	5990	-	-	11600	5990	- 1	-
WL-5	2-13	< 0.1	< 0.068	_	< 0.1			ND	<1.99	<1.37	<1.44	<1.02	ND	ND	-	-	-	-	-	-	218	150	206	146	212	148	14500	10000	-	-	14500	10000	4930	3400	-	-	4930	3400	- 1	-
WL-6	0-2	< 0.1	< 0.050	8 < 0.204	< 0.1	! NI	D N	ND	<1.98	<1.01	<2.08	<1.02	ND	ND	-	-	-	-	-	-	54.4	27.6	58.8	28.8	56.6	28.2	1070	545	-	-	1070	545	846	430	-	-	846	430	- 1	
WL-6	4-6	< 0.1	<0.028	9 <0.4	< 0.1	! NI	D N	ND	<1.99	< 0.575	<4.04	<1.01	ND	ND	-	-	-	-	-	-	22.4	6.47	17.4	4.34	19.9	5.41	367	106	-	-	367	106	401	116	-	-	401	116	- 1	-
WL-6	8-10	< 0.1	< 0.044	9 <0.206	< 0.1	! NI	D N	ND	<1.99	< 0.894	<2.23	<1.08	ND	ND	-	-	-	-	-	-	52.8	23.7	50.7	24.6	51.8	24.2	ND	<50	-	-	ND	ND	ND	<50	-	-	ND	ND	- 1	-
WL-6	10-13	< 0.1	< 0.025	< 0.308	< 0.1	! NI	D N	ND	<1.99	< 0.498	<3.2	<1.04	ND	ND	-	-	-	-	-	-	24.9	6.23	21.3	6.92	23.1	6.58	201	50.3	-	-	201	50.3	ND	<50	-	-	ND	ND	- 1	-
WL-7	0-2	-	-	< 0.131	< 0.1	! NI	D N	ND	-	-	<1.37	<1.05	ND	ND	-	-	-	-	-	-	-	-	23.1	17.7	23.1	17.7	-	-	-	-	-	-	-	_	-	-	-	-	- 1	-
WL-7	2-4	-	-	< 0.132	< 0.1	! NI	D N	ND	-	-	<1.36	<1.03	ND	ND	-	-	-	-	-	-	-	-	24.9	18.8	24.9	18.8	-	-	-	-	-	-	-	_	-	-	-	- 1	- 1	-
WL-7	4-6	-	-	< 0.382	< 0.1	! NI	D N	ND	-	-	<4.05	<1.06	ND	ND	-	-	-	-	-	-	-	-	69.5	18.2	69.5	18.2	-	-	-	-	-	-	-	_	-	-	-	-	- 1	-
WL-7	6-8	-	-	< 0.26	< 0.1	! NI	D N	ND	-	-	<2.83	<1.09	ND	ND	-	-	-	-	-	-	-	-	21.3	8.21	21.3	8.21	-	-	-	-	-	-	-	_ 1	-	-	-	- 1	- 1	-
WL-8	0-2	-	-	< 0.142	< 0.1	! NI	D N	ND	-	-	<1.45	<1.02	ND	ND	-	-	-	-	-	-	-	-	29	20.4	29	20.4	-	-	-	-	-	-	-	_ 1	-	-	-	-	- 1	-
WL-8	2-4	-	-	< 0.132	< 0.1	! NI	D N	ND	-	-	<1.33	<1.01	ND	ND	-	-	-	-	-	-	-	-	26.3	19.9	26.3	19.9	-	-	-	-	-	-	-	_ 1	-	-	-	- 1	- 1	-
WL-8	4-6	-	-	0.211	0.13	3 0.2	211 0	0.13	-	-	<1.62	<1.0	ND	ND	-	-	-	-	-	-	-	-	31.3	19.3	31.3	19.3	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-
WL-8	6-8	-	-	< 0.268	< 0.1	! NI	D N	ND	-	-	<2.95	<1.1	ND	ND	-	-	-	-	-	-	-	-	22.7	8.47	22.7	8.47	-	-	-	-	-	-	-	_	-	-	-	- 1	- 1	-
SED-BK-01	0-0.5	< 0.1	< 0.027	7 0.104	0.03	3 0.10	.04 0.	.033	<1.98	< 0.548	< 5.05	<1.6	ND	ND	80.5	22.3	69.4	22	75	22.2	23.4	6.48	31	9.82	27.2	8.15	72.6	20.1	-	-	72.6	20.1	208	57.7	-	-	208	57.7	-	-
SED-BK-02	0-0.5	0.132	0.0376	0.0952	0.03	2 0.1	14 0.0	0348	<1.98	< 0.564	<4.76	<1.6	ND	ND	44.4	12.7	44.6	15	44.5	13.9	46.6	13.3	46.1	15.5	46.4	14.4	146	41.5	-	-	146	41.5	236	67.4	-	-	236	67.4	- 1	-
SED-BK-03	0-0.5	< 0.1	< 0.027	8 0.0799	0.02	3 0.07	799 0.	.023	<2	< 0.556	<5.56	<1.6	ND	ND	37.4	10.4	45.8	13.2	41.6	11.8	48.3	13.4	58.3	16.8	53.3	15.1	100	27.8	-	-	100	27.8	190	52.8	-	-	190	52.8	- 1	-
SED-BK-04	0-0.5	< 0.1	< 0.031	6 0.0962	0.03	5 0.09	962 0.	.035	<1.99	< 0.629	<4.4	<1.6	ND	ND	38.5	12.2	41.8	15.2	40.2	13.7	42.9	13.6	42.9	15.6	42.9	14.6	81	25.6	-	-	81	25.6	160	50.5	-	-	160	50.5	-	-
SED-BK-05	0-0.5	< 0.1	< 0.022	1 0.0769	0.02	5 0.07	769 0.	.025	<1.99	< 0.44	<4.92	<1.6	ND	ND	129	28.5	84.3	27.4	107	28	19.3	4.27	21.5	6.99	20.4	5.63	<90.5	<20	-	-	ND	ND	235	52	-	-	235	52	-	-
SED-BK-06	0-0.5	< 0.1	< 0.035	9 0.094	0.02	8 0.0	0.094	.028	<1.99	< 0.714	<5.37	<1.6	ND	ND	52	18.7	59.4	17.7	55.7	18.2	48.4	17.4	64.8	19.3	56.6	18.4	182	65.3	-	-	182	65.3	260	93.5	-	-	260	93.5	- 1	-
SED-BK-07	0-0.5	0.185	0.0377	0.568	0.13	3 0.3	377 0.0	0839	<1.99	< 0.406	< 6.99	<1.6	ND	ND	50.5	10.3	61.1	14	55.8	12.2	61.6	12.6	69	15.8	65.3	14.2	320	65.3	-	-	320	65.3	458	93.5	-	-	458	93.5	- 1	-
SED-BK-08	0-0.5	< 0.1	< 0.029	0.14	0.03	4 0.1	14 0.	.034	<1.99	< 0.577	<6.61	<1.6	ND	ND	47.8	13.9	64.5	15.6	56.2	14.8	44.1	12.8	58.3	14.1	51.2	13.5	<69	<20	-	-	ND	ND	<172	<50	-	-	ND	ND	-	-
SED-BK-09	0-0.5	< 0.1	< 0.024	5 0.0826	0.02	2 0.08	826 0	0.02	<1.99	< 0.488	<6.61	<1.6	ND	ND	84.6	20.7	84.7	20.5	84.7	20.6	29.3	7.18	16.4	3.98	22.9	5.58	<81.6	<20	-	-	ND	ND	<204	<50	-	-	ND	ND	-	-
SED-BK-10	0-0.5	< 0.1	< 0.034	9 <0.0398	< 0.0	1 NI	D N	ND	<1.99	< 0.695	< 6.37	<1.6	ND	ND	62.8	21.9	103	25.9	82.9	23.9	43.9	15.3	205	51.4	124	33.4	<57.3	<20	-	-	ND	ND	<143	<50	-	-	ND	ND	- 1	-
SED-BK-11	0-0.5	-	-	< 0.0505	<0.0	1 NI	D N	ND	-	-	<8.08	<1.6	ND	ND	-	-	100	19.8	100	19.8	-	-	90.9	18	90.9	18	-	-	-	-	-	-	-		-	-	-	-	- 1	-

East White Lake Field Vermilion Parish, Louisiana

State	Pisani	Aroclor-1232 ICON Pisani mg/kg- mg/kg- mg/kg- wet dry wet
Lec	kg- mg/kg- y wet	- mg/kg- mg/kg- mg/kg- mg/kg- wet
The start was not seem to be start was not see	/ wet	dry wet dry wet
State		
Street		
Marie Mari		
December Section Sec	-	
Note		
National 51		
S		
85	- - - -	
Second S		
Section Sect	-	
No. 19 19 19 19 19 19 19 1	-	
Fig.	_	
State	_	
60 0.0	-	
00 0.54-55 0.5 0	-	
BIO	-	
812	-	
Riskern 3.5	-	
B) Skram 7,59	-	
Bis Rem 75.95	-	
Bis Nern 4-6	-	
Bis Rem	-	
B17	-	
Stream S	-	
10.5 2	-	
118	-	
818 75-10	-	
Bi9 1.25	-	
Bi9 2.5-4 - </th <th>-</th> <th></th>	-	
B19 Rerun 6.5-9.5 -	-	
B20 3-4.5 - </th <th>-</th> <th></th>	-	
B21 0-2 - <th>-</th> <th></th>	-	
B21	-	
SS1	-	
SS2	-	
SS3 0-0.6	-	
SS3 0.6-2.2	-	
	-	
	-	
SS4 0.6-2.7	-	
SS4 2.7-3.8	-	
SS6 0-1.65	-	
	-	
	-	
	-	
SS8		
SS8 2-4	-	
SS9 0-1.7		
559 3.2-3.7	-	
SS10 0-1.5	- - - -	
SS10 0-2 ND <15 80.5 24.3 203 61.2 ND <15 80.5 24.3 203 61.2 ND <10 ND <15 ND <15 ND <15	- - - -	
SS10 2-4 ND <15 48.3 18.2 192 72.2 ND <10 23.1 8.72 45.6 17.2 26.5 10		

East White Lake Field Vermilion Parish, Louisiana

	Ī		Aliph	atic >C8-	Alipha	tic >C10-	Aliphati	ric >C12-	Aliphati	ic >C16-	Aroma	tic >C8-	Aromatic >C10-	Aromat	ic >C12-	Aromati	ic >C16-	Aromatic >C21-					Total PCBs												—— <u>—</u>
		Aliphatic C6-C8	1 (C10	. (C12	· C	16	C	35	C	10	C12	C	16	C	21	C35		Total PC			Average		Aroclor-					or-1221			Aroclo		
	Core	Pisani	P	isani	Pi	sani	Pis	sani	Pis	ani	Pis	ani	Pisani	Pis	ani	Pis	ani	Pisani	ICC	ON	Pisani			IC	ON	Pis	sani	IC	ON	Pis	ani	ICO	ON	Pisa	ni
Boring ID	Interval (ft bgs)	mg/kg- dry mg/kg- wet	mg/kg	mg/kg wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry mg/kg- wet	mg/kg- dry	mg/kg- wet	g/kg- dry mg/		ng/kg- dry mg/kg- wet	mg/kg- dry	mg/kg- m	ng/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet
SS11 SS11	2.5-3.4 3.4-3.7		-	-	-	-	-	-	-	-		-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	-
SS12	0-3.7		-	-	-	-	-	-	-	-	1	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	-
SS13 SS13	0-1 1-2.75		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	-
SS13	2.75-3.2		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-		
SS14 SS14	0-0.8 0.8-1.7		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	-
SS15	0-3		-	-	-	-	-	-	-	-		-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-		-
SS15 AB1	3-3.25 0-3		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-		-		-	-	-	-	-	-	-	-	-	-	-	-
AB1	3-6		-	-	-	-	-	-	-	-	1	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-		
AB1 AB1	6-8 12-14		-	-	-	-	-	-	-	-		-		-		-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	-
AB2	0-3 3-6		-	-	-	-	-	-		-	-	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	
AB2	4-6			-	-	-	-	-	-	-	-	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-		
AB2 AB3	10-12 0-3		1 -	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-		+		-	-	-	-	-	-	-	-	-	-	-	-
AB3	3-6		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-		1		-	-	-	-	-	-	-	-	-	-		-
AB3 AB3	4-6 8-10		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-		+		-	-	-	-	-	-	-	-	-	-	-	-
AB4 AB4	0-3 3-6		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-		1		-	-	-	-	-	-	-	-	-	-	-	-
AB4	4-6			-		-		-	-	-	-	-			-	-	-		-	-		\pm		-	-	-	-	-	-	-	-	-	-	-	-
AB4 AB5	10-12 0-6		-	-	-	-	-	- 1	-	-	-	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	-
AB5	4-6			-	-	-	-	-	-	-	-	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-		
AB5 AB5	10-12 14-16		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	-
AB5	18-20		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-		_
AB6	8-10 12-14		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	
AB7	6-8		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	
AB8	10-12 6-8		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	
AB8 AB8	10-12 14-16		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	-
AB9	6-8		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-		
AB9 AB9	12-14 18-20		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-		-		-	-	-	-	-	-	-	-	-	-	-	
AB10	4-6		-	-	-	-	-	-	-	-	1	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-		
AB10 AB10	12-14 14-16		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	
AB11 AB11	4-6 6-8		-	-	-	-	-	-	-	-	1	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	-
AB11	16-18		-	-	-	-	-	-	-	-	,	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	
AB12 AB12	6-8 12-14		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-					-	-	-	-	-	-	-	-	-	-	-	-
AB13	0-3		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	-
AB13 AB13	3-6 4-6			-	-		-	-	-	-					-	-				-				-		-		-			-	-	-	-	-
AB13	8-10		-	-	-	-	-	-	-	-	1	-		-		-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	-
AB13 AB14	10-12 0-3			-	-		-	-	-	-		-		_ -	1 1	-	-		-	-				-		-		-		-	-	-	-	-	-
AB14 AB14	3-6 4-6			-	-		-	-	-	-		-		-	-	-	-		-	-				-	-	-		-	-	-	-	-	-	-	-
AB14	8-10		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	-
AB15 AB15	0-6 4-6			-	-		-	-	-	-		-			-	-	-		-	-				-		-	+	-	-	-	-	-	-	-	-
AB15	12-14		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	-
AB16 AB16	4-6 8-10			-			-	-		-	-	-		-	-	-	-		-	-		+		-		-		-		-	-	-	-	-	-
AB16	10-12		-	-	-	-	-	-	-	-	ı	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	-
AB16 AB18	12-14 4-6		_	-	-		-	-	-	-	-	-			-	-	-		-	-		_		-		-	-	-		-	-	-	-	-	-
AB18	10-12		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	-
AB18 AB19	12-14 4-6			-	-	_		-	-	-	1	-		-	1	-	-		-	-		_		-		-		-		-	-	-	-	-	-
AB19 AB19	8-10 12-14		-	-	-	-		-		-	-	-		-	- 1	-	-		-					-	-	-	-	-		-	-	-	-	-	-
AB20	6-8			-	-	-	-	-		-	-	-		-		-	-		-	-				-	-			-		-	-	-	-	-	-
AB20 AB20	10-12 14-16			-	-		-	-	-	-		-			-	-	-		-	-				-		-		-		-	-	-	-	-	-
AB20	16-18		-	-	-	-	-	-	-	-	1	-		-	-	-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	-
AB21 AB21	4-6 6-8			-	-	-	-	-	-	-	-	-		-	-	-	-		-			_		-		-	-	-	-	-	-	-	-	-	-
1	U U			i	_		-		-		i		- 1	_										_								_			

East White Lake Field Vermilion Parish, Louisiana

		Aliphatio	: C6-C8		tic >C8-	Aliphat		Aliphat		Aliphati		Aroma			ic >C10-			Aromat		Aromatic			Total P	CBs		Total PC			Aroclor-	1016			Aroclo	or-1221			Aroclo	or-1232	
		Pisa		Pis		•	c12 sani		16 sani	C: Pis			10 sani	C: Pis		Pis		Pis	21 ani	C3 Pisa		ICC	ON	Pisani		Averag	e	ICC)N	Pis	sani	IC	ON	Pis	sani	IC	ON	Pisa	ani
	Core																																						
Boring ID	Interval (ft bgs)	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- 1 wet		g/kg- wet	mg/kg- m		ng/kg- dry		ng/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet
AB21	8-10	- -	-	- -	-	-	-	- -	-	-	-	- -	-	- -	-	- -	-	- -	-	-	-	-	-	-	-		-	-	-	-	-	- -	-	-	-	- -	-	-	-
AB21 AB22	12-14 4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
AB22	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-
AB22 AB22	12-14 16-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED4	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	ND		ND					0.0673	< 0.04	<0.0971	<0.0375	<0.0673	< 0.04	<0.0971		<0.0673	< 0.04
SED5 SED6	0-2 0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND ND	ND ND		ND ND					<0.08 <0.408	<0.04 <0.200	<1.19	<0.0333	<0.08	<0.04 <0.200	<1.19	<0.0333 <0.419	<0.08	<0.04
SED7 SED7	0-2 2-4	-	-	-	-	16.1	6.41	- 152	60.5	619	247	-	-	- ND	<10	- ND	- <15	- ND	- <15	- ND	- <15	- ND	- ND	- ND	- ND	- ND I	- ND <	- 0.0979	<0.0373	<0.1	<0.04	<0.0979	<0.0373	<0.1	<0.04	<0.0979	- <0.0373	<0.1	<0.04
SED7	4-6	-	-	-	-	ND	<15	58.1	16.5	556	158	-	-	ND ND	<10	ND ND		ND ND	<15	ND ND	<15	0.204	0.0622	0.292 (0.083	0.248 0.	0726		<0.0348	<0.141	< 0.04	< 0.114	0.00.0	<0.141	< 0.04	< 0.114	<0.0348	0.0	< 0.04
SED8 SED8	0-2 2-4	-	-	-	-	- ND	- <15	101	37.4	333	123	-	-	- ND	- <10	- ND	- <15	- ND	- <15	- ND	- <15	ND -	ND -	ND -	ND -		ND -	<1.29	<0.395	<0.617	<0.198	<1.29	<0.395	<0.617	<0.198	<1.29	<0.395	<0.617	<0.198
SED9	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
SED9 SED10	2-4 0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
SED10	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-
SED11	0-2	-	-	-	-	- ND		-	- 10	- 140	-	-	-	- ND	-	-		- N/D	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	<u> </u>		-
SED11 SED12	2-4 0-2	-	-	-	-	ND -	<15	27.2	10	148	54.5	-	-	ND -	<10	ND -	<15 -	ND -	<15 -	ND -	<15 -	-	-	-	-	-	<u>-</u>	-	-	-	-	-	-	-	-	-	-	-	-
SED12	2-4	-	-	-	-	ND	<15	166	47.1	616	175	-	-	ND	<10	ND	<15	ND	<15	ND	<15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED12	4-6	-	-	-	-	ND	<15	64.9	21.3	381	125	-	-	ND	<10	ND	<15	ND	<15	ND	<15	-	-	-	- [-	-	-	-	-	-	-	-	-	-	-	⊢ ∏		-
SED13 SED13	0-2 2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-	-	-	-	-
SED14	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
SED14	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED16 SED17	0-2 0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED17	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED18	0-2	-	-	-	-	ND	<15	44.4	11.5	183	47.3	-	-	ND	<10	ND	<15	ND	<15	ND	<15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED18 SED19	2-4 0-2	-	-	-	-	ND 18.4	<15 6.51	46.3 262	19 92.7	276 1250	113 442	-	-	ND ND	<10 <10	ND 29.4	<15 10.4	ND 85.9	<15 30.4	ND 156	<15 55.1	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
SED19	2-4	-	-	-	-	14.8	5.99	178	72	611	247	-	-	ND	<10	ND	<15	ND	<15	ND	<15	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
SED20	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED20 SED21	2-4 0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
SED21	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
SED21	4-6	-	-	-	-	ND	<15	48.9	19.3	214	84.5	-	-	ND	<10	ND	<15	ND	<15	ND	<15	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
SED21 SED22	6-8 0-2	-	-	-	-	ND -	<15	38.5	16.4	115	48.9	-	-	ND -	<10	ND -	<15 -	ND -	<15 -	ND -	<15 -	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
SED22	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
SED23	0-2	-	-	-	-	ND	<15	103 227	36.3	1130	400	-	-	ND ND	<10	20.3 ND		96 102	34	185	65.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-
SED23 SED24	2-4 0-2	-	-	-	-	ND -	<15	227	71.5	1490	468	-	-	ND -	<10	ND -	<15	102	32.2	226	71.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED24	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
SED25	0-2	-	-	-	-	ND	<15	62.9	21	290	96.8	-	-	ND	<10	ND		ND	<15	ND	<15	-	-	-	-		-	-	-	-	-	-	-	-	-	-	⊢ ∏	-	-
SED25 SED26	2-4 0-2	-	-	-	-	90.5	31.4	816	283	2560	890	-	-	14.5	5.04	273	94.9	464	161	- 519	180	-	-	-	-		<i>-</i>	-	-	-	-	-	-	-	-	-	-	-	-
SED26	2-4	-	-	-	-	ND	<15	152	34.5	489	111	-	-	ND	<10	35.9	8.16	68.3	15.5	34	7.72	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-
SED27	0-2	-	-	-	-	ND ND	<15	24.3	6.79	275	76.8	-	-	ND	<10	ND		ND	<15	ND ND	<15	-	-	-	- [-	-	-	-	-	-	-	-	-	-	-	-	-
SED27 SED28	2-4 0-2	-	-	-	-	ND 514	<15 110	53.5 561	16.2 120	360 12600	109 2690	-	-	ND 30.8	<10 6.6	ND 790		ND 1360	<15 290	ND 2020	<15 433	-	-	-	-		<i>-</i>	-	-	-	-	-	-	-	-	-	-	-	-
SED28	2-4	-	-	-	-	ND	<15	51.8	7.72	1110	165	-	-	ND	<10	ND	<15	ND	<15	ND	<15	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
SED29	0-2	-	-	-	-	ND	<15	258	53.6	2250	469	-	-	ND	<10	ND	<15	290	60.4	880	183	-	-	-	- [-	-	-	-	-	-	-	-	-	-	⊢ ∏	-	-
SED29 SED30	2-4 0-2	-	-	-	-	129	17.9	2600	362	9710	1350	-	-	- ND	<10	184	25.6	719	100	1550	215	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
SED30	2-4	-	-	-	-	ND	<15	87.8	13.7	383	59.7	-	-	ND	<10	ND	<15	ND	<15	ND	<15	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-
SED31	0-2	-	-	-	-	32.2		297	87.3	1320	389	-	-	ND	<10	ND		132	38.7	205	60.4	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-
SED31 SED31	2-4 4-6	-	-	-	-	110	22.3	486	98.1	941	190	-	-	ND -	<10	39.4	7.95	94.6	19.1	84.7	17.1	-	-	-	-		<i>-</i>	-	-	-	-	-	-	-	-	-	-	-	-
SED32	0-2	-	-	-	-	93.6	26.3		257	2620	736	-	-	ND	<10	59.1		238	66.9	350	98.3	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
SED32	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
SED32 SED33	4-6 0-2	-	-	-	-	- ND	<15	205	40.9	466	93.2	-	-	- ND	<10	- ND	- <15	- ND	- <15	- ND	- <15	-	-	-	-		<i>-</i>	-	-	-	-	-	-	-	-	-	-	-	-
SED33	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-
SED33	4-6	-	-	-	-	- ND	- 215	- ND		- ND		-	-	- ND		-		- ND	- 215	- ND		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
MPA-Sed 15-N MPA-Sed-15-W	0-2 0-2	-	-	-	-	ND ND	<15 <15	ND ND	<10 <10	ND ND	<10 <10	-	-	ND ND	<10 <10	ND ND	<15 <15	ND ND	<15 <15	ND ND	<15 <15	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
1V11 /1-56/1-12-4/	U-Z		-			IND	~13	ND	10	IND	-10		ı -	IND	-10	IVD	~1.0	IND	`1J	1117	~1 J	-	- 1	-	-	- 1	-	-	-				ı -			_			-

East White Lake Field Vermilion Parish, Louisiana

				Aliphat	ia >C0	Aliphat	ia >C10	Aliphat	ia >C12	Aliphati	a >C16	Aroma	tia >C0	Aromati	a > C10	Aromati	ia >C12	Aromati	a >C16	Aromatic >C2	1				Total Po	TP _o												
		Aliphati	ic C6-C8	C:			12		16	C			10	C1		C		CZ		C35	.1-		Total PCBs		Avera			Aroclor-1	016			Aroclo	or-1221			Aroclo	r-1232	
		Pis	sani	Pis	ani	Pis	sani	Pis	sani	Pis	ani	Pis	sani	Pis	ani	Pis	ani	Pisa	ani	Pisani		ICON	Pi	sani			ICC	ON	Pis	ani	IC	ON	Pis	sani	ICO	DΝ	Pisa	ini
	Core Interval	mg/kg-	mg/kg-	mg/kg-	ma/ka-	mg/kg-	ma/ka-	ma/ka-	ma/ka-	mg/kg-	ma/ka-	mg/kg-	ma/ka-	mg/kg-	ma/ka-	ma/ka-	ma/ka-	mg/kg-	ma/ka-	mg/kg- mg/l	ca- ma/	/kg- me	g/kg- mg/kg-	ma/ka-	mg/kg- n	ng/kg-	ma/ka-	mg/kg- m	a /ka-	ma/ka-	mg/kg-	ma/ka-	mg/kg-	ma/ka-	ma/ka-	mg/kg-	ma/ka-	mg/kg-
Boring ID	(ft bgs)	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry we	0		wet dry	wet		wet	dry		dry	wet	dry	wet	dry	wet	dry	wet	dry	wet
MPA-Sed-15-W-2	0-2	-	-	-	-	ND	<15	ND	<10	ND	<10	,	-	ND	<10	ND	<15	ND	<15	ND <15	<u> </u>	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MPA-Sed-15-E	0-2	-	-	-	-	ND	<15	ND	<10	ND	<10	-	-	ND	<10	ND	<15	ND	<15	ND <15	_	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MPA-Sed-15-E-2 MPA-AB5 (A)	0-2 4-6	-	-	-	-	ND ND	<15 <15	ND ND	<10 <10	ND ND	<10 <10		-	ND ND	<10 <10	ND ND	<15 <15	ND ND	<15 <15	ND <15 ND <15		-		-	-	-	-	-	-	-		-	-	-	-	-	-	-
MPA-AB5 (B)	4-6	-	-	-	-	ND	<15	ND	<10	ND	<10	-	-	ND	<10	ND	<15	ND	<15	ND <15		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MPA-AB5 (C)	4-6	-	-	-	-	ND	<15	ND	<10	ND	<10	-	-	ND	<10	ND	<15	ND	<15	ND <15	5 -	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MPA-AB-6	8-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MPA-AB8 MPA-AB13	6-8 0-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			_	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-
AB-6	8-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB-13	0-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_	-		-	-	-		-	-	-	-	-	-	-	-	-	-	-
AB-13 SO-E AB-14	0-3 0-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB-8	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			_	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-
AB-8 SO-S	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-
AB-5 SO-NE AB-5 SO-NW	4-6 4-6	-	-	-	-	ND ND	<15 <15	ND ND	<10 <10	ND 108	<10 38.7	-	-	ND ND	<10 <10	ND ND	<15 <15	ND ND	<15 <15	ND <15 ND <15		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB-5a	4-5.5	-	-	-	-	ND	<15	ND	<10	87.8	31.6		-	ND	<10	ND	<15	ND	<15	ND <15	_	-		_	-	-	-		-	-		-	-	-				-
AB-15	4-5.5	-	-		-	ND	<15	45.8	16.5	154	55.3	-	-	ND	<10	ND	<15	ND	<15	ND <15				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED-8 SED-9	0-0.5 0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		NI NI		ND - ND -	-		ND ND	<0.103	<0.04	-	-	<0.103	<0.04	-	-	<0.103	<0.04	-	-
SED-9 SED-11	0-0.5	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		NI		ND -	-		ND ND	<1.36	<0.4	-	-	<1.36	<0.4	-	-	<1.36	<0.4	-	-
SED-13	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		NI		ND -	-		ND	<0.163	<0.04	-	-	< 0.163	< 0.04	-	-	< 0.163	< 0.04	-	-
SED-19	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		NI		ND -	-		ND	<1.87	<0.4	-	-	<1.87	< 0.4	-	-	<1.87	< 0.4	-	-
SED-24 SED-26	0-0.5 0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		NI NI		ND - ND -	-			<0.128	<0.04 <0.04	-	-	<0.128	<0.04	-	-	<0.128	<0.04	-	-
SED-26 SED-31	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		NI		ND -	-		ND	<0.134	<0.04	-	-	<0.134	<0.04	-	-	<0.134	<0.04	-	-
SED-120 *	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-01 Hg-MPA-01	0-0.5 0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		+-:	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-01	5-7	-	-	-	-	-	-	-	-	-	-	,	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-02	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-02 Hg-MPA-02	0.5-2 5-7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		+	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-
Hg-MPA-03	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-		-	-	-	-	-	-	-		-	-	-	-	-	-	-
Hg-MPA-03	0.5-2	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-			-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-03	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-04 Hg-MPA-04	0-0.5 0.5-2	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-			+ -	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-04	3-5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-
Hg-MPA-05 Hg-MPA-05	0-0.5 0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-05	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-
Hg-MPA-06 Hg-MPA-06	0-0.5 0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-		-	-	-	-		-	-	-	-	-	-	-		-	-
Hg-MPA-06	5-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-		-	-	-	-		-	-	-	-	-	-	-	-	-	-
Hg-MPA-07 Hg-MPA-07	0-0.5 0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					-	-	-	-		-	-	-	-	-	-	-	-	-	-
Hg-MPA-07	6.5-7	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	-		-				-	-	-		-	-		-	-	-		-	-	-
Hg-MPA-08 Hg-MPA-08	0-0.5 0.5-2	-	-	-	-	-	-	-		-	-	-		-	-	-	-	-	-					-	-	-	-			-	-	-	-	-	-	-	-	-
Hg-MPA-08	7.5-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-						-	-	-		-	-		-	-	-		-	-	-
Hg-MPA-09 Hg-MPA-09	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_			-	-	-	-		-	-	-	-	-	-	-	-	-	-
Hg-MPA-09	0.5-2 6-7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		+			-	-	-	-		-	-	-	-	-	-	-	-	-	-
Hg-MPA-09dup	0.5-2	-	-	-	-	-	-	- ND	-	-	-	-	-	-	-	-	-	-	-		_			-	-	-	-		-	-	-	-	-	-	-	-	-	-
SP-MPA-01 SP-MPA-01	0-0.5 0.5-2	ND ND	<15 <15	ND ND	<15	ND ND	<15 <15	ND 26	<10 10.8	ND 81.9	<10 34	ND ND	<10 <10	ND ND	<10 <10	ND ND		ND ND	<15 <15	ND <15 ND <15				-	-	-	-		-	-	-	-	-	-	-	-	-	-
SP-MPA-01	2-4.3		<15	ND		ND	<15	187	86.3	773	357	ND		ND	<10	ND		ND	<15	ND <15	<u> </u>			-	 	-	-		-	-	-	-	-	-	-	-	- 1	-
SP-MPA-01 SP-MPA-01	4.3-4.7 8-9		<15 <15	ND ND		ND ND			<10 <10	ND ND	<10 <10	ND ND		ND ND	<10 <10	ND ND		ND ND	<15 <15	ND <15 ND <15				-	-	-	-		-	-	-	-	-	-	-	-	-	-
SP-MPA-02	0-0.5	ND	<15	ND	<15	ND	<15	ND	<10	ND	<10	ND	<10	ND	<10	ND	<15	ND	<15	ND <15	<u> </u>	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-02 SP-MPA-02	0.5-2 3-4		<15 <15	ND ND	<15 <15	ND ND	<15 <15	ND 50.4	<10 17	ND 176	<10 59.4	ND ND	<10 <10	ND ND	<10 <10	ND ND		ND ND	<15 <15	ND <15 ND <15				-	-	-	-		-	-	-	-	-	-	-	-	-	-
SP-MPA-02	4-5	ND	<15	ND	<15	ND	<15	295	104	974	343	ND	<10	ND	<10	ND	<15	ND	<15	ND <15	5 -	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-
SP-MPA-02a SP-MPA-02a	3-5 7-8	ND ND	<15 <15	ND ND	<15 <15	ND ND	<15 <15		34.1 <10	346 ND	97.7 <10	ND ND	<10 <10	ND ND	<10 <10	ND ND		ND ND	<15 <15	ND <15 ND <15				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-03	0-0.5	ND	<15	ND	<15	ND	<15	ND	<10	ND	<10	ND	<10	ND	<10	ND		ND ND	<15	ND <15				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-03	0.5-2	<44.2		<44.2	<15	<44.2	<15	ND	<10	ND	<10	ND	<10	ND	<10	<44.2		<44.2	<15	<44.2 <15	_	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-03	4-6	ND	<15	ND	<15	28.7	15.1	200	105	551	290	ND	<10	ND	<10	ND		89.2	46.9	ND <15	_	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-
SP-MPA-03 SP-MPA-04	9-10 0-0.5	ND <19.3	<15 <15	ND <19.3	<15 <15	ND ND	<15 <15	ND ND	<10 <10	ND ND	<10 <10	ND ND	<10 <10	ND ND	<10 <10	ND ND	<15 <15	ND ND	<15 <15	ND <15 ND <15				-	-	-	-		-	-	-	-	-	-	-	-	-	-
OI -1411 VI-0-4	0-0.5	-10.0	~1.0	-10.0	11.7	IVD	113	1417	110	111	-10	111	-10	111	-10	1417	110	111	110	112		1		1	1 - 1		-			-		-	<u> </u>	i -			-	-

East White Lake Field Vermilion Parish, Louisiana

	-					_		_						_		_				_																			
		Alipha	tic C6-C8		tic >C8-		tic >C10-		ic >C12- 16	Aliphat	ic >C16- 35		tic >C8-		tic >C10-		ic >C12-	Aromat		Aromat	ic >C21- 35		Total	l PCBs			PCBs erage		Aroclo	or-1016			Aroclor	:-1221			Aroclo	or-1232	
		Pi	isani		sani		sani		sani		ani		sani		sani		sani		ani		ani	IC	ON	Pis	sani			IC	CON	Pis	ani	IC	ON	Pisa	ani	ICO	ON	Pisa	ani
	Core																																						
	Interval	0. 0	mg/kg-	mg/kg-	0. 0	mg/kg-	0. 0	mg/kg-							mg/kg-																		mg/kg-			0. 0	0. 0	0. 0	0. 0
Boring ID	(ft bgs)	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet
SP-MPA-04	0.5-2	ND	<15	ND	<15	ND	<15	ND	<10	ND	<10	ND	<10	ND	<10	ND	<15	ND	<15	ND	<15	-	-	-	-	-	-	-	-	-	-	-	-	-		-	┵		-
SP-MPA-04	5-7	ND	<15	ND	<15	ND	<15	162	56.9	339	119	ND	<10	ND	<10	ND	<15	ND	<15	56.1	19.7	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-
SP-MPA-04	9-10	ND	<15	ND	<15	ND	<15	ND	<10	ND	<10	ND	<10	ND	<10	ND	<15	ND	<15	ND	<15	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-
WL-1	0-2	ND	<15	ND	<15	ND	<15	ND	<10	ND	<10	ND	<10	ND	<10	ND	<15	ND	<15	ND	<15	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-
WL-1	2-4	ND	<15	ND	<15	ND	<15	ND	<10	ND	<10	ND	<10	ND	<10	ND	<15	ND	<15	ND	<15	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-
WL-1	6-8	- ND	-	- N/D	-	- NID	-	- ND	-	- NID	-	-	-	- NID		- ND	-	- ND	-	-) ID	-	-	-	-	-	-	-		-	-	-	-	-	-		-		-	
WL-1	9-13	ND	<15	ND	<15	ND	<15	ND	<10	ND	<10	ND	<10	ND	<10	ND	<15	ND	<15	ND	<15	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	
WL-2	0-2	ND	<15	ND	<15	ND	<15	101	63.3	220	138	ND	<10	ND	<10	ND	<15	ND	<15	ND	<15	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	
WL-2	2-4	ND	<15	ND ND	<15	ND	<15	ND	<10	ND	<10	ND	<10	ND	<10	ND ND	<15	ND ND	<15	ND ND	<15		-	-	-	-	-	-	-	-	-	-	-	-		-	\vdash	-	
WL-2	8-10	ND	<15	ND ND	<15	ND	<15	ND	<10	ND	<10	ND	<10	ND	<10	ND ND	<15	ND ND	<15	ND ND	<15		-	-	-	-	-	-	-	-	-	-	-			-			
WL-2	14-16	ND	<15	ND ND	<15	ND 469	<15	ND 2210	<10	ND 0420	<10	ND ND	<10 <20	ND	<10	ND 524	<15	ND 1420	<15	ND 1010	<15		-	-	-	-	-	-	-	-	-	-	-	-		-		-	
WL-3	0-2	ND	<150		<150	468	353	3310	2500	9420	7110			98.5	74.4	534	403	1420	1070	1810	1370	-	-	-	-	-	-	-	-	-	-	-	-	-		-	\vdash	-	
WL-3	4-6/4-8	ND	<75	ND	<75	317	94.9	2920	874	5790	1730	ND	<10	76.3	22.8	870	260	1220	365	1140	341	-	-	-	-	-	-	-	-	-	-	-	-	-		-	\vdash	-	
WL-3	10-13	ND	<15	ND	<15	ND	<15	ND	<10	ND	<10	ND	<10	ND	<10	ND	<15	ND	<15	ND	<15	-	-	-	-	-	-	-	-	-	-	-	-	-		-	\vdash	-	-
WL-4	0-2	ND	<15	ND	<15	ND 474	<15	ND	<10	ND	<10	ND	<10	ND	<10	ND	<15	ND	<15	ND	<15		-	-	-	-	-	-	-	-	-	-	-	-		-	\vdash	-	
WL-4 WL-4	2-4 4-11	ND 471	<75	ND ND	<75 <300	171 465	85.4 307	1360 2790	678 1840	3720 6480	1860 4280	ND 176	<10	43.2 480	21.6 317	410 2360	205 1560	680 3230	340 2130	570 3090	285 2040	-	-	-	-	-	-		-	-	-	-	-	-		-		-	
WL-4	11-12.5	626	311 325	632	328	699	363	3950	2050	6710	3480	281	116 146	407	211	2660	1380	2700	1400	813	422	-	-	-	-	-	-	1	-	-	-	-	-	-		-	\vdash	-	
WL-5	0-2	ND		ND	<15	ND	<15	325	151	1090	508	ND	<10	ND	<10	ND	<15	ND	<15	ND	<15	_	-	-	-	-	-	<u> </u>	-	-	-	_	-	-		-	\vdash	-	
WL-5	2-13	420	298	267	189	443	314	2260	1600	3950	2800	83.4	59.1	169	120	938	665	1150	817	870	617	_	-	-	-	-	-	<u> </u>	-	-	-	_	-	-		-	\vdash	-	
WL-6	0-2	ND	<15	ND	<15	ND	<15	ND	<10	ND	<10	ND	<10	ND	<10	ND	<15	ND	<15	ND	<15	_	-	-	-		-	<u> </u>	-	-	-	_	-	-		-	\vdash	-	
WL-6	4-6	ND	<15	ND	<15	ND ND	<15	ND ND	<10	ND	<10	ND	<10	ND ND	<10	ND ND	<15	ND	<15	ND	<15		-	-	_	-	-	<u> </u>	-	-	-	_	-	-		-	\vdash	-	
WL-6	8-10	ND	<15	ND	<15	ND ND	<15	ND ND	<10	ND	<10	ND	<10	ND ND	<10	ND ND	<15	ND	<15	ND ND	<15		-	-	-	-		<u> </u>	<u> </u>	-	-		-	-		_	\vdash	-	
WL-6	10-13	ND	<15	ND	<15	ND ND	<15	ND ND	<10	ND	<10	ND	<10	ND ND	<10	ND	<15	ND	<15	ND	<15	_	-	-	-	-		<u> </u>	<u> </u>	-	-		-	-		_	\vdash	-	
WL-7	0-2	ND	<15	ND ND	<15	ND ND	<15	ND ND	<10	ND	<10	ND	<10	ND ND	<10	ND ND	<15	ND	<15	ND ND	<15		-	-	-	-		<u> </u>	<u> </u>	-	-		-	-		_	\vdash	-	
WL-7	2-4	ND	<15	ND ND	<15	ND ND	<15	ND ND	<10	ND	<10	ND	<10	ND ND	<10	ND ND	<15	ND	<15	ND	<15		-	-	-	-		<u> </u>	<u> </u>	-	-		-	-		_	\vdash	-	
WL-7	4-6	ND	<15	ND ND	<15	84.4	22.1	412	108	1090	286	ND	<10	ND ND	<10	ND ND	<15	81.3	21.3	ND ND	<15	_	-	-	-	-		<u> </u>	<u> </u>	-	-		-	-		_	\vdash	-	
WL-7	6-8	ND	<15	ND	<15	ND	<15	ND	<10	ND	<10	ND	<10	ND ND	<10	ND ND	<15	ND	<15	ND	<15		-	-	-	-		<u> </u>	<u> </u>	-	-		-	-		_	\vdash	-	
WL-8	0-3	ND	<15	ND ND	<15	ND ND	<15	ND	<10	ND	<10	ND	<10	ND ND	<10	ND ND	<15	ND	<15	ND ND	<15	_	-	-	-	-	-	<u> </u>	<u> </u>	-	-		-	-		_	\vdash	-	
WL-8	2-4	ND	<15	ND ND	<15	ND ND	<15	ND	<10	ND	<10	ND	<10	ND ND	<10	ND ND	<15	ND	<15	ND ND	<15		-	-	-	-		<u> </u>	<u> </u>	-	-		-	-		_	\vdash	-	
WL-8	4-6	ND	<15	ND	<15	ND ND	<15	133	82	256	158	19.9	12.3	ND ND	<10	73.6	45.4	45.9	28.3	ND	<15			-		-		<u> </u>	<u> </u>	-	-		-	-		_	\vdash	-	
WL-8	6-8	ND	<15	ND	<15	ND ND	<15	68.4	25.5	166	62	ND	<10	ND ND	<10	ND	<15.4	61.9	23.1	ND	<15			-		-		<u> </u>	<u> </u>	-	-		-	-		_	\vdash	-	
SED-BK-01	0-0.5	-	13	-	13	-	13	00.4	23.3	-	02	IND	10	-	10	ND	\1 3	01.9	23.1	ND	-13			-		-		<u> </u>	<u> </u>	-	-		-	-		_	\vdash	-	
SED-BK-02	0-0.5		 	-	 	-	-	 	-	-		-	 		-				-		-		-	-		-	 	1	+ -	-	-	-	-	-			\vdash	-	
SED-BK-03	0-0.5		 	-	 	-	-	-	-	-		-	-		-		-		-		-		-	-	-	-	-	1	+ -	-	-	-	-	-		-	\vdash	-	
SED-BK-04	0-0.5		 	-	-	_	-	-	-	-		-	-		-				-		-		-	-		-	-	1	+ -	-	-		-	-			\vdash	-	
SED-BK-05	0-0.5		 	-	 	-	-	-	-	-		-	 		-				-		-		-	-		-	-	1	+ -	-	-		-	-			\vdash	-	-
SED-BK-06	0-0.5		+ -	-	 -	_	 -		-	-			<u> </u>		+ -	- -	-		-	H -	-	-	-	 	<u> </u>	-	l -	+ -	+ -	-	-		-	-			\vdash	-	-
SED-BK-07	0-0.5		+ -	-	 -	_	 -		-				-		+ -	- -	-		-	H -	-	-	-	 	<u> </u>	-	l -	+ -	+ -	-	-		-	-		-	\vdash	-	-
SED-BK-08	0-0.5		+ -	-	 -	_	 -		-				<u> </u>		+ -	- -	-			H -	-	-	-	 	<u> </u>	-	l -	+ -	+ -	-	-		-	-			\vdash	-	-
SED-BK-09	0-0.5	-	 		 		<u> </u>	 	-	-			 		-		-	<u> </u>							-		 		+ -	-	-		-	-			\vdash	-	
SED-BK-10	0-0.5		+ -		-		-		-	-			 		-		-	<u> </u>	<u> </u>		-	ND	ND	-		-	 	< 0.113	< 0.0396	-		<0.0679	<0.0962	-		<0.1245	<0.1528	-	
SED-BK-10	0-0.5		-		-	-	-	-	-	-		-			-		-		-	<u> </u>	-	IVD	IVD	-		-	 - -	-0.113	-0.0550	-		-0.0079	-0.0302			<0.1243	-0.1020		
OPD-DIZ-11	0-0.5	-							1	-								-						-						1				-			1		

East White Lake Field Vermilion Parish, Louisiana

			Arocl	or-1242			Aroclo	or-1248	.8	Aroc	lor-1254			or-1254		Aroclo	or-1260		2-Methyli	naphthalene	2-M	N Averag	:	A	cenaphthene			phthene		Acenaph	thylene		naphthylo	
		IC	ON	Pis	sani	IC	CON		Pisani	ICON	Pis	sani	Ave	erage	IC	ON	Pis	sani	ICON	Pisani		_		ICON	Pi	sani	Ave	erage	ICO	N	Pisani	I	Average	-
	Core																																_	
	Interval				mg/kg-					mg/kg- mg/kg									mg/kg- mg/kg-														cg- mg/	
Boring ID	(ft bgs)	dry	wet	dry	wet	dry	wet	dry		dry wet	dry	wet	dry	wet	dry	wet	dry	wet	dry wet	dry w					et dry	wet	dry	wet	dry	wet	dry w			vet
B2 B2	2-4 4-6	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-			-		-	_		-	-	-	-	-		-	_	- -
B2 Rerun	6-8	-	-	-	-	_	-	-	+		-	-	-	-	-	-	-	-				_	_			-	-	 -	-	-			-	<u>-</u>
B2 Rerun	10-10.5	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-				-	-			-	-	-	-	-		-		-
В3	4-7	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-			-	-	-	-	-				-
B3 Rerun	9-12	-	-	-	-	-	-	-	+		-	-	-	-	-	-	-	-		+	-	-	-			-	-	-	-	-				-
B4 Rerun B4 Rerun	0-1 3-5	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-		_			-	-	-	-	-		-		-
B4	5-8	-	-	-	-	_	 -	-	+		-	-	-	-	-	-	-	-		+	-	+	+ -			-	-	-	-	-	+			-
B5	0-1.5	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		+ + + + + + + + + + + + + + + + + + + +	-	_	-			-	-	-	-	-		-		-
B5	4-5.5	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-			-	-	-	-	-				-
B5 Rerun B6	8-10 1.5-3	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-				_	-			-	-	-	-	-		-		-
B6	3-10.5	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-					-			-	-	-	-	-		<u> </u>		-
B7	4-5 9 11	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-		t - t -	-	_	-			-	-	-	-	-		-	_	-
B8 Rerun	8-11 5.5-7	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-			-		-	-		-	-	-	- +	-		-	_	<u>-</u>
B8	9.5-11.5	-	-	-	-	-	-	-	_		-	-	-	-	-	-	-	-			-		_			-	-	-	-	-		-		-
B9 Rerun B9	0-0.5 0.5-3.5	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-			-		-			-	-	-	-	-		-	_	<u>-</u>
B9 Rerun	8-9	-	-	-	-		-	-			-	-	-	-	-	-	-	-		+	-	_				-	-	-	-	-				-
B10 B10	1.5-4 4-7.5	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-					-			-	-	-	-	-]			_	-
B10 B12	4-7.5 0-1.5	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-			-	_	+			-	-	-	- +	-		-		-
B12 Rerun	3.5-5	-	-	-	-	-	-	-	-		-	-	-	-	-	-	1	-			-	_	-			-	-	-	-	-				-
B12 B13 Rerun	6.5-7.5 3-5	-	-	-	-	-	-	-	_		-	-	-	-	-	-	-	-			-		-			-	-	-	-	-		-		<u>-</u>
B13 Rerun	7.5-9.5	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-			-		-			-	-	-	-	-		-		-
B14 B14	0-1 4-8	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-		 	-		-			-	-	-	-	-	-	-	_	-
B15 Rerun	4-6	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-				-	-			-	-	-	-	-		-		<u>-</u>
B15	8-11.5	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-		+ + + - +	-		-			-	-	-	-	-		-		-
B17 B17 Rerun	0-3 3-6	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-		t - t -		-	-		 	-	-	-	-	-		-		<u>-</u>
B17	8.5-10.5	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-					-			-	-	-	-	-				-
B17 Rerun B18	10.5-12 2-4	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-		+		-	-			-	-	-	-	-		<u> </u>	_	<u>-</u>
B18	4-5	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-					_			-	-	-	-	-		-		-
B18 B18	7.5-10 10-11.5	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		+ + + - +	-		-			-	-	-	-	-		-		-
B19	1-2.5	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		+	-	-	-			-	-	-	-	-		-	_	- -
B19	2.5-4	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-				_				-	-	-	-	-		· -		-
B19 B19 Rerun	4-6.5 6.5-9.5	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-			-		-			-	-	-	-	-		-		- -
B20	3-4.5	-	-	-	-	-	-	-	_		-	-	-	-	-	-	-	-			_	_	-			-	-	-	-	-				-
B20	7.5-10	-	-	-	-	-	-	-	_		-	-	-	-	-	-	-	-			-	-	-			-	-	-	-	-		· -		-
B21 B21	0-2 2-4	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-			-		-			-	-	-	-	-		-	_	- -
SS1	0-2.1	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-				-				-	-	-	-	-				-
SS1 SS2	2.1-2.5 0-1	-	-	-	-	-	-	 -			-	-	-	-	-	-	-	-			-	+ -				-	-	-	-	-		-		-
SS2	1-1.5	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-		+ + + - +	-	-	-			-	-	-	- 1	-		- -	-	-
SS3 SS3	0-0.6 0.6-2.2	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	<0.885 <0.33 <0.885 <0.36			ND ND				-	-	-	-	-		-	-	-
SS3	2.2-2.6	-	-	-	-		-	-			-	-	-	-	-	-	-	-	<0.957 <0.33			ND ND		_		-	-	-	-	-	-			_
SS4	0-0.6	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-			-	_				-	-	-	-	-		- -		-
SS4 SS4	0.6-2.7 2.7-3.8	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-			-	-	_			-	-	-	-	-		-	-	-
SS5	0-2.15	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	<0.776 <0.33		NI	ND	-			-	-	-	-	-		- -	-	-
SS6 SS6	0-1.65 1.65-2.5	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-		+ + + - +		-	_			-	-	-	-	-	-	-	-	-
SS7	0-1.4	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	<1.17 <0.33		NI	ND ND	-			-	-	-	-	-				-
SS7 SS7	1.4-2.5 2.5-3.5	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	5.29 2.03 <0.979 <0.33			9 2.03 ND				-	-	-	-	-		-	-	-
SS8	0-1.9		-	-	<u> </u>	-	-	-	_		-	-	-	-	-	-	,	-				ND -	_			-	-	-		-		=		-
SS8	1.9-2.3	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-					_			-	-	-	-	-		- -	_	-
SS8 SS8	0-2 2-4	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-			-	-	_			-	-	-	-	-		-		-
SS9	0-1.7	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-			-	-	-			-	-	-	-	-		-		-
SS9 SS9	1.7-3.2 3.2-3.7	-	-	-	-	-	-	-	_		-	-	-	-	-	-		-		+ + + - +	-	-	_			-	-	-	-	-				-
SS10	0-1.5		-	-	-	-	-	-			-	-	-	-	-	-	,	-			_		-			-	-	-	-	-		-	_	-
SS10	1.5-2.5	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-					_			-	-	-	-	-			-	
SS10 SS10	0-2 2-4	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-			-	-	_	_		-	-	-	-	-		-	_	-
SS11	0-2.5	-	-		-	-		-			-	-	-	-	-		-	-	<0.466 <0.33			ND				-	-		-	-				-

East White Lake Field Vermilion Parish, Louisiana

		A	Aroclor	-1242			Aroclo	or-1248			Aroclo	or-1254		Aroclor-125	4	Arock	or-1260			2-Methylna	phthaler	ne	2-MN A	verage	Ace	naphthene	e		phthene		Acenaph	nthylene		Acenapht	-
		ICON		Pisani		IC	ON	Pi	sani	IC	ON	Pis	ani	Average		ICON	Pi	sani	IC	ON	Pis	sani			ICON	-	Pisani	Ave	erage	IC	ON	Pis	ani	Avera	age
	Core	ICOIV		T ISUM		I.C.		1.		10		110			-	leciv	11		10		- 11	Sum			ICON		T ISUIT			10		113	un	$\overline{}$	
Boring ID	Interval (ft bgs)	mg/kg- mg dry w	/kg- 1 vet	mg/kg- mg dry v	g/kg- vet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- mg/s dry we	_	ng/kg- dry mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- mg/l dry we		kg- mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet
SS11	2.5-3.4		-	- v	-	- ary	-	-	-	- -	-	-	-				- ciry	-	<0.596	<0.33	-	-	ND	ND		-	-	-	-	-	-	-	-	-	-
SS11	3.4-3.7	-	-	-	-	-	-	-	-	-	-	-	-				-	-	< 0.611	< 0.33	-	-	ND	ND		-	-	-	-	-	-	-	-	-	-
SS12	0-3.7		-		-	-	-	-	-	-	-	-	-				-	-	< 0.609	< 0.33	-	-	ND	ND		-	_	-	-	-	-	-	-	-	-
SS13 SS13	0-1 1-2.75	 	-		-	-	-	-	-	-	-	-	-				-	-	-	-		-	-	-		-		-	-	-	-	-	-	-	-
SS13	2.75-3.2	 	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
SS14 SS14	0-0.8 0.8-1.7		-		-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-	_	-	-	-	-	-	-	-	-
SS15	0.8-1.7		-	-	-	-	-	-	-	-	-	-	-				-	-	-	-		-	-	-		-		-	-	-	-	-	-	-	- -
SS15	3-3.25	-	-	-	-	-	-	-	-	-		-	-				-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
AB1	0-3		-		-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-
AB1 AB1	3-6 6-8		-		-	-	-	-	-	-	-	-	-				-	-	-	-		-	-	-		-		-	-	-	-	-	-	-	-
AB1	12-14		-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
AB2 AB2	0-3 3-6		-		-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-		-	- -	-	-	-	-	-	
AB2	3-6 4-6		-	-	-	-	-	-	-	-	-	-	-		_		-	 -		-	-	-	-	-		-		-	-		-	-	-	-	- - +
AB2	10-12		-		-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	•		-		-	-	-	-	-	-	-	-
AB3 AB3	0-3 3-6		-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-	_	-	-	-	-	-	-	-	
AB3	4-6		-		-	-	-	-	-	-	-	-	-		_		-	-	-	-	-	-	-	-		_	_	-	-	-	-	-	-	-	
AB3 AB4	8-10 0-3		-		-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-	_	-	-	-	-	-	-	-	
AB4	3-6		-	-	-	-	-	-	-	-	-	-	-				-	-	-	-		-	-	-		-	_	-	-	-	-	-	-	-	-
AB4	4-6	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	
AB4 AB5	10-12 0-6		-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-	_	-	-	-	-	-	-	-	
AB5	4-6	 	-		-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-
AB5	10-12		-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-	_	-	-	-	-	-	-	-	-
AB5 AB5	14-16 18-20		-		-	-	-	-	-	-	-	-	-		_		-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	
AB6	8-10	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		
AB6 AB7	12-14 6-8		-		-	-	-	-	-	-	-	-	-		_		-	-	-	-		-	-	-		-		-	-	-	-	-	-	-	-
AB7	10-12	 	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-
AB8	6-8	 	-		-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-
AB8 AB8	10-12 14-16	 	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	
AB9	6-8	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
AB9 AB9	12-14 18-20	 	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-		-	-	-		-		-	-	-	-	-	-	-	
AB10	4-6		-		-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-	_	-	-	-	-	-	-	-	-
AB10	12-14		-		-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-
AB10 AB11	14-16 4-6		-	-	-	-	-	-	-	-	-	-	-		_		-	-	-	-	-	-	-	-		-	_	-	-	-	-	-	-	-	-
AB11	6-8	-	-		-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	
AB11 AB12	16-18 6-8	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	
AB12	12-14		-		-	-	-	-	-	-	-	-	-				-	-	-	-		-	-	-			-	-	-	-	-	-	-	-	-
AB13	0-3		-		-	-	-	-	-	-	-						-		-	-	-	-	-	-				-	-	-	-	-		-	-
AB13 AB13	3-6 4-6		-		-	-	-	-	_	-	-		-		_			-	-	-	-	-	-	-					-	-	-	-		-	-
AB13	8-10	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	- 1
AB13 AB14	10-12 0-3		-		-	-	-	-	-	-	-	-						-	-	-	-	-	-	-		_	_	-	-	-	-	-	-		-
AB14	3-6		-		-	-	-	-	-	-	-				_			-	-	-	-	-	-	-			_	-	-	-	-	-	-		-
AB14	4-6 8 10		-		-	-	-	-	-	-	-	-						-	-	-	-	-	-	-				-	-	-	-	-	-		-
AB14 AB15	8-10 0-6		-		-	-	-	-		-	-				_			-	-	-	-	-	-	-			_	-	-	-		-	-		-
AB15	4-6	 	-		-	-	-	-	-	-	-	-					-		-	-	-	-	-	-		_		-	-	-	-	-	-	-	-
AB15	12-14		-		-	-	-	-	_	-	-		-		_			-	-	-	-	-	-	1			_	-	-	-	-	-	-		-
AB16 AB16	4-6 8-10		-		-	-	-	-	-	-	-	-	-		_		-	-	-	-	-	-	-	-			_	-	-	-	-	-	-	-	- -
AB16	10-12	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
AB16 AB18	12-14 4-6		-		-	-	-	-	-	-	-							-	-	-	-	-	-	-			_	-	-	-	-	-	-		-
AB18	10-12		-		-	-	-	-		-	-	-	-					-	-	-	-	-	-					-	-	-		-	-		-
AB18	12-14		-		-	-	-	-		-	-		-					-	-	-	-	-	-	-					_		-	-			- 1
AB19 AB19	4-6 8-10		-		-	-	-	-	-	-	-		-					-	-	-	-	-	-	-				-	- -	-	-	-	-	_	-
AB19	12-14	-	-	-	-	-	-	-	-	-		-	-				-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
AB20 AB20	6-8		-		-	-	-	-	-	-	-							-	-	-	-	-	-	-				-	-	-	_	-	-	_	-
AB20 AB20	10-12 14-16		-		-	-	-	-	-	-	-				_			-	-	-	-	-	-	-			_		-	-		-	-	-	-
AB20	16-18	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
AB21 AB21	4-6 6-8		-		-	-	-	-	-	-	-	-					-		-	-	-	-	-	-				-	-	-	-	-	-		<u>-</u>
/ 4 1	0-0								1 -							- 1 -		1 -		1 -	-	ı -		_			1 -		· -		1 -	-			-

East White Lake Field Vermilion Parish, Louisiana

			Arock	or-1242			Arock	or-1248			Arocle	or-1254		Aroclor-1	1254	Aracl	or-1260			-Methylnaph	nthalone	. [2-MN A	verage	Δcen	aphthene	Acenap	hthene		Acenaphtl	nylene		Acenapht	hylene
		10			:	IC				IC			:	Averag	ge		,	:					2-14114 73	verage		-	Ave	rage	IC			:	Avera	ıge
	Core	IC	ON	P18	sani	IC	ON	P1	sani	IC	ON	Pis	sanı			ICON	PI	isani	IC	JIN	Pisa	ini			ICON	Pisani			IC	ON	Pisa	nı		
Boring ID	Interval (ft bgs)	dry	wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	wet	dry	wet	mg/kg- dry	mg/kg- wet	dry	wet	mg/kg- dry mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	wet	dry	wet	dry	mg/kg- wet	mg/kg- dry mg/kg wet	dry wet	dry	mg/kg- wet	mg/kg- dry		dry	wet	mg/kg- dry	mg/kg- wet
AB21 AB21	8-10 12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-			-	-	-	-	-	-	-	-
AB22	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
AB22 AB22	6-8 12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	l	-	-	-	-			-	-	-	-	-	-	-	-
AB22	16-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
SED4	0-2	< 0.0971	< 0.0375	< 0.0673	< 0.04	< 0.0971		< 0.0673	< 0.04	< 0.0971	< 0.0375	< 0.0673	< 0.04		ND	<0.0971 <0.0375			-	 	-	-	-	-			-	-	-	-	-	-	-	-
SED5 SED6	0-2 0-2	<0.0785 <1.19	<0.0333	<0.08	<0.04	<0.0785 <1.19	<0.0333	<0.08	<0.04	<0.0785	<0.0333	<0.08	<0.04		ND ND	<0.0785 <0.0333 <1.19 <0.419			-	-	-	-	-	-			-	-	-	-	-	-	-	-
SED7	0-2	-	-0.115	-0.100	-	-1.13	-0.113	-	-0.200	-	-0.113	-	-		-		-	-	-	 	-	-	-	-			-	-	-	-	-	-	-	-
SED7	2-4 4-6	<0.0979	<0.0373 <0.0348	<0.141	<0.04	<0.0979 <0.114	<0.0373 <0.0348	<0.141	<0.04	<0.0979	<0.0373	<0.1 0.292	<0.04 0.083		ND 0.0726	<0.0979 <0.0373 <0.114 <0.0348		<0.04	-		-	-	-	-			-	-	-	-	-	-	-	-
SED8	0-2	<1.29	< 0.395	<0.141	<0.198	<1.29	< 0.395	<0.141	<0.198	<1.29	< 0.395	< 0.617	<0.198		ND	<1.29 <0.395		<0.198	-	-	-	-	-	-			-	-	-	-	-	-	-	-
SED8	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
SED9 SED9	0-2 2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
SED10	0-2	<u> </u>	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-		-	-		.	-	-	-	-			-	-		-	-	-	-	-
SED10	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	ē		-	-	-	-	-	-	-	•			÷	-	-	-	-	-	-	-
SED11	0-2	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-		-	-	-	—	-	-	-	-			-	-	-	-	-	-	-	
SED11 SED12	2-4 0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-			-	-	-	-	-	-	-	-
SED12 SED12	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		.	-	-	-	-			-	-		-	-	-	-	-
SED12	4-6		-	-	-		-		-	-	-	_	-	-	-		-	-			-		-	-			-	-		-	-		-	
SED13	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
SED13	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	•			-	-	-	-	-	-	-	-
SED14	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
SED14 SED16	2-4 0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	 	-	-	-	-			-	-	-	-	-	-	-	-
SED17	0-2	-	-	-	-	-	-	-	-	-	-	-	-		_		-	 -	-		-	-	-	-			-	-	-	-	-	-	-	-
SED17	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
SED18	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
SED18	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-			-	-	-	-	-	-	-	
SED19 SED19	0-2 2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
SED19 SED20	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	_		-	 -	-		-	-	-	-			-	-	-	-	-	-	-	-
SED20	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
SED21	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
SED21	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	 	-	-	-	-			-	-	-	-	-	-	-	-
SED21 SED21	4-6 6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-			-	-	-	-	-	-	-	-
SED21 SED22	0-3	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-			-	-	-	-			-	-		-	-	-	-	-
SED22	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
SED23	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
SED23	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	
SED24 SED24	0-2 2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-			-	-	-	-	-	-	-	-
SED24 SED25	0-2	-	-	-	-	-	-	-	-		-	-	-		-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
SED25	2-4	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	 	-	-	-	-			-	-	-	-	-	-	-	
SED26	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	
SED26	2-4	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
SED27 SED27	0-2 2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
SED27 SED28	0-2	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-		-	-	-	-			-	-	-	-	-	-	-	
SED28	2-4	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-		-	-	-	-			-	-	-	-	-	-	-	-
SED29	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
SED29	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-			-	-	-	-	-	-	-	-
SED30	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	.	-	-	-	-			-	-	-	-	-	-	-	
SED30 SED31	2-4 0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
SED31	2-4	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
SED31	4-6	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-		-	-	-	-			-	-	-	-	-	-	-	-
SED32	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
SED32	2-4	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-		-	-	-	•			-	-	-	-	-	-	-	-
SED32	4-6 0-2	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-		-	-	-	-			-	-	-	-	-	-	-	-
SED33 SED33	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-			-	-	-	-	-	-	-	-
SED33	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
MPA-Sed 15-N	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
MPA-Sed-15-W	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-

East White Lake Field Vermilion Parish, Louisiana

Part				Aroclo	or-1242			Aroclo	or-1248		A	roclor-	1254		Aroclo			Aroclo	r-1260		2-Methy	Inaphthaler	ne	2-MN A	Average		Acenaph	thene		Acenar	hthene		Acenaph	thylene	naphthyle Average	
March Marc			ICO	ON	Pis	ani	ICC	ON	P	isani	ICON		Pisa	ıni	7110	uge	ICO	ON	Pis	sani	ICON	Pi	sani			ICO	ON	Pis	ani	1111	luge	ICO	N	Pisani	Trefuge	-
March Marc		Core																																		
Second Second	De de e ID											-							0. 0	0. 0	0. 0		0. 0									0. 0				_
March Marc			-	wet			ary	wet		wet			ary	wet		wet	ary		ary	wet	ary wet		1	ary	wet	ary	wet			ury	wet	ary	wet			_
Mathematical Math			1	-			-	-		-			-	-			-			-		-		-	-	-	-			-	-	-	-		 	
March Marc		0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	 -	-
MCAMPS: 40			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	 -	-
Section Sect							-		1		-		-						-	1		-	1	+		-	-					-	-		 	
Decompose Deco			1		1		-	-	1				-	-								-	-	+		-	-		-			-	-		 	
AB AB AB AB AB AB AB AB			-	-	-	-	-	-	-	-			-	-	-	-	-		-	-		-	-	-	-	-	-	-		-	-	-	-		-	- 1
Marie Mari		0-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	 -	
Act Act			-	-		-	-	-	-	-	-		-		-		-		-	-		-	1	+	-	-	-		-		-	-	-		 	_
Color Colo			 				-						-				-			 	+	_				-	-					-	-			_
Marging California Califo			1	1	1		-			+			-				_			1	+	+	-	+		_	-		-			-	-		 	_
ASS Section Control		6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	 -	- 1
Declaration Control						-	-	-	-	-	-		-						-				-	_		-	-					- T	- 1		_	_
APST APST					-		-		-	-			-						-	-		_		+		-	-					-	-			_
Part Part			-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	 -	\Box
Section Sect					-	-			-	-			-	-					-	-						-	-					-	-			
Section Color Co					-	-			-	-			-	-					-	-						-							-			_
Section Control Cont					1	-			-	-			-	-					-	-		_				-						-	-			_
SED-34 0.65 63128 6969					-	-			-	-			-	-					-	-						-						-	-		 	_
SEPAN Color Colo					-	-			-	-			-	-					-	-						-						-	-		 	_
SEP-12 Color Col						-			-	-			-	-					-	-	+	_				-						-	-			_
SEDIJS** 1945						-			-	-			-	-						-		_				-						-	-			_
Fig. MITA-EL 0.5.2	SED-120 *				-	-			-	-			-	-					-	-						-						-	-			
	0				-		-	-	-	-			-	-					-	-		_			-	-	-				-	-	-		 	
HeMPA02 05-2	· ·		-		-		-	-	-	-			-	-			-			-		_		+	-	-	-				-	-	-		_	-
Hydrith 20	Hg-MPA-02	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	 	-
HgMPA-03			-	-		-	-	-	-	-			-	-	-	-	-		-	-		-		+		-	-	-		-	-	-	-			_
ILSMITA-03		_	 				-						-				-			 			-	+		-	-					-	-			-
HighPRA68 0.05			1														-		-	 		+	-	+		-	-		-			-	-		 	_
Hg-MPA-04	Hg-MPA-03	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	 -	-
Hg-MPAG4			-	-	1	-	-	-	-	-			-	-			-		-	-		+	-	+		-	-	-	-		-	-	-		 	
Hg-MPA-05 0.0.5								-	<u> </u>				-	-						-		_				-	-					-	-		 	
Hg-MPA05 6-8	Hg-MPA-05	0-0.5					-	-	1				-	-			-		-	-			1			-	-					-	-			_
Hg-MPA06	TT 1 FD 1 0 F		-	-	-	-				-			-				-		-			_		+		-						-	-		 	_
Hg.MPA-07 0.5					-				-				-								-	_	-	_		-							-		 _	_
Hg.MPA-07									-	-										-						-	-					-	-			_
Hg-MPA-08										_										_		_													-	_
Hg-MPA-08					-															-		_				-	-					-	-			
Hg-MPA-08										_										_		_														_
Hg-MPA-09 0-0.5	Hg-MPA-08	0.5-2		-	-			-	-	_	-	-		-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	 -	-
Hg-MPA-09										_										_		_														_
Hg-MPA-09dup 0.5-2 -	Hg-MPA-09	0.5-2																				_		-									-		 -	_
SPMPA-01 0.05 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>_</td></td<>										_												_											-			_
SP-MPA-01 2.4.3 - <	SP-MPA-01	0-0.5								_												_				-	-					-	-		 	_
SP-MPA-01 4.3-4.7 -													-													-	-					-	- [_
SP-MPA-02 0.0.5 - <	SP-MPA-01									_												_													 	_
SP-MPA-02 0.5-2 - <										_												_				-	-					-	-			_
SP-MPA-02 3-4									1	_										-		_				-	-					-	-		 	_
	SP-MPA-02	3-4								-	-	-	-		-			-				_	-	-		-		-	-			-	-	-	 -	_
SP-MPA-02 4-5	SP-MPA-02 SP-MPA-02a	4-5 3-5	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-		-	-	<u> </u>	-	-	-	-	-	<u>-</u>	-	-	-			-
SP-MPA-02a 7-8								-	ļ	_														+			-					-	-			
SP-MPA-03 0-0.5			1		-						-									1			1	_								-				_
SP-MPA-03 0.5-2					-				-											1			-	+								-			 	_
SP-MPA-03 4-6 - <td< td=""><td></td><td></td><td>1</td><td></td><td>1</td><td></td><td></td><td></td><td>1</td><td>+</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td>+</td><td>-</td><td></td><td>+</td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td> </td><td>_</td></td<>			1		1				1	+	-									 	+	-		+			-		-						 	_
SP-MPA-04 0-0.5									-											1		_		+												_

East White Lake Field Vermilion Parish, Louisiana

			Aroclo	or-1242			Aroclo	or-1248			Aroclo	or-1254			or-1254 erage		Aroc	or-1260		2	2-Methylr	naphthale	ne	2-MN	Average		Acena	phthene			phthene erage		Acenap	hthylene		_	hthylene erage
		ICO	ON	Pis	ani	IC	CON	Pisa	ani	ICC	ON	Pis	ani			IC	ON	Pi	sani	IC	ON	Pi	isani			IC	ON	Pi	sani			IC	ON	Pi	sani		
Boring ID	Core Interval (ft bgs)	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg-	- mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet
SP-MPA-04	0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-04	5-7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-04	9-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-1	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-1	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-1	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-1	9-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-2	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-2	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-2	8-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-2	14-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-3	0-2	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-3	4-6/4-8	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-3	10-13	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-4	0-2	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-4	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-4	4-11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-4	11-12.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-5	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-5	2-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-6	0-2	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-6	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-6	8-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-6	10-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-7	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-7	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-7	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-7	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-8	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-8	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-8	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-8	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED-BK-01	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1.03	< 0.328	ND	ND	-	-	<1.03	< 0.328	ND	ND	-	-	<1.03	< 0.328	ND	ND
SED-BK-02	0-0.5	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.97	< 0.326		ND	-	-	< 0.97	< 0.326	ND	ND	-	-	< 0.97	<0.326	ND	ND
SED-BK-03	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1.14	<0.327		ND	-	-	<1.14	<0.327	ND	ND	-	-	<1.14	<0.327	ND	ND
SED-BK-04	0-0.5	_	-	-	_	-	_	-	_	_	_	-	-	-	-	-	-	-	-	-	<u> </u>	< 0.896	< 0.326		ND	-	-	< 0.896	< 0.326	ND	ND	_	-	< 0.896	<0.326	ND	ND
SED-BK-05	0-0.5	_	-	-	_	-	-	- 1	_	_	_	-	-	-	-	_	-	-	-	-	-	<1.01	<0.327		ND	-	-	<1.01	<0.327	ND	ND	_	-	<1.01	<0.327	ND	ND
SED-BK-06	0-0.5	_	-	-	_	-	-	- 1	_	_	_	-	-	-	-	_	-	-	-	-	<u> </u>	<1.09	< 0.326		ND	-	-	<1.09	< 0.326	ND	ND	_	-	<1.09	<0.326	ND	ND
SED-BK-07	0-0.5	_	_	-	_	-	_	- 1	_	_	-	_	_	_	_	_	_	-	-	-	<u> </u>	<1.42	< 0.325		ND	1 -	-	<1.42	< 0.325	ND	ND	_	_	<1.42	< 0.325	ND	ND
SED-BK-08	0-0.5	_	-	-		<u> </u>	<u> </u>	<u> </u>		<u> </u>	-	_		_	-	-	_	+ -	 _	-	 _	<1.35	< 0.327		ND	 _	 -	<1.35	< 0.327	ND	ND	_	-	<1.35	<0.327	ND	ND
SED-BK-09	0-0.5			_	-		1 -	-	-						-			-	 		 	<1.34	<0.325	_	ND	<u> </u>	_	<1.34	<0.325	ND	ND ND			<1.34	<0.325	ND	ND ND
SED-BK-10	0-0.5	<0.1811	<0.2094		-	<0.2377	<0.2660	 		<0.2943	<0.3226			ND	ND	<0.2943		+ -	+	H	+ -	<1.34	<0.326	ND ND	ND	l i	-	<1.34	<0.326	ND	ND	H	H	<1.34	<0.326	ND	ND ND
		-0.1011	-0.2034	- -	-	-0.2311	-0.2000	 		-0.2343	0.0220	_	- -	1410	.,,,,	-0.2343	-0.0220	+	+	H	+	<1.65	<0.326	_	ND	l -	 	<1.65	<0.326	ND	ND		L -	<1.65	<0.326	ND	ND ND
SED-BK-11	0-0.5	-		-	-	-	-	-	-	-	-	-	-	-	_	-	-	-		-	_	<1.65	<0.326	ND	ND	<u> </u>	-	<1.65	<0.326	ND	ND	-	-	<1.65	<0.326	ND	ND

East White Lake Field Vermilion Parish, Louisiana

			An	thracene			nracene		Benzo(a)a	anthracene	e	B(a)A A	verage	I	Benzo(a	a)pyrene		B(a)P A	Average	Benzo(b)fluorant	hene	B(b)F	Average	Ве	nzo(k)fl	luoranthe	ne	B(k)F	Average		Chry	ysene		Chrys	
		IC	ON	P	'isani	AV	erage	IC	CON	Pis	sani			ICON	V	Pis	ani		l	ICON		Pisani			ICO	N	Pi	sani			ICC	ON	Pis	ani	Aver	age
	Core	1							I																										1	
	Interval	mg/kg-	mg/k	g- mg/kg	- mg/kg	- mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg- m	ng/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg- mg/l	kg- mg/l	g- mg/kg	g- mg/kg-	mg/kg-	mg/kg-	ng/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-
Boring ID	(ft bgs)	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry we	t dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet
B2	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B2	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B2 Rerun	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
B2 Rerun B3	10-10.5 4-7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	 '
B3 Rerun	9-12	-	-	-	-	-	-	-	1 -	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B4 Rerun	0-1	+ -	_	-	-	-	 	_	-	-	_		-	-		-	-	-	-				-	+ -	-		-	1 -	-	-	-		-	-	-	-
B4 Rerun	3-5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B4	5-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B5	0-1.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B5	4-5.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B5 Rerun B6	8-10 1.5-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B6	3-10.5	-	-	-	-	+ -	-	-	-	-	-	-		-	-	-	-		-		-	-	-	1 -	-	-	-	-	-	-	-		-	-	-	-
B7	4-5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B7 B8 Rerun	8-11 5.5-7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-
B8	9.5-11.5	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B9 Rerun	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B9 B0 Porus	0.5-3.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
B9 Rerun B10	8-9 1.5-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
B10	4-7.5	-	-	-	-	-	-			-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-	-				-	-	-
B12	0-1.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B12 Rerun B12	3.5-5 6.5-7.5	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
B13 Rerun	3-5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B13 Rerun	7.5-9.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B14 B14	0-1 4-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B15 Rerun	4-6	-	-	-	-	-	 -	-	-	-	-	-		-	-	-	-		-		-	-	+ -	-	-	-	-	-	-	-	-		-	-	-	-
B15	8-11.5	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B17 B17 Rerun	0-3 3-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B17 Kerun	8.5-10.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B17 Rerun	10.5-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B18 B18	2-4 4-5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B18	7.5-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B18	10-11.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B19 B19	1-2.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B19	2.5-4 4-6.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B19 Rerun	6.5-9.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B20	3-4.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B20 B21	7.5-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
B21	0-2 2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS1	0-2.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS1 SS2	2.1-2.5	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	- 1	-	-	-	-	-
SS2	0-1 1-1.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS3	0-0.6	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		_		_	-	-	-	-	-	-	-	-	-	-	-	-	-
SS3 SS3	0.6-2.2	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	- 1	-	-	-	-	-
SS3 SS4	2.2-2.6 0-0.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS4	0.6-2.7	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-			_	-	-	-	-	-	-	-	-		-	-	-	-	-
SS4	2.7-3.8	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS5 SS6	0-2.15 0-1.65	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS6	1.65-2.5	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-				_		-	-	-	-	-	-	-		-	-	-	-
SS7	0-1.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS7 SS7	1.4-2.5 2.5-3.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS8	0-1.9	1 -	-	-	-	-	-	1	† -	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	 -	-	-	-	-	-	† -	-	-	-
SS8	1.9-2.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS8 SS8	0-2	-	-	_	-		-	-	-	-	-	-	-	-	-	-	-	-	-				_	-	-	-	-	-	-	-	-	-	-	-	-	-
SS9	2-4 0-1.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SS9	1.7-3.2	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		_		-	+	-	-	-	-	-	-	-	-	-	-	-	-
SS9	3.2-3.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS10 SS10	0-1.5 1.5-2.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS10	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-			-	-	-	-
SS10	2-4	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS11	0-2.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

East White Lake Field Vermilion Parish, Louisiana

			An	thracene		Anth	nracene		Benzo(a)a	anthracene	p.	B(a)A A	Verage		Benzo(:	a)pyrene		B(a)P	Average	Benzo	o(b)fluora	anthene	.	B(b)F A	verage	Re	nzo(k)fl	uoranthe	ne	B(k)F	Average		Chry	rsene		Chrys	sene
		IC	ON		licani	Av	erage		ON			D(a)A A	iverage	ICON			oni	D(a)1 1	Iverage	ICON	o(b)Huon			D(U)I A	verage	ICC	. ,			D(K)I 2	Iverage	ICC			ani	Aver	rage
	Core	IC	ON	Г	'isani		1	IC	ON I	1718	sani			ICOI	N	F1S	sani			ICON		Pisa	m			icc	'IN	FI	sani			ICC	JIN	F18	ani	\vdash	
	Interval	mg/kg-	mg/k	g- mg/kg	- mg/kg	g- mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg- n	ng/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg- mg	/kg- mg	g/kg- r	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-
Boring ID	(ft bgs)	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry w		dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet
SS11 SS11	2.5-3.4 3.4-3.7	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	_ <u>-</u>
SS12	0-3.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
SS13	0-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
SS13 SS13	1-2.75 2.75-3.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS14	0-0.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS14	0.8-1.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS15 SS15	3-3.25	-	-	-	-	-	-	-		-	-	- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-
AB1	0-3	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB1	3-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB1 AB1	6-8 12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
AB2	0-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-
AB2 AB2	3-6 4-6	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	<u>-</u> 7
AB2	10-12	-	-	-	-	-	-	1 -		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-
AB3	0-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB3 AB3	3-6 4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-		-	-		-	-	-	-	-	-	-
AB3	8-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB4 AB4	0-3 3-6	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	- 1	-	-	-	-	-	- 1	-	-	-	-	-
AB4	3-6 4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB4	10-12	-	-	-	-	-	-	-	-	-	-	-	ì	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
AB5 AB5	0-6 4-6	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	 -	-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
AB5	10-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
AB5 AB5	14-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB6	18-20 8-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-
AB6	12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB7 AB7	6-8 10-12	-	-	-	-	-	 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB8	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	- -	-	-	-	-	-	-	-
AB8 AB8	10-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB9	14-16 6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB9	12-14	-	-	-	-	-	-	-	-	-	-	-	ì	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
AB9 AB10	18-20 4-6	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-
AB10	12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB10 AB11	14-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u></u> '
AB11	4-6 6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB11	16-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB12 AB12	6-8 12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
AB13	0-3	-	-		-	_	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB13 AB13	3-6 4-6	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
AB13	8-10	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
AB13	10-12	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
AB14 AB14	0-3 3-6	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB14	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB14 AB15	8-10 0-6	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB15	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB15	12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB16 AB16	4-6 8-10	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	<u>-</u>	-	-	-	-	-	-	-
AB16	10-12	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
AB16	12-14	-	-	-	_			-	-	-	-	-	•	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
AB18 AB18	4-6 10-12	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB18	12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB19 AB19	4-6 8-10	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB19	12-14	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB20	6-8	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-		-	-	
AB20 AB20	10-12 14-16	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB20	16-18	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB21	4-6	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
AB21	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

East White Lake Field Vermilion Parish, Louisiana

			Anth	racene			racene		Benzo(a)a	ınthracene	B(a)A	Average		Benzo(a	n)pyrene	B(a)P	Average	I	Benzo(b)fl	uoranther	ne	B(b)F A	verage	В	Benzo(k)fl	uoranther	ıe	B(k)F A	verage		Chrysen	ıe		Chryse	
		ICO		Pisa	mi	Ave	erage		CON	Pisani	(-)	1	IC		Pisani	(-)	1		CON		sani	(-,			ON		ani	()		ICO		Pisar	ni	Averag	,e
	Core	100		1 134	ш			IC		1 150111	1		10.	J1 \	Tisani			10		113	, ann			100		113	ann			100	514	1 1361			-
	Interval	mg/kg-		mg/kg-			mg/kg-	0. 0		mg/kg- mg/kg					mg/kg- mg/kg		mg/kg-							mg/kg-							mg/kg- mg			mg/kg- n	
Boring ID AB21	(ft bgs) 8-10	dry -	wet	dry -	wet	dry -	wet	dry	wet -	dry wet	dry -	wet	dry	wet -	dry wet	dry	wet	dry	wet	dry -	wet	dry -	wet	dry	wet	dry -	wet	dry -	wet -	dry -		dry -	wet -	dry -	wet
AB21	12-14	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
AB22 AB22	4-6	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
AB22	6-8 12-14	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
AB22	16-18	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED4 SED5	0-2 0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED6	0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	_
SED7	0-2 2-4	-	-	-		-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED7	4-6	-	-	-	-	-	-	-	-		-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED8	0-2 2-4	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED9	0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED9 SED10	2-4 0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED10	2-4	-	-	-	-	-	-		-		-	-		-		-	-		-	-	-	-	-		-	-	-	-	-	-		-	-	-	-
SED11	0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-
SED11 SED12	2-4 0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED12 SED12	2-4	-	-	-	-	-	-	-	-		-	-	-	-		-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED12	4-6	-	-	-		-	-		-		-	-		-		-	-		-	-	-	-	-		-	-	-	-	-	-		-	-	-	-
SED13	0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED13 SED14	2-4 0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED14	2-4	-	-	-	-	-	-	-	-		 -	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED16	0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED17	0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED17	2-4	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED18 SED18	0-2 2-4	-	-	-	-	-	-	-	-		-	-	-	-		-	-	_	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED19	0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED19	2-4	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED20	0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	
SED20 SED21	2-4 0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-
SED21	2-4	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED21	4-6	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED21	6-8	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED22 SED22	0-2 2-4	-	-	-		-	-	-	-		-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED23	0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED23	2-4	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED24 SED24	0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED24 SED25	2-4 0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-		-
SED25	2-4	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED26	0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-		-	-	-			-			-	-	-	-
SED26 SED27	2-4 0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED27 SED27	2-4	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-		-	-	-	-
SED28	0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-
SED28	2-4	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	•	-	-	-	-	•	-			-	-		-
SED29	0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-
SED29 SED30	2-4 0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-
SED30	2-4	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	,	-	-	-	-	,	-	-		-	-	-	-
SED31	0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	•	-	-	-		•	-			-	-	-	-
SED31	2-4	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED31 SED32	4-6 0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SED32	2-4	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-
SED32	4-6	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED33	0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-
SED33 SED33	2-4 4-6	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
MPA-Sed 15-N	0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
MPA-Sed-15-W	0-2	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

East White Lake Field Vermilion Parish, Louisiana

			Λ,	nthracene		Ant	hracene		Bonzo(a)	nthracen	0	B(a)A A	vorago	Ron	zo(a)pyrene		B(a)P	Average	Benzo(b)f	luorantho	mo.	B(b)F A	vorago	Bo	nzo(k)fle	uoranthe	no	B(k)F	vorago		Chrysen	no	$\overline{}$	Chrys	sene
		IC	ON		Dicani	Av	verage	,	ICON			D(a)A	verage	ICON			D(a)1 2	Average	ICON			D(U)I' A	verage	ICO	. ,			D(K)I Z	verage	ICON	Ciliyseii			Avera	age
	Core	IC	ON	1	Pisani			1	ICON	F18	sani			ICON	1	Pisani			ICON	I'1	isani			ico	IN	FI	sani			ICON	-	Pisar	-	-+	
	Interval	mg/kg-	mg/l	kg- mg/kg	g- mg/kg	g- mg/kg	- mg/kg-	mg/kg	g- mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg- mg/	kg- mg/kg	g- mg/	/kg- mg/kg-	mg/kg-	mg/kg- mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg- mg/	kg- mg	ıg/kg- n	ng/kg- 1	mg/kg-	mg/kg-
Boring ID	(ft bgs)	dry	we	t dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry we	et dry	W		wet	dry wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry w	et (dry	wet	dry	wet
MPA-Sed-15-W-2 MPA-Sed-15-E	0-2 0-2	-	-	-	-	-	-	-	-	-	-	-	-		-	-	_	-		-	-	-		-	-	-	-	-	-			-	-	-	-
MPA-Sed-15-E-2	0-2	-	-		-	-	-	-	-	-	-	-	-		-	_	+	-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
MPA-AB5 (A)	4-6	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-		-	-	-	_	-	-	-	-	-	-			-	-	-	-
MPA-AB5 (B)	4-6	-	-		-	-	-	-	-	-	-	-	-			_	· -	-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
MPA-AB5 (C) MPA-AB-6	4-6 8-10	-	-	-	-	-	-	-	-	-	-	-	-		-	-	_	-		-	-	-		-	-	-	-	-	-			-	-	-	-
MPA-AB8	6-8	-	-	-	-	-	-		-	-	-	-	-		-	_		-		-	-	-	-	-	-	-	-	-	-			-	-	-	
MPA-AB13	0-3	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-		-	-	-	=	-	-	-	-	-	-			-	-	-	-
AB-6	8-10	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
AB-13	0-3	-	-	_	-	-	-	-	-	-	-	-	-		-		-	-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
AB-13 SO-E AB-14	0-3 0-3	-	-	-	-	-	-	-	-	-	-	-	-		-	-	· -	-		-	-	-		-	-	-	-	-	-			-	-	-	-
AB-8	6-8	-	-		-	-	-	-	-	-	-	-	-		_	-		-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
AB-8 SO-S	6-8	-	_		-	-	-	-	-	-	-	-	-		-	_		-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
AB-5 SO-NE AB-5 SO-NW	4-6 4-6	-	-		-	-	-	-	-	-	-	-	-		-	-		-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
AB-5a	4-5.5	-	-		-	-	-	-	-	-	-	-	-		-	-		-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
AB-15	4-5.5	-			-	-	-	-	-	-	-	-	-		-	-		-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
SED-8	0-0.5	-	-	< 0.83			ND	-	-	<0.83	<0.325	ND	ND		< 0.83			ND		<0.83	<0.325	ND	ND	-	-	< 0.83		ND	ND				<0.325	ND	ND
SED-9 SED-11	0-0.5 0-0.5	-	-			_	ND ND	-	+-	<1.07 <0.96	<0.326 <0.327	ND ND	ND ND		<1.07 <0.96			ND ND		0.0625 <0.96	0.019 <0.327	0.0625 ND	0.019 ND	-	-	<1.07 <0.96		ND ND	ND ND				0.021 <0.327	0.069 ND	0.021 ND
SED-11 SED-13	0-0.5	-	-			_	ND ND	-	-	<1.2	<0.327	ND ND	ND ND			<0.3		ND ND		<1.2	<0.327	ND ND	ND ND	-	-	<1.2		ND ND	ND ND				<0.327	ND ND	ND ND
SED-19	0-0.5	-	-			_	ND	-	-	<1.52	<0.328	ND	ND					ND		<1.52	<0.328	ND	ND	-	-	<1.52		ND	ND				<0.328	ND	ND
SED-24	0-0.5	-	-	< 0.97	< 0.325	5 ND	ND	-	-	< 0.97	< 0.325	ND	ND		< 0.97	<0.3	325 ND	ND		< 0.97	< 0.325	ND	ND	-	-	< 0.97	< 0.325	ND	ND		. 0	0.036	0.012		0.012
SED-26	0-0.5	-	-				ND	-	-	<1.04	<0.328	ND	ND			_		ND		<1.04	<0.328	ND	ND	-	-	<1.04		ND	ND				<0.328	ND	ND
SED-31 SED-120 *	0-0.5 0-0.5	-	-	<1.02 <1.89	_		ND ND	-	-	<1.02 <1.89	<0.327 <0.33	ND ND	ND ND		<1.02 <1.89	_		ND ND		<1.02 <1.89	<0.327 <0.33	ND ND	ND ND	-	<u> </u>	<1.02 <1.89		ND ND	ND ND				<0.327 <0.33	ND ND	ND ND
Hg-MPA-01	0-0.5	-	-	_	-	-	-	-	-	-	-	-	-		_	-		-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
Hg-MPA-01	0.5-2	-	-	_	-		-	-	-	-	-	-	-		-	-		-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
Hg-MPA-01 Hg-MPA-02	5-7 0-0.5	-	-		-	-	-	-	-	-	-	-	-		-	-	· -	-		-	-	-		-	-	-	-		-			-	-	-	-
Hg-MPA-02	0.5-2	-	-	_	_	-	-	-	_	-	-	-	-		-	 		-		-	-	-		-	-	-	-	-	-			-	-	-	-
Hg-MPA-02	5-7	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
Hg-MPA-03	0-0.5	-	-	-	-	_	-	-	-	-	-	-	-		-	-	· -	-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
Hg-MPA-03	0.5-2	-	-	-		-	-	-	-	-	-	-	-					-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
Hg-MPA-03 Hg-MPA-04	4-6 0-0.5	-	-	_	-	-	-	-	-	-	-	-	-			_	· -	-		-	-	-		-	-	-	-	-	-			-	-	-	-
Hg-MPA-04	0.5-2	-	-	_	-	-	-	-	-	-	-	-	-		-	-		-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
Hg-MPA-04	3-5	-	-		-	-	-	-	-	-	-	-	-		-			-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
Hg-MPA-05 Hg-MPA-05	0-0.5 0.5-2	-	-		-	-	-	-	-	-	-	-	-		-	-		-		-	-	-	-	-		-	-	-	-			-	-	-	-
Hg-MPA-05	6-8	-	-		-	-	-	-	-	-	-	-	-		-	-		-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
Hg-MPA-06 Hg-MPA-06	0-0.5 0.5-2	-	-		-	+ -	-	-	-	-	-	-	-		-	-	· -	-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
Hg-MPA-06	5-6	-	-		-	_	-	-	-	-	-	-	-			+		-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
Hg-MPA-07	0-0.5	-	-	_	-	_	-	-	-	-	-	-	-			-		-		-	-	-	-	-	-	-	-	-	•			-	-	-	-
Hg-MPA-07 Hg-MPA-07	0.5-2 6.5-7	-	-		-	+ -	-	-	-	-	-	-	<u>-</u>			-		-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
Hg-MPA-08	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-		-			-		-	-	-	-	-	-	-	-	-				-	-	-	-
Hg-MPA-08 Hg-MPA-08	0.5-2 7.5-8	-	-	_	-	_		-	-	-	-	-	-		-	-		-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
Hg-MPA-09	0-0.5	-	-		-		-	-		-	-	-	-			-		-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
Hg-MPA-09 Hg-MPA-09	0.5-2 6-7	-	-		-	-	-	-	-	-	-	-	-		-	-		-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
Hg-MPA-09dup	0.5-2	-	-		-		-	-	-	-	-	-	-			-		-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
SP-MPA-01	0-0.5	-	-		-	-	-	-	-	-	-	-	-			_		-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
SP-MPA-01 SP-MPA-01	0.5-2 2-4.3	-	-		-	-	-	-	-	-	-	-	-		-	-	· -	-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
SP-MPA-01	4.3-4.7	-	-		-	-	-	-	-	-	-	-	-		-	-		-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
SP-MPA-01 SP-MPA-02	8-9 0-0.5	-	-		-	_	-	-	-	-	-	-	-			-		-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
SP-MPA-02	0.5-2	-	-		-	-	-	-	-	-	-	-	-			-		-		-	-	-	-	-	-	-	-	-	•		_	-	-	-	-
SP-MPA-02	3-4	-			-	_	-	-	-	-	-	-	-			_	-	-		-	-	-	-	-	-	-	-	-	-		_	-	-	- [-
SP-MPA-02 SP-MPA-02a	4-5 3-5	-	-	_	-	-	-	-	-	-	-	-	-			-	·	-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
SP-MPA-02a	7-8	-	-		-	_	-	-	-	-	-	-	-			-		-		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
SP-MPA-03	0-0.5	-	-		-	-	-	-	-	-	-	-	-			_	-	-		-	-	-	-	-	-	-	-	-				-	-	-	-
SP-MPA-03	0.5-2	-	-	_	-	-	-	-	-	-	-	-	-			_	-	-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
SP-MPA-03 SP-MPA-03	4-6 9-10	-	-		-	-	-	-	-	-	-	-	-			-	+	-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
SP-MPA-04	0-0.5	-	-	-	-	-	-	-		-	-	-	-					-		-	-	-	-	-	-	-	-	-	-			-	-	-	-
		1							1		1			- I	i	1				1									i						

East White Lake Field Vermilion Parish, Louisiana

			Anth	racene		l l	racene erage		Benzo(a)	anthracer	ne	B(a)A	Average		Benzo	a)pyrene		B(a)P	Average	I	Benzo(b)fl	luoranthe	ne	B(b)F	Average	1	Benzo(k)fl	uoranther	ne	B(k)F	Average		Chry	sene		_	ysene erage
		IC	ON	Pi	sani			IC	CON	Pi	isani			IC	ON	Pi	sani			IC	ON	Pi	sani			IC	ON	Pis	sani			IC	ON	Pis	ani		
Boring ID	Core Interval (ft bgs)	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	- mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg-	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg-	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet
SP-MPA-04	0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-04	5-7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-04	9-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-1	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-1	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-1	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-1	9-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-2	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-2	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-2	8-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
WL-2	14-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-3	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-3	4-6/4-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-3	10-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-4	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-4	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-4	4-11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1 -
WL-4	11-12.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-5	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
WL-5	2-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-6	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-6	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-6	8-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-6	10-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-7	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-7	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-7	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-7	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-8	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-8	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-8	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-8	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED-BK-01	0-0.5	-	-	<1.03	< 0.328	ND	ND	-	-	<1.03	< 0.328	ND	ND	-	-	<1.03	< 0.328	ND	ND	-	-	<1.03	<0.328	ND	ND	-	-	<1.03	< 0.328	ND	ND	-	-	<1.03	< 0.328	ND	ND
SED-BK-02	0-0.5	-	-	< 0.97	< 0.326		ND	-	-	< 0.97	< 0.326	ND	ND	-	-	< 0.97	< 0.326	ND	ND	-	-	< 0.97	< 0.326	ND	ND	-	-	< 0.97	< 0.326	ND	ND	-	-	< 0.97	< 0.326	ND	ND
SED-BK-03	0-0.5	-	-	<1.14	<0.327	ND	ND	-	-	<1.14	<0.327	ND	ND	-	-	<1.14	<0.327	ND	ND	-	-	<1.14	<0.327	ND	ND	-	-	<1.14	<0.327	ND	ND	-	-	<1.14	< 0.327	ND	ND
SED-BK-04	0-0.5	-	-	< 0.896	<0.326		ND	-	-	< 0.896	< 0.326	ND	ND	-	-	< 0.896	<0.326	ND	ND	-	-	< 0.896	<0.326	ND	ND	-	-	< 0.896	< 0.326	ND	ND	-	-	< 0.896	<0.326	ND	ND
SED-BK-05	0-0.5	-	-	<1.01	<0.327	ND	ND	<u> </u>	-	<1.01	<0.327	ND	ND	-	-	<1.01	<0.327	ND	ND	_	_	<1.01	<0.327	ND	ND	-	-	<1.01	<0.327	ND	ND	_	_	<1.01	<0.327	ND	ND
SED-BK-06	0-0.5	-	-	<1.09	<0.326		ND	<u> </u>	-	<1.09	<0.326	ND	ND	-	-	<1.09	<0.326	ND	ND	_	_	<1.09	<0.326	ND	ND	-	 -	<1.09	< 0.326	ND	ND	_	_	<1.09	< 0.326	ND	ND
SED-BK-07	0-0.5	-	-	<1.42	<0.325	ND	ND ND	<u> </u>	+ -	<1.42	<0.325	ND	ND		_	<1.42	<0.325	ND	ND			<1.42	<0.325	ND	ND	-	-	<1.42	<0.325	ND	ND ND			<1.42	< 0.325	ND	ND
SED-BK-08	0-0.5	+ _	-	<1.35	<0.327	ND	ND ND	H _	+	<1.35	<0.327	ND	ND	H .	_	<1.35	<0.327	ND	ND		<u> </u>	<1.35	<0.327	ND	ND	H _		<1.35	<0.327	ND	ND ND		<u> </u>	<1.35	<0.327	ND	ND
SED-BK-09	0-0.5	l i	-	<1.34	<0.325	ND ND	ND ND		+ -	<1.34	<0.325	ND	ND ND	H	-	<1.34	<0.325	ND	ND ND	H	+	<1.34	<0.325	ND ND	ND ND	L .	+ -	<1.34	<0.327	ND ND	ND ND			<1.34	<0.327	ND ND	ND
SED-BK-10	0-0.5	+	-	<1.34	<0.326	ND ND	ND ND	-	+	<1.34	<0.326	ND	ND	H	 	<1.34	<0.326	ND	ND ND		<u> </u>	<1.34	<0.326	ND ND	ND ND		+-	<1.34	<0.326	ND ND	ND ND			<1.34	<0.326	ND ND	ND
		-	+-					1	+					-	-					-	-						+-						-				
SED-BK-11	0-0.5	-	-	<1.65	< 0.326	ND	ND	-	-	<1.65	< 0.326	ND	ND	-	-	<1.65	< 0.326	ND	ND	-	-	<1.65	< 0.326	ND	ND	-	-	<1.65	< 0.326	ND	ND	-	-	<1.65	< 0.326	ND	ND

East White Lake Field Vermilion Parish, Louisiana

												Fluoran	ithene								1 (10	. 1)		Ī.,					Naphi	thalene				Phenar	nthrene
				n)anthrace		Db(ah)A	A Average			nthene		Aver				orene		Fluorene	e Average		ndeno(1,2,			Indeno	Average	•	nthalene			erage		nthrene		Ave	erage
	Core	IC	ON	Pi	sani		<u> </u>	ICO	ON 	Pis	sani			IC	ON	Pi	sani			IC	ON	Pis	sani			ICON	Pi	sani			ICON	Pis	ani	 	\vdash
	Interval	mg/kg-	mg/kg-	mg/kg-	mg/kg-	- mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg- mg/kg	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg- mg/kg	mg/kg-	mg/kg-	mg/kg-	mg/kg-
Boring ID	(ft bgs)	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry wet	dry	wet	dry	wet	dry wet	dry	wet	dry	wet
B2 B2	2-4 4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B2 Rerun	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B2 Rerun	10-10.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B3 B3 Rerun	4-7 9-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B4 Rerun	0-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B4 Rerun	3-5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B4	5-8 0-1.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B5	0-1.5 4-5.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B5 Rerun	8-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B6 B6	1.5-3 3-10.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B7	4-5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B8 Rerun	8-11 5.5-7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B8	9.5-11.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B9 Rerun B9	0-0.5 0.5-3.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B9 Rerun	8-9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B10 B10	1.5-4 4-7.5	-	-	-	-	-		-	-	-	-	- -	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B12	0-1.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B12 Rerun B12	3.5-5 6.5-7.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B13 Rerun	3-5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B13 Rerun B14	7.5-9.5 0-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B14	4-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B15 Rerun B15	4-6 8-11.5	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B17	0-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B17 Rerun B17	3-6 8.5-10.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B17 Rerun	10.5-12	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B18 B18	2-4 4-5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B18	7.5-10	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B18 B19	10-11.5 1-2.5	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B19	2.5-4	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B19 B19 Rerun	4-6.5 6.5-9.5	-	-	-	-	-	- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B20	3-4.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B20	7.5-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
B21 B21	0-2 2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
SS1	0-2.1	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
SS1 SS2	2.1-2.5 0-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
SS2	1-1.5	-	-	-	-	-	-	- 0.005		-	-		-	- 0.005		-	-	-	- ND	-	-	-	-	-	-		-	-	-	-		-	-	- ND	
SS3 SS3	0-0.6 0.6-2.2	-	-	-	-	-	-	<0.885 <0.885	<0.33 <0.36	-	-	ND ND		<0.885 <0.885	<0.33 <0.36	-	-	ND ND		-	-	-	-	-	-		-	-	-	-	<0.885 <0.33 <0.885 <0.36	-	-		ND ND
SS3 SS4	2.2-2.6	-	-	-	-	-	-	< 0.957	<0.33	-	-	ND		< 0.957		-	-		ND	-	-	-	-	-	-		-	-	-	-	<0.957 <0.33		-	ND	ND
SS4	0-0.6 0.6-2.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
SS4	2.7-3.8	-	-	-	-	-	-	- 20 776		-	-	- ND		- 20.776		-	-	- ND	- ND	-	-	-	-	-	-		-	-	-	-		-	-	- ND	
SS5 SS6	0-2.15 0-1.65	-	-	-	-	-	-	<0.776	<0.33	-	-	ND -	ND -	<0.776	<0.33	-	-	ND -	ND -	-	-	-	-	-	-		-	-	-	-	<0.776 <0.33	-	-	ND -	ND -
SS6	1.65-2.5	-	-	-	-	_	-	- 21 17		-	-	- ND		- 21 17		-	-	-	- ND	-	-	-	-	-	-		-	-	-	-		-	-		- ND
SS7	0-1.4 1.4-2.5	-	-	-	-	-	-	<1.17 1.3	<0.33 0.498	-	-	ND 1.3		<1.17 1.69	<0.33 0.647	-	-	1.69	ND 0.647	-	-	-	-	-	-		-	-	-	-	<1.17 <0.33 4.87 1.87	-	-		ND 1.87
SS7	2.5-3.5	-	-	-	-	-	-	<0.979	<0.33	-	-	ND	ND	< 0.979		-	-	ND	ND	-	-	-	-	-	-		-	-	-	-	<0.979 <0.33	-	-	ND	ND
SS8 SS8	0-1.9 1.9-2.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
SS8	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
SS8 SS9	2-4 0-1.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
SS9	1.7-3.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
SS9 SS10	3.2-3.7 0-1.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
SS10	1.5-2.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
SS10 SS10	0-2 2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
SS11	0-2.5	-		_	-		-		<0.33	-		ND		<0.466			-		ND	-	-	-	-	-			-	-		-	<0.466 <0.33		-		ND

East White Lake Field Vermilion Parish, Louisiana

						1		1				Fluoranth	ene					T .											Naphi	thalene				Phenar	nthrene
				n)anthrace		Db(ah)A	A Average			nthene		Average				orene		Fluoren	e Average		ndeno(1,2,			Indeno .	Average		nthalene			rage		nanthrene		Ave	
	Coro	IC	ON T	Pi	isani			ICO	ON I	Pis	sani			ICC	ON	Pi	sani			IC	CON	Pis	sani			ICON	Pis	sani			ICON	I	'isani	 	\vdash
	Core Interval	mg/kg-	mg/kg-	mg/kg-	mg/kg	g- mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg- mg	g/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg- mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg-	mg/kg- mg/k	g- mg/kg	mg/kg-	mg/kg-	mg/kg-
Boring ID	(ft bgs)	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	,	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry wet	dry	wet	dry	wet	dry wet		wet	dry	wet
SS11 SS11	2.5-3.4 3.4-3.7	-	-	-	-	-	-	<0.596 <0.611	<0.33	-	-		ND ND	<0.596	<0.33	-	-	ND ND	ND ND	-	-	-	-	-	-		-	-	-	-	<0.596 <0.3 <0.611 <0.3	_	-	ND ND	ND ND
SS12	0-3.7	-	-	-	-	-	-	< 0.609	< 0.33	-	-		ND	< 0.609	< 0.33	-	-	ND	ND	-	-	-	-	-	-		-	-	-	-	<0.609 <0.3	_	-	ND	ND
SS13 SS13	0-1 1-2.75	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
SS13	2.75-3.2	-	-	-	-	<u> </u>	-	-	-	-	-	_	-	-		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
SS14 SS14	0-0.8 0.8-1.7	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
SS15	0-3	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
SS15	3-3.25	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB1 AB1	0-3 3-6	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB1	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB1 AB2	12-14 0-3	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB2	3-6	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB2 AB2	4-6 10-12	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB3	0-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB3 AB3	3-6 4-6	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB3	8-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	
AB4 AB4	0-3 3-6	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB4	4-6	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB4 AB5	10-12 0-6	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB5	4-6	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB5 AB5	10-12 14-16	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB5	18-20	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB6 AB6	8-10 12-14	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB7	6-8	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB7 AB8	10-12 6-8	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB8	10-12	_	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB8 AB9	14-16 6-8	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-			-	-	-
AB9	12-14	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB9 AB10	18-20 4-6	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB10	12-14	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB10 AB11	14-16 4-6	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB11	6-8	_	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB11 AB12	16-18 6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB12	12-14	_	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB13 AB13	0-3 3-6	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB13	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-		-		_	-	-	-
AB13 AB13	8-10 10-12	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB14	0-3	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-		-	-		-		_	_	-	-
AB14 AB14	3-6 4-6	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB14	8-10	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-		-	-	-	-
AB15	0-6 4-6	-	-	-	-	_	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB15 AB15	4-6 12-14	-	-	-	-	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB16	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB16 AB16	8-10 10-12	-	-	-	-	_	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB16	12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB18 AB18	4-6 10-12	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	
AB18	12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-			-	-	-
AB19 AB19	4-6 8-10	-	-	-	-	_	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB19	12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-			-	-	-
AB20 AB20	6-8 10-12	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB20	14-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB20 AB21	16-18 4-6	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB21	6-8	-	-	-	-	_	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	-	-		-	-		-			-	-	-

East White Lake Field Vermilion Parish, Louisiana

												Fluora	nthene	1				l_,		_						<u> </u>			l N	aphth	alene				Phenar	nthrene
			,	h)anthrace		Db(ah)A	A Average			nthene		Ave				orene		Fluorene	e Average		ndeno(1,2,			Indeno	Average		ohthalen			Avera			nthrene		Ave	
	Core	IC	ON	Pı	isani			ICO	ON	P15	sani			IC	ON 	Pis	sani			IC	CON	Pi	sani			ICON		Pisani				ICON	Pi	ani	 	\vdash
	Interval			mg/kg-	_		mg/kg-							mg/kg-							mg/kg-			mg/kg-		mg/kg- mg/l						mg/kg- mg/kg		mg/kg-		
Boring ID AB21	(ft bgs) 8-10	dry -	wet	dry -	wet	dry -	wet	dry -	wet	dry -	wet	dry -	wet -	dry -	wet	dry -	wet	dry -	wet -	dry -	wet	dry -	wet	dry -	wet -	dry we	dry			ry -	wet -	dry wet	dry -	wet	dry -	wet
AB21	12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-
AB22 AB22	4-6 6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
AB22	12-14	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
AB22 SED4	16-18 0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
SED5	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
SED6 SED7	0-2 0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
SED7	2-4	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
SED7 SED8	4-6 0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
SED8	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
SED9 SED9	0-2 2-4	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
SED9 SED10	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
SED10	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-
SED11	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-
SED11 SED12	2-4 0-2	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
SED12 SED12	2-4	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
SED12	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-
SED13	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-
SED13 SED14	2-4 0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-
SED14	2-4	-	-	-	-		 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		+-			-	-		-	-	-	-
SED16	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-
SED17	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
SED17 SED18	2-4 0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-
SED18	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-
SED19	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-
SED19	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-			-	-		-	-	-	-
SED20 SED20	0-2 2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-
SED20 SED21	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-
SED21	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
SED21	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-			-	-		-	-	-	-
SED21 SED22	6-8 0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-
SED22 SED22	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			- -	-		-	-	-	-
SED23	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-
SED23	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	'	
SED24	0-2	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-
SED24 SED25	2-4 0-2	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			- -	-		-	-	-	-
SED25	2-4	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
SED26	0-2	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
SED26 SED27	2-4 0-2	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		<u>-</u>	-		-	-	-	-
SED27 SED27	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-
SED28	0-2	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-
SED28	2-4	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_	_		-	-		-	-	-	-
SED29	0-2	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
SED29 SED30	2-4 0-2	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
SED30	2-4	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
SED31	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
SED31	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-
SED31 SED32	4-6 0-2	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_	_		-	-		-	-	-	-
SED32	2-4	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
SED32	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-
SED33	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-
SED33 SED33	2-4 4-6	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-
MPA-Sed 15-N	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_		-	-		-	-	-	-
MPA-Sed-15-W	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-		-	-	-	-

East White Lake Field Vermilion Parish, Louisiana

		Г	ibenz(a,l	h)anthrace	ene	Db(ah)	A Average		Fluora	inthene		Fluoran			Flue	orene		Fluorene	e Average	Ir	ndeno(1,2,	.3-cd)pyre	ene	Indeno	Average	Nap	hthalene		_	thalene	Phe	enanthren	ne		nthrene
		IC	ON	Pi	isani			ICO	ON	Pis	sani	Avera	age	ICC	ON	Pis	sani		1	IC	ON	Pis	sani			ICON	Pi	sani	Ave	lage	ICON		Pisani	Ave	erage
	Core																																	+	1
	Interval			mg/kg-			mg/kg-	mg/kg-						mg/kg-					mg/kg-		mg/kg-			mg/kg-		mg/kg- mg/kg					mg/kg- mg/l	-			
Boring ID	(ft bgs)	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry wet	dry	wet	dry	wet	dry we			t dry	wet
MPA-Sed-15-W-2 MPA-Sed-15-E	0-2 0-2	-	-	-	+ -	-	-	-	-	-	-	-	-	-	-	-	-	-	+ -	-	-	-	-	-	-		-	-	-	-		-	-		-
MPA-Sed-15-E-2	0-2	-	-	-	+ -	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-		_	-	-	-		-		-	-
MPA-AB5 (A)	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
MPA-AB5 (B)	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
MPA-AB5 (C)	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
MPA-AB-6	8-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-			-
MPA-AB8 MPA-AB13	6-8 0-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	 -	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB-6	8-10	-	-	-	+ -	+ -	-	-	-	-		-	-	-		-	-	-	+ -	-	-		-	-	-			-	<u> </u>	-		+ -			-
AB-13	0-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_	-	-	_		-	-	-	-
AB-13 SO-E	0-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB-14	0-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB-8	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB-8 SO-S AB-5 SO-NE	6-8 4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-			-
AB-5 SO-NW	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-			-
AB-5a	4-5.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
AB-15	4-5.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-		-			-
SED-8	0-0.5	-	-	<0.83		_	ND	-	-	<0.83	<0.325		ND	-	-	<0.83	<0.325	ND	ND	-	-	<0.83	<0.325	ND	ND		<0.83	<0.325		ND		<0.8			ND
SED-9	0-0.5	-	-	<1.07	<0.326	_	ND ND	-	-	<1.07	<0.326		ND ND	-	-	<1.07	<0.326	ND	ND ND	-	-	0.313	0.095	_	0.095		<1.07	<0.326		ND ND		<1.0			ND ND
SED-11 SED-13	0-0.5 0-0.5	-	-	<0.96	<0.327	_	ND ND	-	-	<0.96 <1.2	<0.327 <0.329	ND ND	ND ND	-	-	<0.96 <1.2	<0.327 <0.329	ND ND	ND ND	-	-	<0.96 <1.2	<0.327 <0.329	ND ND	ND ND		<0.96 <1.2	<0.327 <0.329	ND ND	ND ND		<0.9			ND ND
SED-13 SED-19	0-0.5	-	-	<1.52	<0.328		ND ND	-	-	<1.52	<0.328		ND			<1.52	<0.328	ND	ND	-	-	<1.52	<0.328	ND	ND		<1.52	<0.328		ND ND					ND ND
SED-24	0-0.5	-	-	<0.97			ND	-	-	< 0.97	<0.325		ND	_	-	< 0.97	<0.325	ND	ND	-	-	< 0.97	<0.325	ND	ND		< 0.97	<0.325		ND		0.04			0.016
SED-26	0-0.5	-	-	<1.04	< 0.328	ND ND	ND	-	-	<1.04	< 0.328	ND	ND	-	-	<1.04	< 0.328	ND	ND	-	-	<1.04	< 0.328	ND	ND		<1.04	< 0.328	ND	ND		<1.0	04 <0.32	28 ND	ND
SED-31	0-0.5	-	-	<1.02	< 0.327		ND	-	-	<1.02	< 0.327	ND	ND	-	-	<1.02	< 0.327	ND	ND	-	-	<1.02	< 0.327	ND	ND		<1.02	< 0.327	ND	ND		<1.0			ND
SED-120 * Hg-MPA-01	0-0.5 0-0.5	-	-	<1.89			ND	-	-	<1.89	<0.33		ND	-	-	0.92	0.161	0.92		-	-	<1.89	<0.33	ND	ND		<1.89	<0.33	_	ND		<1.8			ND
Hg-MPA-01	0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-			-
Hg-MPA-01	5-7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
Hg-MPA-02	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
Hg-MPA-02	0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
Hg-MPA-02	5-7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-			-
Hg-MPA-03 Hg-MPA-03	0-0.5 0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	 -	-	-	-	-	-	-		-	-	-	-		-		-	-
Hg-MPA-03	4-6	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-				-	-
Hg-MPA-04	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-		_	-	-	-		-			-
Hg-MPA-04	0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
Hg-MPA-04	3-5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-			-
Hg-MPA-05 Hg-MPA-05	0-0.5 0.5-2	-	-	-	 -	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-	-	-		-			-
Hg-MPA-05	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-					-
Hg-MPA-06	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-					-
Hg-MPA-06 Hg-MPA-06	0.5-2 5-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-			-
Hg-MPA-07	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-					-
Hg-MPA-07	0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-			-
Hg-MPA-07 Hg-MPA-08	6.5-7 0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-					-
Hg-MPA-08	0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-			-
Hg-MPA-08 Hg-MPA-09	7.5-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-			-
Hg-MPA-09 Hg-MPA-09	0-0.5 0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-					-
Hg-MPA-09	6-7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		_			-
Hg-MPA-09dup	0.5-2	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-					-
SP-MPA-01 SP-MPA-01	0-0.5 0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-			-
SP-MPA-01	2-4.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-					-
SP-MPA-01	4.3-4.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-					-
SP-MPA-01 SP-MPA-02	8-9 0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-					-
SP-MPA-02	0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-					-
SP-MPA-02	3-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-			-
SP-MPA-02 SP-MPA-02a	4-5 3-5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-					-
SP-MPA-02a	7-8	-	-	-	-	-	<u> </u>		-	-	-	-	-		-	-	-	-	-	-	<u> </u>	-	-	-	-		-	-	-	-		-			-
SP-MPA-03	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-		-
SP-MPA-03	0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-
SP-MPA-03	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-		-	-
SP-MPA-03	9-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-					-
SP-MPA-04	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-

East White Lake Field Vermilion Parish, Louisiana

		Г	Dibenz(a,l	n)anthrac	ene	Db(a	h)A A	verage		Fluora	nthene		l l	nthene		Flu	orene		Fluore	ne Average	I	ndeno(1,2	,3-cd)pyre	ene	Indeno	Average		Naph	thalene			thalene erage		Phenan	nthrene			nthrene
		IC	ON	Р	isani				ICC)N	Pie	sani	Ave	erage	IC	ON	Pi	sani		T -		ON		sani		1	IC	ON	Pis	sani	Ave	erage	ICC	ON I	Pisa	ani	Ave	erage
Boring ID	Core Interval (ft bgs)		mg/kg-			0		ng/kg- wet	mg/kg- dry			mg/kg- wet	mg/kg- dry	mg/kg- wet			mg/kg- dry			- mg/kg- wet				mg/kg- wet	mg/kg- dry	mg/kg- wet				mg/kg- wet	mg/kg- dry	mg/kg- wet					mg/kg- dry	mg/kg- wet
SP-MPA-04	0.5-2	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-
SP-MPA-04	5-7	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-
SP-MPA-04	9-10	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-1	0-2	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
WL-1	2-4	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
WL-1	6-8	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
WL-1	9-13	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-2	0-2	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
WL-2	2-4	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
WL-2	8-10	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
WL-2	14-16	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	_	-		-	-		-	-		-	-	-	-
WL-3	0-2	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-
WL-3	4-6/4-8	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-
WL-3	10-13	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-4	0-2	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-
WL-4	2-4	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-4	4-11	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-
WL-4	11-12.5	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
WL-5	0-2	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
WL-5	2-13	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
WL-6	0-2	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
WL-6	4-6	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
WL-6	8-10	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
WL-6	10-13	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
WL-7	0-2	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
WL-7	2-4	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
WL-7	4-6	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- '	-	-	-	-	-
WL-7	6-8	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-]	-	-	-	-
WL-8	0-2	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-
WL-8	2-4	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-8	4-6	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL-8	6-8	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-]	-	-	-	-
SED-BK-01	0-0.5	-	-	<1.03	< 0.32	28 NI)	ND	-	-	<1.03	< 0.328	ND	ND	-	-	<1.03	< 0.328	ND	ND	-	-	<1.03	< 0.328	ND	ND	-	-	<1.03	< 0.328	ND	ND	-	-	<1.03	< 0.328	ND	ND
SED-BK-02	0-0.5	-	-	< 0.97	< 0.32	26 NI)	ND	-	-	< 0.97	< 0.326	ND	ND	-	-	< 0.97	< 0.326	6 ND	ND	-	-	< 0.97	< 0.326	ND	ND	-	-	< 0.97	< 0.326	ND	ND	-	-	< 0.97	< 0.326	ND	ND
SED-BK-03	0-0.5	-	-	<1.14	< 0.32	27 NI)	ND	-	-	<1.14	< 0.327	ND	ND	-	-	<1.14	< 0.327	7 ND	ND	-	-	<1.14	< 0.327	ND	ND	-	-	<1.14	< 0.327	ND	ND	-	-	<1.14	< 0.327	ND	ND
SED-BK-04	0-0.5	-	-	< 0.896	< 0.32	26 NI)	ND	-	-	< 0.896	< 0.326	ND	ND	-	-	< 0.896	< 0.326	6 ND	ND	-	-	< 0.896	< 0.326	ND	ND	-	-	< 0.896	< 0.326	ND	ND	-	-	< 0.896	< 0.326	ND	ND
SED-BK-05	0-0.5	-	-	<1.01	< 0.32	27 NI)	ND	-	-	<1.01	< 0.327	ND	ND	-	-	<1.01	< 0.327	7 ND	ND	-	-	<1.01	< 0.327	ND	ND	-	-	<1.01	< 0.327	ND	ND	-	-	<1.01	< 0.327	ND	ND
SED-BK-06	0-0.5	-	-	<1.09	< 0.32	26 NI)	ND	-	-	<1.09	< 0.326	ND	ND	-	-	<1.09	< 0.326	6 ND	ND	-	-	<1.09	< 0.326	ND	ND	-	-	<1.09	< 0.326	ND	ND	-	-	<1.09	< 0.326	ND	ND
SED-BK-07	0-0.5	-	-	<1.42	< 0.32	25 NI)	ND	-	-	<1.42	< 0.325	ND	ND	-	-	<1.42	< 0.325	5 ND	ND	-	-	<1.42	< 0.325	ND	ND	-	-	<1.42	< 0.325	ND	ND	-	-	<1.42	< 0.325	ND	ND
SED-BK-08	0-0.5	-	-	<1.35	< 0.32	27 NI)	ND	-	-	<1.35	< 0.327	ND	ND	-	-	<1.35	< 0.327	7 ND	ND	-	-	<1.35	< 0.327	ND	ND	-	-	<1.35	< 0.327	ND	ND	-	-	<1.35	< 0.327	ND	ND
SED-BK-09	0-0.5	-	-	<1.34	< 0.32	25 NI)	ND	-	-	<1.34	< 0.325	ND	ND	-	-	<1.34	< 0.325	5 ND	ND	-	-	<1.34	< 0.325	ND	ND	-	-	<1.34	< 0.325	ND	ND	-	-	<1.34	< 0.325	ND	ND
SED-BK-10	0-0.5	-	-	<1.3	< 0.32	26 NI)	ND	-	-	<1.3	< 0.326	ND	ND	-	-	<1.3	< 0.326	5 ND	ND	-	-	<1.3	< 0.326	ND	ND	-	-	<1.3	< 0.326	ND	ND	-	-	<1.3	< 0.326	ND	ND
SED-BK-11	0-0.5	-	-	<1.65	< 0.32	26 NI)	ND	-	-	<1.65	< 0.326	ND	ND	-	-	<1.65	< 0.326	6 ND	ND	-	-	<1.65	< 0.326	ND	ND	-	-	<1.65	< 0.326	ND	ND	-		<1.65	< 0.326	ND	ND

Page 30 of 36 2015\116008\24472MappE.xls

East White Lake Field Vermilion Parish, Louisiana

			Pv	rene		Pyrono	Average		Bon	zene		Ronzono	Average		Ethylb	enzene		Ethylb	enzene		Tole	uene		Toluene	Average		Xyle	nec		Xylenes .	Δυρτασρ
		ICO			'isani	Tyrene	Average	ICC			ani	Delizene	Average	IC	ON		sani	Ave	rage	IC	ON		sani	Totalene	Average	IC	ON J	Pis	ani	Aylelles	iverage
	Core																														
Boring ID	Interval (ft bgs)	mg/kg- dry	mg/kg- wet	mg/kg dry	- mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet
B2 B2	2-4 4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B2 Rerun	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B2 Rerun	10-10.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B3	4-7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B3 Rerun B4 Rerun	9-12 0-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B4 Rerun	3-5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B4	5-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-
B5	0-1.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
B5 Rerun	4-5.5 8-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B6	1.5-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B6 B7	3-10.5 4-5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B7	8-11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B8 Rerun B8	5.5-7 9.5-11.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B9 Rerun	0-0.5	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B9 B9 Rerun	0.5-3.5 8-9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
B10	1.5-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B10	4-7.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B12 B12 Rerun	0-1.5 3.5-5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B12	6.5-7.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-
B13 Rerun B13 Rerun	3-5 7.5-9.5	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B14	0-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B14 B15 Rerun	4-8 4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B15	8-11.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B17 B17 Rerun	0-3 3-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u>-</u>
B17	8.5-10.5	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B17 Rerun B18	10.5-12 2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	- -	-	-	-	-	-	-
B18	4-5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B18 B18	7.5-10 10-11.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B19	1-2.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B19 B19	2.5-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B19 Rerun	4-6.5 6.5-9.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B20	3-4.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
B20 B21	7.5-10 0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B21	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS1 SS1	0-2.1 2.1-2.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS2	0-1	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS2 SS3	1-1.5 0-0.6	-	-	-	-	-	-	- <0.107		-	-	- ND	- ND	<0.670	- <0.25	-	-	- ND	- ND	<0.670	<0.25	-	-	- ND	- ND	<2.01	- <0.75	-	-	- ND	- ND
SS3	0.6-2.2	-	-	-	-	-	-	<0.107	<0.04	-	-	ND ND	ND ND	<0.670	<0.25 <0.25	-	-	ND ND	ND ND	<0.670	<0.25	-	-	ND ND	ND ND	<1.84	<0.75	-	-	ND ND	ND ND
SS3	2.2-2.6	-	-	-	-	-	-	<0.116	< 0.04	-	-	ND	ND	< 0.725	< 0.25	-	-	ND	ND	< 0.725	< 0.25	-	-	ND	ND	<2.17	<0.75	-	-	ND	ND
SS4 SS4	0-0.6 0.6-2.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS4	2.7-3.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
SS5 SS6	0-2.15 0-1.65	-	-	-	-	-	-	<0.0941	<0.04	-	-	ND -	ND -	<0.588	<0.25	-	-	ND -	ND -	<0.588	<0.25	-	-	ND -	ND -	<1.76	<0.75	-	-	ND -	ND -
SS6	1.65-2.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS7 SS7	0-1.4 1.4-2.5	-	-	-	-	-	-	<0.141 <0.104	<0.04	-	-	ND ND	ND ND	<0.883	<0.25 <0.25	-	-	ND ND	ND ND	<0.883	<0.25 <0.25	-	-	ND ND	ND ND	<2.65 <1.96	<0.75 <0.75	-	-	ND ND	ND ND
SS7	2.5-3.5	-	-	-	-	-	-	<0.119	<0.04	-	-	ND ND	ND ND	<0.742	<0.25	-	-	ND	ND ND	<0.742	<0.25	-	-	ND ND	ND ND	<2.23	<0.75	-	-	ND	ND ND
SS8 SS8	0-1.9 1.9-2.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS8	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS8	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS9 SS9	0-1.7 1.7-3.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS9	3.2-3.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS10 SS10	0-1.5 1.5-2.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS10	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS10 SS11	2-4 0-2.5	-	-	-	-	-	-	- <0.0565	<0.04	-	-	- ND	ND	<0.353	<0.25	-	-	- ND	- ND	< 0.353	<0.25	-	-	- ND	- ND	<1.06	- <0.75	-	-	- ND	- ND
11دی	0-2.5		-	-	-	1 -	-	\U.U505	<u>~0.04</u>	-	-	ND	ND	\ 0.353	\U.25	-	-	ND	ND	\U.353	\U.25	-	-	ND	ND	\1.06	\0./5	-	-	ND	ND

East White Lake Field Vermilion Parish, Louisiana

			Pw	rene		Pyrene	Average		Benz	ene	1	Renzene	Average		Ethylh	enzene		Ethylb	enzene		Toli	iene		Toluene	Average	I	Xyle	enes		Xvlenes	Average
		IC	ON		sani	Tyrene	Tiverage	ICO		Pisa			I	ICO			ani	Ave	rage	IC	ON		sani	Torucia	Trenage	ICO		Pis	ani	Ayrenes	Tiverage
	Core	ic	OIN	11	Sain			ico	<i>5</i> 1 \	1 150	1111			ico	J1 N	1 13	ан			ic	J1N	1 15	Sain			ico	<i>J</i> 1 V	1 15	ain		
Boring ID	Interval (ft bgs)	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	wet	mg/kg- dry	mg/kg- wet	dry	wet	dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	wet	dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet
SS11 SS11	2.5-3.4 3.4-3.7	-	-	-	-	-	-	<0.0722 <0.0741	<0.04	-	-	ND ND	ND ND	<0.451	<0.25 <0.25	-	-	ND ND	ND ND	<0.451	<0.25 <0.25	-	-	ND ND	ND ND	<1.35 <1.39	<0.75 <0.75	-	-	ND ND	ND ND
SS12	0-3.7	-	-	-	-	-	-	<0.0741	<0.04	-	-	ND	ND	<0.461	<0.25	-	-	ND	ND ND	<0.461	<0.25	-	-	ND	ND	<1.38	<0.75	-	-	ND	ND ND
SS13	0-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS13 SS13	1-2.75 2.75-3.2	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u>-</u>	-
SS14	0-0.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS14 SS15	0.8-1.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u>-</u>	-	-	-	-	-	-	-	-	-	-	-	-	-
SS15	3-3.25	-	-	-	-	-	-	-	-	-	-	<u>-</u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB1	0-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-
AB1 AB1	3-6 6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u>-</u>	-
AB1	12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB2	0-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
AB2 AB2	3-6 4-6	-	-	-	-	-	-	-	-	-	-	<u>-</u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u>-</u>	-
AB2	10-12	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	
AB3 AB3	0-3 3-6	-	-	-	-	-	-	-	-	-	-	<u>-</u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u>-</u>	-
AB3	4-6		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
AB3 AB4	8-10 0-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB4	3-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB4 AB4	4-6 10-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
AB5	0-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB5	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB5 AB5	10-12 14-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB5	18-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB6 AB6	8-10 12-14	-	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u>-</u>	-
AB7	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
AB7 AB8	10-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB8	6-8 10-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB8	14-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
AB9 AB9	6-8 12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
AB9	18-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB10 AB10	4-6 12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB10	14-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB11 AB11	4-6 6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB11	16-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u>-</u>	-
AB12	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB12 AB13	12-14 0-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB13	3-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-
AB13 AB13	4-6 8-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB13	10-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB14 AB14	0-3 3-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB14 AB14	3-6 4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-		-	-	-	, ,	-	-	-	-		-		-	
AB14	8-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
AB15 AB15	0-6 4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB15	12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB16	4-6 8 10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB16 AB16	8-10 10-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB16	12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-
AB18 AB18	4-6 10-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB18	12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB19 AB19	4-6 8-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB19	8-10 12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB20	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-
AB20 AB20	10-12 14-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB20	16-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB21 AB21	4-6 6-8	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-		-	-
11041	0-0	_						-		-	-	-		_	-		_	-	-			-	_		ı -		-		-	-	

East White Lake Field Vermilion Parish, Louisiana

			Deva	rene		Drivono	Average		Pon	zene		Panzana	. Average		Ethyelk	oenzene		Ethylb	enzene		Tale	iene		Toluene A	Arronago		Xyle	maa		Vylonos	Average
		IC	ON		sani	1 yrene	Average	IC	ON		ani	Denzene	Average	IC	ON		sani	Ave	rage	IC	ON	Pisa	mi	Toruene A	Average	IC	ON		sani	Aylelles	Average
	Core	IC	OIN	1 13	Sain			IC	OIN	1 13	aiii			ici	JIN	1 13	баги			ic	OIN	1 150	1111			ici	JIN	1 15	ми		
Part of ID	Interval		mg/kg-				mg/kg-													mg/kg-		mg/kg-							mg/kg-		
Boring ID AB21	(ft bgs) 8-10	dry -	wet	dry -	wet	dry -	wet	dry -	wet	dry -	wet	dry -	wet	dry -	wet	dry -	wet	dry -	wet	dry -	wet	dry -	wet	dry -	wet -	dry -	wet	dry -	wet	dry -	wet
AB21	12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB22 AB22	4-6 6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB22	12-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB22	16-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED4 SED5	0-2 0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-
SED6	0-2	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-
SED7	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED7 SED7	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED7 SED8	4-6 0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED8	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-
SED9	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-
SED9 SED10	2-4 0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED10	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED11	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED11	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED12	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED12	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED12	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED13 SED13	0-2 2-4	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
SED13 SED14	0-2	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-		-	-	-	-	-
SED14 SED14	2-4	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED16	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED17	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ı	-
SED17	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
SED18	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED18	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED19 SED19	0-2 2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
SED19 SED20	0-2	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_	-		-	-	-	-	-	-	-	-
SED20	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED21	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED21	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ı	-
SED21	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED21	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED22	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED22 SED23	2-4 0-2	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED23	2-4	-	-	-	-	-	-	-	-	 -	-	-	-	-	-	-	-	-	-	-	-	_	-	-		<u> </u>		-	-		-
SED24	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
SED24	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
SED25	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED25	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
SED26	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED26 SED27	2-4 0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED27 SED27	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED27 SED28	0-2	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED28	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED29	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
SED29	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED30	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED30	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED31	0-2 2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED31 SED31	2-4 4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED31 SED32	0-2	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-
SED32 SED32	2-4	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED32	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED33	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
SED33	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
SED33	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MPA-Sed 15-N	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MPA-Sed-15-W	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

East White Lake Field Vermilion Parish, Louisiana

			Pvi	rene		Pyrene	Average		Ben	zene		Benzene	. Average		Ethylk	enzene		_	enzene	<u> </u>	Toli	iene		Toluene .	Average		Xyle	nes		Xvlenes	Average
		IC	ON		sani			IC	ON		ani			ICO	ON		ani	Ave	rage	ICO		Pisa	ani			ICO	ON	Pis	ani	,	
	Core																														
Boring ID	Interval (ft bgs)	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet	mg/kg- dry	mg/kg- wet
MPA-Sed-15-W-2	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MPA-Sed-15-E	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MPA-Sed-15-E-2 MPA-AB5 (A)	0-2 4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MPA-AB5 (B)	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MPA-AB5 (C)	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MPA-AB-6 MPA-AB8	8-10 6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MPA-AB13	0-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
AB-6	8-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB-13	0-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB-13 SO-E AB-14	0-3 0-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB-8	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB-8 SO-S AB-5 SO-NE	6-8 4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB-5 SO-NE AB-5 SO-NW	4-6 4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-	-	-	- -	-
AB-5a	4-5.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AB-15 SED-8	4-5.5 0-0.5	-	-	<0.83	<0.325	- ND	- ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED-9	0-0.5	-	-	<1.07	<0.326	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED-11	0-0.5	-	-	<0.96	<0.327	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED-13	0-0.5	-	-	<1.2	<0.329	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED-19 SED-24	0-0.5 0-0.5	-	-	<1.52 <0.97	<0.328	ND ND	ND ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED-24 SED-26	0-0.5	-	-	<1.04	<0.328	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED-31	0-0.5	-	-	<1.02	<0.327	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED-120 * Hg-MPA-01	0-0.5 0-0.5	-	-	<1.89	<0.33	ND -	ND -	-	-	-	-	-	-	-	-	-	-	- -	- -	-	-	-	-	-	-	-	-	-	-	- -	-
Hg-MPA-01	0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-01	5-7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-02 Hg-MPA-02	0-0.5 0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-02	5-7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-03	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-03	0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-03 Hg-MPA-04	4-6 0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-04	0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-04 Hg-MPA-05	3-5 0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Hg-MPA-05	0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-05 Hg-MPA-06	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-
Hg-MPA-06	0-0.5 0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-06 Hg-MPA-07	5-6 0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-07	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-	-	1	-	-
Hg-MPA-07 Hg-MPA-08	6.5-7 0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-08	0.5-2	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-
Hg-MPA-08 Hg-MPA-09	7.5-8 0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-09 Hg-MPA-09	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-09	6-7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hg-MPA-09dup SP-MPA-01	0.5-2 0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-01	0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-01 SP-MPA-01	2-4.3 4.3-4.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-01	8-9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-02 SP-MPA-02	0-0.5 0.5-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-02	3-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-02 SP-MPA-02a	4-5 3-5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-02a	7-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-03	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-03 SP-MPA-03	0.5-2 4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-03	9-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP-MPA-04	0-0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

East White Lake Field Vermilion Parish, Louisiana

Markey M			_																													
Minish M				Pyı	rene		Pyrene	Average		Ben	zene		Benzene	e Average		Ethylb	oenzene		_			Tol	uene		Toluene A	Average		Xyl	enes		Xylenes	Average
Marcha M			IC	ON	Pis	sani			IC	ON	Pis	sani			ICO	ON	Pi	sani			IC	ON	Pi	sani			ICO	ON	Pis	sani		
Summer S																																
SAMPACAID 1.5																					0. 0		0. 0									
SPANDFACH 57				1								1	-				-	-			dry											wet
SPANN-16 940 9				<u> </u>		-					ļ		-	-	B		-		1		I				l						-	-
MIL 92						<u> </u>		-				<u> </u>	+				+			-			 	-	 						<u> </u>	-
Mile							-	-	-	1					-					-	-				-		-			-		-
M-1						-	-	-	-	1		-	+	 			+	-		-	-		 	-	 					-	<u> </u>	-
Mid 94)			-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
M2						-	-		-	1		-	-	-	-		-	-	-	-	-			-		-	-		-	-	-	-
Mile			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mile	WL-2		-	1	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
MES	WL-2		-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ML3	WL-2		-	1	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NU-1	WL-2		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NE-5	WL-3		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NIA	WL-3	4-6/4-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NL4	WL-3	10-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MI-4	WL-4	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ML4	WL-4	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NL5	WL-4	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NL5	WL-4		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MIL6	WL-5		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MIL6	WL-5		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
ML6	WL-6		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ML6 10-13	WL-6		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ML7	WL-6	8-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ML-7	WL-6	10-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL7	WL-7	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ML7	WL-7	2-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL8	WL-7	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL8	WL-7	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL8	WL-8	0-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
ML8 68	WL-8	2-4	-	_	_	-		-	_		_	-	-	_	-	-	-	_		-	-		-	-	-	-	-	_	_		-	-
SED-BK-01 0-0.5	WL-8	4-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED-BK-02 0-0.5	WL-8	6-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED-BK-03 0-0.5	SED-BK-01	0-0.5	-	-	<1.03	<0.328	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED-BK-03 0-0.5	SED-BK-02	0-0.5	-	-	< 0.97	< 0.326	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED-BK-04 0-0.5	SED-BK-03	0-0.5	-	-	<1.14	< 0.327	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED-BK-05 0-0.5	SED-BK-04	0-0.5	-	-	< 0.896	< 0.326	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED-BK-07 0-0.5 < 1.42 < 0.325 ND ND	SED-BK-05	0-0.5	-	-	<1.01	< 0.327	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED-BK-07 0-0.5 < 1.42 < 0.325 ND ND	SED-BK-06	0-0.5	-	-	<1.09	< 0.326	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED-BK-08 0-0.5	SED-BK-07	0-0.5	-	-					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED-BK-09 0-0.5 <1.34 <0.325 ND ND	SED-BK-08	0-0.5	-	-		< 0.327			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED-BK-10 0-0.5 <1.3 <0.326 ND ND	SED-BK-09	0-0.5	-	-	<1.34	< 0.325	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	SED-BK-10		-	-	<1.3	< 0.326			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ער איז איז איז איז איז איז איז איז איז איז	SED-BK-11	0-0.5	-	-	<1.65	< 0.326	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

East White Lake Field Vermilion Parish, Louisiana

Notes:

The following notes apply to the sediment data set provided in Table E-1.

- Indicates parameter not analyzed for the respective sample
- ND Used in the "Average" column to indicate that a parameter was analyzed but not detected in any sample in this location
- * SED-120 was collected in the same location as SED-30.
- (a) Moisture content was not available for this sample. In order to facilitate conversion between wet and dry weight results, a proxy moisture content was assigned based on a sample collected from the same or a nearby location.

Sample ID	Depth	Date	Proxy MC	Source of Proxy MC	Depth	Date
MPA-Sed 15-N	0-2'	8-Jun-10				
MPA-Sed-15-E	0-2'	8-Jun-10	0.546	SED-15	0-2'	26-Feb-10
MPA-Sed-15-E-2	0-2'	8-Jun-10				
AB-6	8-10	10-Aug-10	0.861	MPA-AB-6	8-10'	19-May-10
AB-13	0-3'	10-Aug-10	0.874	MPA-AB13	0-3'	20-May-10
AB-13 SO-E	0-3'	10-Aug-10	0.674	MFA-AD13	0-3	20-May-10
AB-14	0-3'	10-Aug-10	0.628	AB-14	0-3'	13-Nov-06
AB-8	6-8	10-Aug-10	0.772	MPA-AB8	6-8'	10 Mars 10
AB-8 SO-S	6-8	10-Aug-10	0.772	MIFA-ADo	0-0	19-May-10
AB-5 SO-NW	4-6'	10-Aug-10				
AB-5a	4-5.5'	10-Aug-10	0.64	AB-5	4-6'	2-Nov-06
AB-15	4-5.5'	10-Aug-10	0.04	AD-3	4-0	Z-1NOV-00
MPA-AB5 (B)	4-6'	19-May-10				

- (b) Averages were calculated for detected parameters in split samples. For samples where a parameter was analyzed in only one of the split samples, the reported result was identified in the "average" column for that sample. For the few parameters that were reported as detected in one split and not detected in the other split, the detected result was identified in the "average" column for that sample. If both results were nondetect, no average was performed, as this was not necessary to support the selection of maximum detected concentrations used as AOICs in the risk assessment.
- (c) In general, a 29-B preparation method was used by Sherry Laboratory (also called Element Laboratory) for the ICON sediment samples (i.e., drying and pulverizing the sample prior to extraction and analysis for metals), while the MP&A sediment samples typically included the routine SW-846 preparation method. For the following samples collected by ICON in August 2006, analyses by routine SW-846 preparation method were also provided by ICON, and were used in the risk assessment in lieu of the 29-B prep method results for the same location and sample interval, because the routine SW-846 prep method is more representative for risk assessment (see main text for additional information on this topic):

B2 Rerun	6-8'	B10	4-7.5'
B2 Rerun	10-10.5′	B12 Rerun	3.5-5'
B3 Rerun	9-12'	B13 Rerun	3-5'
B4 Rerun	0-1'	B13 Rerun	7.5-9.5'
B4 Rerun	3-5'	B15 Rerun	4-6'
B5 Rerun	8-10'	B17 Rerun	3-6'
B8 Rerun	5.5-7'	B17 Rerun	10.5-12'
B9 Rerun	0-0.5'	B19 Rerun	6.5-9.5'
B9 Rerun	8-9'		

- (d) Samples collected within the Tank Battery B remediation area (within the Sed-15 pit remediation area) were excluded from the risk assessment because they no longer represent site conditions. Samples excluded from quantitative analysis due to remediation include the following:
 - SED15 (0-2' and 2-4') collected on February 26, 2010;
 - SED-15 (0-0.5') and a field duplicate (SED-115) collected on May 6, 2010;
 - MPA-Sed 15 (0-2') collected on June 8, 2010; and
 - SP-MPA-05 (0-5' and 7-9') collected on October 6, 2010.
- (e) Samples collected at locations SED-1, SED-2, and SED-3 by ICON in February 2010 were collected off site to the east of the Vermilion Parish School Board property and were excluded from the risk evaluation.
- (f) Sediment samples with no data useful for quantitative risk assessment were not included in this table (e.g., samples with only 29-B analyses such as oil and grease, chlorides, etc.). These samples include the following:
 - Samples with the prefix "DEL"
 - Several relatively deep samples collected by ICON in 2006 (samples with the prefix "AB", ranging from 6 to over 40 feet bgs).
 - The following "B"-prefix samples collected by ICON in 2006: B7 (1-4'), B9 (7-8'), B20 (1-3'), B21 (6-8')

Page 36 of 36 2015\116008\24472MappE.xls

Table E-2 Peat Zone Groundwater Data ICON and MPA Split Groundwater Sample Data - January 2015

East White Lake Field Vermilion Parish, Louisiana

TA:	ell Type	MW		MW		MW		MW	MW	_	MW		MW	MW	MW	MW		MW		MW	_
	mple ID	WL-6	_	WL-6		WL-6	_	WL-6	AB2	-	AB3	-8	AB5	AB6	AB6DUP	AB7		AB15		AB19	-1
Sample Inte				8.5-13.5'		***		8.5-13.5'	11-21		10-20	-	12-22	8-18	8-18	10-20		8-18		8-18	-1
	ple Date			1/7/2015				1/7/2015	11/10/2006		11/10/2006	1	11/13/2006	11/10/2006	11/10/2006	11/13/200	6	11/13/2006		11/10/2006	-1
	upled By	MPA		ICON		AVG		AVG	ICON		ICON	T	ICON	ICON	ICON	ICON		ICON		ICON	
Parameter	GWss							REPRESENT	REPRESENT	•	REPRESENT		REPRESENT	REPRESENT	REPRESENT	REPRESE	TV	REPRESENT	•	REPRESENT	П
Dissolved Metals (mg/L)												T									
Arsenic	0.01	0.1	U			0.1	U	0.1 U				T									
Barium	2	10.8				10.8		10.8													
Cadmium	0.005	0.1	U			0.1	U	0.1 U													
Chromium	0.10	0.1	U			0.1	U	0.1 U				_									
Iron	0.3	16.7			Ш	16.7		16.7		Ш		4					-		_		-4
Lead	0.015	0.1 5.12	U		Н		U	0.1 U 5.12		Н		4	-				-				
Manganese Mercury	0.05	0.0002	U		Н	5.12 0.0002	П	0.0002 U		Н		-					+		-8		-1
Strontium	2.2	18.4			Н	18.4	U	18.4		Н		-					+		-8		-1
Zinc	1.1	2	IJ		Н		П	2 U		H		-					+		- 8		-1
Ziiic	1.1	-	Ŭ		П	-	Ŭ			П		1					\neg				-1
Total Metals (mg/L)			Ħ		Н			1		П		1								İ	-1
Arsenic	0.01	0.1	U	0.01	U	0.055	U	0.055 U	0.015	H	0.01 U	J	0.01 U	0.012	0.011	0.025		0.017		0.01	U
Barium	2	12.1	Ħ	11.8	П	12.0		11.95	0.67	П	1.52	1	1.12	2.13	2.14	2.36		3.69		1.06	7
Cadmium	0.005	0.1	U	0.005	U	0.0525	U	0.0525 U	0.001		0.001	1	0.002	0.001 U	0.001	0.002		0.002		0.001	
Calcium		764		546		655		655				1									
Chromium	0.10	0.1	U	0.01	U	0.000	U	0.055 U				1					Ш				_]
Iron	0.3	18.8	Щ	17.3	Ш	18.1		18.05		Ш		J					Ш				
Lead	0.015	0.1	U	0.01	U	01000	U	0.055 U	0.01	Ш	0.011	-	0.006	0.005 U		0.005	U	0.005	U	0.005	U
Magnesium Manganese	0.05	770 5.84	\vdash	584 4.9	Н	677 5.37	_	5.37		H		-					+		-#		-1
Mercury	0.002	0.0002	TT	0.0002	TT		Τī	0.0002 U		Н		-					+		-8		-1
Potassium		61.1	U	58.2	U	59.7	U	59.65		Н		-					+				-1
Selenium	0.05		H	0.058	Н	0.058		0.058		H		-					+		- 8		-1
Sodium		9540	H	7840	H	8690		8690		H		-1					\pm				-1
Strontium	2.2	17	Ħ	18.7	П	17.9		17.85	1.06	Ħ	1.68	7	11.9	5.68	5.39	2.43	\neg	11.4		1.47	-1
Zinc	1.1	2	U	0.017		1.01		1.01		M		T									7
TPH Fractions (mg/L)																					T
Aliphatic >C10-C12	0.15	0.15	U			0.15	U	0.15 U													
Aliphatic >C12-C16	0.15	0.15	U			0.00	U	0.15 U													
Aliphatic >C16-C35	7.3	0.15	U			0.10	U	0.15 U				_									
Aliphatic >C8-C10	0.15	0.15	U		Ш	0.00	U	0.15 U		Ш		-					_				_
Aliphatic C6-C8	3.2	0.15	U		ш		U	0.15 U		Н		-					\perp				4
Aromatic >C10-C12 Aromatic >C12-C16	0.15 0.15	0.15 0.15	U		Н		U	0.15 U 0.15 U		Н		-					+		-8		-1
Aromatic >C12-C16 Aromatic >C16-C21	0.15	0.15	U		H		U	0.15 U		H		٠					+		-		-6
Aromatic >C21-C35	0.15	0.15	U		H		U	0.15 U		H		1					+				-1
Aromatic >C8-C10	0.15	0.15	U		H	0.15	Ū	0.15 U		H		1					\pm				-1
			Ħ		П					Ħ		T					\top			İ	7
Hydrocarbons (mg/L)												ı									7
TPH-GRO	0.15		П	0.15	U	0.15	U	FRACT	0.15	U	0.15 U		0.15 U	0.15 U		0.15	U	0.15	U	0.15	U
TPH-DRO	0.15		П	0.85		0.85		FRACT	0.12	U	0.122 U		0.477	0.185	0.171	0.122	U	0.214		0.000	U
TPH-ORO	0.15		Ш	0.33	Ш	0.33		FRACT	0.1	U	0.102 U	J	0.405	0.163	0.162	0.188		0.206		0.156	_]
			Ш		Щ		_			Ш		_					ш				_1
BTEX (mg/L)			Ш		Ш		_			Щ		Į					Ш				
Benzene	0.005	0.005	U	0.005	U	0.005	U	0.005 U	0.005	U	0.005 U		0.005	0.005 U		0.005	U	0.005	U	0.005	Ü
Ethylbenzene	0.7	0.005	U	0.005	U	0.000	U	0.005 U 0.00875 U	0.005	U	0.005 U	_	0.005 U 0.005 U	0.005 U 0.005 U		0.005 0.005	U	0.005	U	0.000	U
Toluene Xylene	10	0.005 0.015	U	0.00	U		U	0.00875 U 0.04125 U	0.005	Π	0.005 U 0.015 U		0.005 U 0.015 U	0.005 U 0.015 U		0.005	U	0.005	U	0.005 0.015	II
Ayiciic	10	0.013	-	0.03	-	0.0323	U	0.04123 U	0.013	Ü	0.015	1	0.015	0.015	0.015	0.015	-	0.015	U	0.015	_
Other			H		H					H	-	۲		-			+		-		-1
Chloride		18100	H	16600	H	17350	-	16975	2310	H	2660	1	14400	3900	3900	6210	+	7630		3020	-1
Bromide		22.6	H	22.4	H	22.5		22.45	2310	H	2000	۲	14400			0210	+	7030		3020	۱
Sulfate	250	20	U		Н	20	U	20 U		H		1									-1
Bicarbonate Alkalinity		295	Ħ	415	П	355		385		H		T					\top				7
Carboante Alkalinity		1	U	10	U	5.5	U	7.75 U	-			1									
Turbidity (NTU)		3.6	Ш			3.6		3.6													
TDS	500	35500		32800		34150		33475	3780		3740		17200	4840	4190	7470		10300		3700	7

Page 1 of 2 2015\116008\24472MappExls

Table E-2

Peat Zone Groundwater Data ICON and MPA Split Groundwater Sample Data - January 2015

East White Lake Field Vermilion Parish, Louisiana

Notes:

The following notes apply to ground water data sets provided in Tables E-2 through E-6.

- -- Indicates no standard in the RECAP standard column, or parameter not analyzed in the data section
- U Not detected, value is the detection limit
- B For inorganics, this qualifier indicates the result is between the Reporting Detection Limit (RDL) and Methold Detection Limit (MDL)
- HP Hydropunch sampling technology
- MW Monitoring Well
- WW Water Well

Yellow highlighting indicates a detected concentration exceeds the screening level.

Grey shading indicates the total metals results are not included in the quantitative risk evaluation (see DISS definition).

FRACT - TPH fraction data are available for this location and are utilized in lieu of TPH mixtures.

DISS - Dissolved metals, when available, were used in lieu of total metals for all HP samples and for samples with a turbidity greater than 40 NTU.

GWSS = RECAP Screening Standard from Table 1 of RECAP 2003.

AVG - represents the average of split sample results, calculated as outlined below.

REPRESENT - This column presents the constituent concentrations considered representative for each sample. When more than one sample event is available for a single location, the representative concentrations were determined as the most recent independent concentration available for each constituent. Independent concentrations were identified as the following:

- Single sample results provided by one lab, where no split sample was collected.
- If split samples were collected, the average concentration for each parameter was determined as follows:
 - o Parameters with detected concentrations in both splits: the detected concentrations were averaged.
 - Parameters reported as nondetect in both splits: the detection limits were averaged and the average is considered not detected at the averaged detection limit.
 - Parameters analyzed in only one of the split samples: the result (detection or nondetect) for the parameter was identified in the "average" column for that sample.
 - Parameters that were detected in one split but not detected in the other split: the detection limit was used as a proxy concentration and averaged with the detected concentration.
 - Duplicates were considered independent samples and were not averaged with the parent samples. If a duplicate was split, the split results were averaged as outlined above.

Once the most recent, independent result was identified as outlined above, two other considerations were made:

- If TPH fractions are available, they were utilized as the most representative results. In these instances, the note "FRACT" is inserted for TPH mixture res
- Dissolved metals, when available, were used in lieu of total metals for all hydropunch (HP) samples and for samples with a turbidity greater than 40 NTU. In these instances, the note "DISS" is inserted for total metals results. Total metals results for these samples are shaded grey to indicate the results are not included in the quantitative risk evaluation.

GWss for strontium is not provided in RECAP; the risk-based values were calculated in accordance with Appendix H of RECAP 2003 (see Appendix G).

GWss for iron and manganese are not provided in RECAP; the EPA Secondary MCLs were used as the GWss for iron and manganese.

The following wells were sampled during more than one sampling event over the investigation history, and the most recent sample results were used in the quantitative assessment to represent current conditions (RECAP Section 2.5):

- SB-1-MW sampled May 7, 2010, June 8, 2010, and April 21, 2014;
- Facility well (also called WW-1 and AWW1) sampled April 3, 1995 (for chlorides only), November 11, 2006, and May 25, 2010; and
- Hebert water well sampled September 1, 2010 and April 21, 2014.

East White Lake Field Vermilion Parish, Louisiana

T T		X47.77.4	1.00		3.6747	3.6747	MW	3.6747	3.6747	MW	3.007	3.6747	MW	3.607	100	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW
		Well type	MW	┕╂╴	MW	MW	MW	MW	MW	IVIVV	MW	MW	IVIVV	MW	MW	MW	NIVV	IVIVV	IVIVV	IVIVV	IVI VV	IVI VV	NIVV	NIVV	IVIVV
								MW-50													SB-1-MWS	S SB-1-MWS		MPA EWL Dup	
		Sample ID	AB1		MW-1	MW-1	MW-1	(MW-1 DUI		MW-1 DUP	MW-2R	MW-2	MW-2	MW-3R			SB-1-MW-S		SB-1-MW-	S SB-1-MW-S		(SB1-Sb)	SB-1	(SB-1)	SB-1
	Samp	Sample Date	40-50 11/10/2006	-1-		44-54 3/5/2010			44-54 3/5/2010			42-52 3/5/2010			37.5-47. 3/5/201			(44-54) 5/7/2010			(44-54) 6/8/2010		(44-54) 4/21/2014	(44-54) 4/21/2014	(44-54) 4/21/2014
		Sampled By	ICON	-1-	MPA	ICON	AVG	MPA dup	ICON dup	AVG	MPA	ICON	AVG	MPA	ICON	AVG	MPA	ICON	AVG	MPA	ICON	AVG	MPA	MPA dup	most recent
Parameter	Units	GW SS	REPRESEN	Т	.,,,,,	100.1	REPRESENT	111111111111111111111111111111111111111	10011 11111	REPRESENT	.,,,,,	10011	REPRESENT	1/11	100.1	REPRESENT	.,,,,	100.1	1110	.,,,,,,,	10011	1110	1,111	1,1111 1111	REPRESENT
Dissolved Metals																									
Arsenic	mg/L	0.01															0.01	U	0.01	U			0.01 L	J	0.01 U
Barium	mg/L	2															5.61		5.61				3.52		3.52
Cadmium Calcium	mg/L mg/L	0.005															568		568						 568
Chromium	mg/L	0.1																							
Iron	mg/L	0.3			-												15.4		15.4				8.75		8.75
Lead	mg/L	0.015													-										
Magnesium	mg/L	 0.0F															220		220				2.12	-	220
Manganese Mercury	mg/L mg/L	0.05 0.002		H													3.12		3.12				2.13		2.13
Potassium	mg/L											-					10.4	-	10.4		-				10.4
Selenium	mg/L	0.05															0.04	U	0.04	U					0.04 U
Sodium	mg/L			┷													1840		1840						1840
Strontium Zinc	mg/L mg/L	2.2 1.1		H											-										
Total Metals	g/ L	1.1	-			1 1			1 -			+ -				 				<u> </u>		+ +	1	† †	
Arsenic	mg/L	0.01	0.021		ND	U 0.01 U	0.01 U	ND	U 0.01 U	0.01 U	0.019	0.022	0.0205	ND	U 0.01	U 0.01 U	0.01	U 0.01 U	U 0.01	U			0.01 L	J	0.01 U
Barium	mg/L	2	0.509		13.7	15.4	14.6	14.2	15.4	14.8	1.04	0.943	0.992	6.95	8.96	7.96	5.02	4.81	4.92				3.32		3.32
Cadmium	mg/L	0.005	0.001		ND	U 0.005 U	0.005 U	ND	U 0.005 U	0.005 U	ND I	U 0.005 L	0.005 L	ND	U 0.005	U 0.005 U	 F20	0.005 U	U 0.005	U			250		0.005 U
Calcium Chromium	mg/L mg/L	0.1			ND	U 0.01 U	0.01 U	ND	U 0.01 U	0.01 U	ND I	U 0.01 L	0.01 U	 ND	U 0.01	U 0.01 U	520	0.01 U	520 U 0.01	U			358		358 0.01 U
Iron	mg/L	0.3															15.6		15.6				8.99		8.99
Lead	mg/L	0.015	0.007	(0.0057	B 0.01 U	0.00785	0.0072	0.01 U	0.0086	ND I	U 0.01 L	0.01 U	0.0035	B 0.01	U 0.00675		0.01 U	J 0.01	U					0.01 U
Magnesium	mg/L																201		201				148		148
Manganese Mercury	mg/L mg/L	0.05 0.002	0.0002	II	ND	U 0.0002 U	0.0002 U	ND	U 0.0002 U	0.0002 U	ND I	U 0.0002 L	0.0002 U	 ND	U 0.0002	U 0.0002 U	2.96	0.0002 U	2.96 U 0.0002	U			2.01		2.01 0.0002 U
Potassium	mg/L	0.002	0.0002														10.3	0.0002	10.3				9		9
Selenium	mg/L	0.05			ND	U 0.077	0.077	ND	U 0.07	0.07	ND I	U 0.03	0.03	ND	U 0.071	0.071	0.04	U 0.058	0.049						0.049
Sodium	mg/L																1710		1710		-		1260		1260
Strontium Zinc	mg/L mg/L	2.2 1.1	0.691		13.4 ND	14.4 U 0.039	13.9 0.039	12.7 ND	14.4 U 0.014	13.6 0.014	0.93 ND I	0.877 U 0.015	0.904 0.015	7.3 ND	9.54 U 0.016	8.42 0.016		5.42 0.017	5.42 0.017						5.42 0.017
BTEX		1.1			ND	0.039	0.039	ND	0.014	0.014	ND (0.013	0.013	ND	0.016	0.016		0.017	0.017		-				0.017
Benzene	mg/L	0.005	0.005	U	0.028	0.03	0.029	0.028	0.029	0.0285	ND I	U 0.005 L	0.005 U	0.00136	0.005	U 0.00318	0.017	0.016	0.0165	0.015	0.014	0.0145	0.015	0.013	0.015
Ethylbenzene	mg/L	0.7	0.005		ND	U 0.005 U		ND	U 0.005 U	0.005 U	ND I	U 0.005 L	0.005 U	ND	U 0.005	U 0.005 U	0.005	U 0.005 I	U 0.005	U 0.005 U	U 0.005	U 0.005 U	0.005 L	J 0.005 L	J 0.005 U
Toluene	mg/L	1	0.005	_	ND	U 0.01 U	0.01 U	ND	U 0.01 U	0.01 U	ND I	U 0.01 L	0.01 U	ND	U 0.01	U 0.01 U	0.005	U 0.01 U	U 0.0075	U 0.005 U	U 0.01	U 0.0075 U	0.01 L	J 0.01 L	J 0.01 U
Xylene (total) TPH Mixtures	mg/L	10	0.015	U	ND	U 0.05 U	0.05 U	ND	U 0.05 U	0.05 U	ND I	U 0.05 L	0.05 U	ND	U 0.05	U 0.05 U	0.01	U 0.05 I	U 0.03	U 0.01 U	U 0.05	U 0.03 U	0.05 L	J 0.05 L	J 0.05 U
TPH-Gasoline Range	mg/L	0.15	0.15	U	ND	U 0.15 U	0.15 U	ND	U 0.15 U	0.15 U	ND U	U 0.15 L	0.15 U	ND	U 0.15	U 0.15 U		0.15 U	U 0.15	U					FRAC
TPH-Diesel Range	mg/L	0.15	0.121		ND	U 0.133 U	0.133 U	ND	U 0.133 U	0.133 U	ND U	U 0.133 L	0.133 U	ND	U 0.133	U 0.133 U		0.136 U	U 0.136	U					FRAC
TPH-Oil Range	mg/L	0.15	0.101	U	ND	U 0.122 U	0.122 U	ND	U 0.122 U	0.122 U	ND U	U 0.122 L	0.122 U	ND	U 0.122	U 0.122 U		0.126 U	J 0.126	U					FRAC
TPH Fractions	/т	0.15				+			\perp			+					0.15		0.15		1	+	0.45	T	0.15
Aliphatic >C10-C12 Aliphatic >C12-C16	mg/L mg/L	0.15 0.15		┢╋													0.15 0.15	U U	0.15	U U			0.15 U	J	0.15 U 0.15 U
Aliphatic >C16-C35	mg/L	7.3															0.15	U	0.15	U		-	0.15 L	J	0.15 U
Aliphatic >C8-C10	mg/L	0.15															0.15	U	0.15	U			0.15 L	J	0.15 U
Aliphatic C6-C8	mg/L	3.2													-		0.15	U	0.15	U			0.15 L	J	0.15 U
Aromatic >C10-C12 Aromatic >C12-C16	mg/L mg/L	0.15 0.15		H													0.15 0.15	U	0.15	U U			0.15 U	J	0.15 U 0.15 U
Aromatic >C12-C16 Aromatic >C16-C21	mg/L	0.15													-		0.15	U	0.15	U			0.15 U	J	0.15 U
Aromatic >C21-C35	mg/L	0.15						-									0.15	U	0.15	U			0.15 L	J	0.15 U
	mg/L	0.15															0.15	U	0.15	U			0.15 L	J	0.15 U
Other	m - /T					+						+					- 1	TT .	- 1	r T	1	+	A 17	7	4 111
Sulfate Bicarbonate Alkalinity	mg/L CaCO3			H													5 349	U 562	5 1 456	U			4 U	J	4 U 384
Carbonate Alkalinity	mg/L CaCO3											-					1	U 10 U	J 5.5	U		-	1 L	J	1 U
Total Dissolved Solids	mg/L		1680		17000	18400	17700	17300	18100	17700	2010	1860	1940	17200	16300	16800	7780	7880	7830				5400		5400
Chloride	mg/L		888		9150	9580	9370	9040	9580	9310	960	852	906	9100	10700	9900	4160	5470	4820				3120		3120
Field Turbidity	NTU		45			1.9	1.9		1.9	1.9		0.68	0.68		0.78	0.78		19.6	19.6						19.6
Field EC Field pH	uS SU		2510 7.29			21280 6.83	21300 6.83		21280 6.83	21300 6.83		3061 7.46	3060 7.46		22720 6.17	22700 6.17									
rielu pri	30		1.29			0.03	0.03		0.63	0.03		7.40	7.40		0.17	0.17									

Page 1 of 5

East White Lake Field Vermilion Parish, Louisiana

		Y47 77 4	3.0017	1 100	3.6047	3.0047	100	1 2007	3.00	3.6047	100	TVD.	· · ·	1110	IID		· · ·	I IID	I m		TVD.	TID.	IID	· · ·		T
		Well type	MW	MW	MW	MW	MW	MW	MW	MW	MW	HP	HP	HP	HP	HP	HP	HP	HP	HP	HP	HP	HP	HP	HP	HP
																									1	
	Same	Sample ID	SB-2-MW-S	SB-2 (42-52)	SB-2	SB-2 (42-52)	SB-3-MW-S	SB-3 (37-47)	SB-3	SB-3-MW-SD (37-47)	SB-3 (37-47)	MW-6S	MW-6S (47-50)	MW-6S	MW-6S (47-50)	HP-MPA-01-T	HP-MPA-01- (42-45')	T HP-MPA-01-T	HP-MPA-01-T (42-45')	HP-MPA-02-T	HP-MPA-02-7 (42-45')	T HP-MPA-02-T	HP-MPA-02-T (42-45')	HP-MPA-03-	T HP-MPA-03-T (42-45')	HP-MPA-03-T
	зитр	Sample Date		5/11/2010		5/11/2010		5/12/2010		5/12/2010	5/12/2010		5/12/2010		5/12/2010		9/29/2010		9/29/2010		9/29/2010		9/29/2010		10/4/2010	
		Sampled By	MPA	ICON	AVG	AVG	MPA	ICON	AVG	MPA dup	AVG or dup	MPA	ICON	AVG	AVG	ICON	MPA	AVG	AVG	ICON	MPA	AVG	AVG	ICON	MPA	AVG
Parameter	Units	GW SS				REPRESENT				<u> </u>	REPRESENT				REPRESENT				REPRESENT				REPRESENT		 _	
Dissolved Metals Arsenic	ma/I	0.01	0.00086 B	0.01	U 0.00543	0.00542	0.01	11 0.01 11	0.01	0.01	0.01	0.0016 P	0.01	0.0058	0.0058	0.014	0.01	11 0.012	0.012		0.01	II 0.01 II	0.01	0.014	0.01 U	0.012
Barium	mg/L mg/L	0.01	1.34	0.01	0.853	0.00543 0.853	0.01 U	U 0.01 U 4.83	0.01 U 5.5	0.01 U	0.01 U	0.0016 B 0.99	0.01 U 0.702	0.846	0.846	0.014 1.4	0.01 1.45	U 0.012 1.43	0.012 1.43	-	0.01	U 0.01 U 0.31	0.01 U 0.31	0.014 0.59	0.01 U 0.69	0.012 0.64
Cadmium	mg/L	0.005		0.005	U 0.005 U	J 0.005 U		0.005 U	0.005 U		0.005 U		0.005 U	0.005 U	0.005 U	0.005 U	0.005	U 0.005 U	0.005 U	-	0.005	U 0.005 U	0.005 U	0.005	U 0.005 U	0.005 U
Calcium	mg/L		187		187	187	834		834	831	834	95.7		95.7	95.7	200	233	217	217	-	65.8	65.8	65.8	110	131	121
Chromium Iron	mg/L mg/L	0.1	5.77	0.01	U 0.01 U 5.77	J 0.01 U	14	0.01 U	0.01 U	13.9	0.01 U	7.75	0.01 U	7.75 U	0.01 U	0.01 U	0.01 9.69	U 0.01 U 9.69	0.01 U	-	0.01 0.57	U 0.01 U 0.57	0.01 U	0.01	U 0.01 U 3.27	0.01 U 3.27
Lead	mg/L	0.015	5.77	0.01	U 0.01 U	J 0.01 U		0.01 U	0.01 U		0.01 U		0.01 U	0.01 U	0.01 U	0.01 U	0.015	U 0.0125 U	0.0125 U	-	0.015	U 0.015 U	0.015 U	0.01	U 0.015 U	0.0125 U
Magnesium	mg/L		67.1		67.1	67.1	339		339	333	339	32.2		32.2	32.2	70	79.4	74.7	74.7	-	152	152	152	45	54.7	49.9
Manganese Mercury	mg/L mg/L	0.05 0.002	0.56		0.56	0.56	2.9	0.0002 U	2.9 0.0002 U	2.85	2.9 0.0002 U	0.21	0.0002 U	0.21 0.0002 U	0.21 0.0002 U	0.0002 U	0.53 0.002	0.53 U 0.0011 U	0.53 0.0011 U	-	0.67 0.002	0.67 U 0.002 U	0.67 0.002 U	0.0002	0.37 U 0.002 U	0.37 0.0011 U
Potassium	mg/L		6.15		6.15	6.15	14.2		14.2	13.8	14.2	5.52		5.52	5.52	5 U	5.43	5.22	5.22	-	44.4	44.4	44.4	5.2	5.54	5.37
Selenium	mg/L	0.05	0.04 U	0.02	U 0.03 U	J 0.03 U	0.04 U	U 0.104	0.072	0.04 U	0.072	0.04 U	0.043	0.0415	0.0415	0.043	0.04	U 0.0415	0.0415	-	0.04	U 0.04 U	0.04 U	0.045	0.04 U	0.0425
Sodium Strontium	mg/L mg/L	2.2	544	0.459	544 0.459	544 0.459	2070	6.84	2070 6.84	2080	2080 6.84	424	0.595	424 0.595	424 0.595	410 2	477 1.87	444 1.94	444 1.94	-	1330	1330	1330 1	400 0.82	472 0.92	436 0.87
Zinc	mg/L			0.439	U 0.01 U	J 0.01 U		0.01 U	0.01 U		0.01 U		0.02	0.02	0.02	0.16	0.02	U 0.09	0.09	-	0.039	0.039	0.039	0.11	0.02 U	
Total Metals							•																			
Arsenic Barium	mg/L	0.01	0.0023 B 1.46	0.01 1.23	U 0.00615 1.35	DISS	0.01 U	U	0.01 U 6.57	0.01 U 6.51	DISS DISS	0.0025 B 1.1		0.0025 B 1.1	DISS DISS		0.01 2.04	U 0.01 U 2.04	DISS DISS	0.01 U 0.46	0.01	U 0.01 U 0.445	DISS DISS		0.01 U 1.13	0.01 U
Cadmium	mg/L mg/L	0.005	1.40	0.005	U 0.005 U	J DISS	0.57		6.57	6.51	DISS			1.1	DISS		0.005	U 0.005 U	DISS	0.46 0.005 U	0.45	U 0.005 U	DISS		0.005 U	0.005 U
Calcium	mg/L		200		200	DISS	880		880	860	DISS	97		97	DISS		228	228	DISS	66	70.1	68.1	DISS		145	145
Chromium	mg/L	0.1		0.01	U 0.01 U	J DISS	17.0				DISS	19.7			DISS		0.071	0.071	DISS	0.014	0.01	U 0.012	DISS		0.059	0.059
Iron Lead	mg/L mg/L	0.3	7.92	0.01	7.92 U 0.01 U	J DISS	17.2		17.2	17.4	DISS	19.7		19.7	DISS		29.1 0.016	29.1 0.016	DISS	0.01 U	7.75 0.015	7.75 U 0.0125 U	DISS DISS		16.7 0.015 U	16.7 0.015 U
Magnesium	mg/L		70.3		70.3	DISS	357		357	356	DISS	33		33	DISS		80.1	80.1	DISS	140	158	149	DISS		59	59
Manganese	mg/L	0.05	0.61		0.61	DISS	3.31		3.31	3.28	DISS	0.36		0.36	DISS		0.78	0.78	DISS	11	0.85	0.85	DISS		0.53	0.53
Mercury Potassium	mg/L mg/L	0.002	6,33		6,33	DISS	13.8		13.8	13.7	DISS DISS	6.6		6.6	DISS		7.17	7.17	DISS	0.0002 U 35	46.4	0.0002 U 40.7	DISS		6.48	6.48
Selenium	mg/L	0.05	0.04 U	0.02	U 0.03 U	J DISS	0.04 U	U	0.04 U	0.04 L	DISS	0.04 U		0.04 U	DISS		0.04	U 0.04 U	DISS	0.051	0.04	U 0.0455	DISS		0.04 U	0.04 U
Sodium	mg/L mg/L	2.2	581	1.46	581 1.46	DISS	2240		2240	2250	DISS DISS	429		429	DISS DISS		495 1.87	495 1.87	DISS	1100 0.98	1360	1230 1.02	DISS DISS		525 1.02	525 1.02
Strontium Zinc	mg/L			1.46 0.024	0.024	DISS					DISS				DISS		0.087	0.087	DISS	0.13	0.02	U 0.075	DISS		0.14	0.14
BTEX																										
Benzene Ethylbenzene	mg/L	0.005	0.005 U	0.005	U 0.005 U	J 0.005 U	0.005 U	U 0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005	U 0.005 U	0.005 U	0.005 U	0.005	U 0.005 U	0.005 U	0.005	U 0.005 U	0.000
Toluene	mg/L mg/L	0.7	0.005 U 0.005 U	0.005	U 0.005 U U 0.0075 U	J 0.005 U J 0.0075 U	0.005 U	U 0.005 U U 0.01 U	0.005 U 0.0075 U	0.005 U	0.005 U 0.0075 U	0.005 U	0.005 U 0.01 U	0.005 U 0.0075 U	0.005 U 0.0075 U	0.005 U 0.01 U	0.005	U 0.005 U 0.00805	0.005 U 0.00805	0.005 U 0.01 U	0.005	U 0.005 U 0.00882	0.005 U 0.00882	0.005 0.01	U 0.005 U U 0.005 U	0.005 U 0.0075 U
Xylene (total)	mg/L	10	0.01 U	0.05	U 0.03 U	J 0.03 U	0.01 U	U 0.05 U	0.03 U	0.01 U	0.03 U	0.01 U	0.05 U	0.03 U	0.03 U	0.05 U	0.01	U 0.03 U	0.03 U	0.05 U	0.01	U 0.03 U	0.03 U	0.05	U 0.01 U	0.03 U
TPH Mixtures	/1	0.15		0.15	TT 0.15 T	I FDAC		0.15	0.15	<u> </u>	FDAG		0.15	0.15	FDAG	0.15		0.15	FDAG	0.15		0.15	FDAG	0.15	**	0.15
TPH-Gasoline Range TPH-Diesel Range	mg/L mg/L		-	0.15 0.134	U 0.15 U U 0.134 U	J FRAC J FRAC		0.15 U 0.134 U	0.15 U 0.134 U		FRAC FRAC		0.15 U 0.136 U	0.15 0.136	FRAC FRAC	0.15 U 0.15		0.15 U 0.15	FRAC FRAC	0.15 U 0.13 U		0.15 U 0.13 U	FRAC FRAC	0.15 0.17	J	0.15 U 0.17
TPH-Oil Range	mg/L			0.124	U 0.124 U	J FRAC		0.124 U	0.124 U		FRAC		0.126 U	0.126	FRAC	0.12		0.12	FRAC	0.12 U		0.12 U	FRAC	0.15	<u> </u>	0.15
TPH Fractions	(x)	0.45	0.45		0.45	1 045	0.45		0.45	0.45	0.45	0.45		0.45	0.15		0.15	11 045	0.45		0.45		0.45		1045	0.45
Aliphatic >C10-C12 Aliphatic >C12-C16	mg/L mg/L	0.15 0.15	0.15 U 0.15 U		0.15 U	J 0.15 U J 0.15 U	0.15 U	U U	0.15 U 0.15 U	0.15 U	0.15 U 0.15 U	0.15 U 0.15 U		0.15 U 0.15 U	0.15 U 0.15 U	-	0.15 0.15	U 0.15 U 0.15 U	0.15 U 0.15 U	-	0.15 0.15	U 0.15 U 0.15 U	0.15 U 0.15 U	-	0.15 U 0.15 U	
Aliphatic >C16-C35	mg/L		0.15 U		0.15 U	U 0.15 U	0.15 U	U	0.15 U	0.15 U	0.15 U	0.15 U		0.15 U	0.15 U	-	0.15	U 0.15 U	0.15 U	-	0.15	U 0.15 U	0.15 U		0.15 U	
Aliphatic >C8-C10	mg/L	0.15	0.15 U		0.15 U	J 0.15 U	0.15 U	U	0.15 U	0.15 U	0.15 U	0.15 U		0.15 U	0.15 U	-	0.15	U 0.15 U	0.15 U	-	0.15	U 0.15 U	0.15 U	-	0.15 U	0.15 U
Aliphatic C6-C8 Aromatic >C10-C12	mg/L mg/L	3.2 0.15	0.15 U 0.15 U		0.15 U	J 0.15 U J 0.15 U	0.15 U	U	0.15 U 0.15 U	0.15 U	0.15 U 0.15 U	0.15 U 0.15 U		0.15 U 0.15 U	0.15 U 0.15 U	-	0.15 0.15	U 0.15 U 0.15 U	0.15 U 0.15 U	-	0.15 0.15	U 0.15 U 0.15 U	0.15 U 0.15 U	-	0.15 U 0.15 U	0.15 U 0.15 U
Aromatic >C12-C16	mg/L	0.15	0.15 U		0.15 U	J 0.15 U	0.15 U	U	0.15 U	0.15 U	0.15 U	0.15 U		0.15 U	0.15 U	-	0.15	U 0.15 U	0.15 U	-	0.15	U 0.15 U	0.15 U	-	0.15 U	
Aromatic >C16-C21	mg/L		0.15 U		0.15 U	J 0.15 U	0.15 U	U	0.15 U	0.15 L	0.15 U	0.15 U		0.15 U	0.15 U	-	0.15	U 0.15 U	0.15 U	-	0.15	U 0.15 U	0.15 U	-	0.15 U	0.15 U
		0.15 0.15	0.15 U 0.15 U		0.15 U		0.15 U		0.15 U 0.15 U		0.15 U 0.15 U	0.15 U			0.15 U 0.15 U			U 0.15 U 0.15 U		-	0.15	U 0.15 U 0.15 U	0.15 U		0.15 U 0.15 U	
Other		5.15	0.10		0.10	0.20	0.10	-	0.10	5.25	0.25	0.10		0.10	0.10		0.10	5.15	0.10		0.10	- 0.20	0.10		1 0.10	0.10
Sulfate	mg/L		10.6		10.6		2.4 I	В	2.4 B		2.4 B			5 U		-		U 5 U		-	53.9		53.9	-	5 U	
Bicarbonate Alkalinity Carbonate Alkalinity	mg/L CaCO3 mg/L CaCO3				451 U 5.5 U		395 1 U		389 5.5 U	385	389 J 5.5 U		360 10 U		417	570 10 U	0.0	630		200 10 U	224		212		384 U 1 U	382 5.5 U
Total Dissolved Solids	mg/L CaCO3			5100	3820	3820	12200		12500	1 L 12000	12500	1590		1520		2500	2110	U 5.5 U 2310	2310	4800	1 4060	U 5.5 U 4430	5.5 U 4430	1900	1820	1860
Chloride	mg/L		1220	1060	1140	1140	7270	6180	6730		6730	772	746	759	759	990	928	959	959	2600	2130	2370	2370	850	801	826
Field Turbidity	NTU			1	45.8			188.6	189		189	624.7		625		191	212	202	202	32.4	77	54.7	54.7	170	331	251
Field EC Field pH	uS SU															-	-			-	-			-	-	
rieiu pri	50		1							<u> </u>									<u> </u>	-	-					

Page 2 of 5

East White Lake Field Vermilion Parish, Louisiana

	11	147-11 4	HP	IID	IID	HP	НР	НР	HP	HP	HP	IID	III	HP	HP	IID	TID	HP	HP	IID	rm	HP	HP
		Well type	HP	HP	HP	пР	HP	HP	HP	пР	пР	HP	HP	пР	nr	HP	HP	HP	nr	HP	HP	пР	нг
																							1
		Sample ID	HP-MPA-03-T	HP-MPA-04-T	HP-MPA-04-T	HP-MPA-04-T	HP-MPA-04-T	HP-MPA-05-T		HP-MPA-05-T		HP-MPA-06-	-T HP-MPA-06-T	HP-MPA-06-T		HP-MPA-07-1		HP-MPA-07-T		HP-MPA-08-T	HP-MPA-08-T	HP-MPA-08-T	HP-MPA-08-T
	Samp	ole Interval (ft) Sample Date	(42-45') 9/30/2010		(42-45') 9/30/2010		(42-45') 9/30/2010		(42-45') 9/30/2010		(42-45') 9/30/2010		(42-45') 9/30/2010		(42-45') 9/30/2010		(42-45') 10/1/2010		(42-45') 10/1/2010		(42-45') 10/1/2010		(42-45') 10/1/2010
		Sampled By	AVG	ICON	MPA	AVG	AVG	ICON	MPA	AVG	AVG	ICON	MPA	AVG	AVG	ICON	MPA	AVG	AVG	ICON	MPA	AVG	AVG
Parameter	Units	GW SS	REPRESENT				REPRESENT				REPRESENT				REPRESENT				REPRESENT				REPRESENT
Dissolved Metals	s																						
Arsenic	mg/L	0.01	0.012	0.01 U	0.01 U	J 0.01 U	0.01 U	-	0.01 L	J 0.01 U	J 0.01 U	0.01	U 0.01 U	0.01	U 0.01 U	0.014	0.01 U	J 0.012	0.012	-	0.01 U	U 0.01 U	0.01 U
Barium	mg/L	2	0.64	0.67	0.84	0.755	0.755	-	0.52	0.52	0.52	0.72	0.86	0.79	0.79	0.47	0.49	0.48	0.48	-	2.17	2.17	2.17
Cadmium Calcium	mg/L mg/L		0.005 U 121	0.005 U 130	0.005 U	J 0.005 U	0.005 U 150	-	0.005 L 119	0.005 U	0.005 U 119	0.005 160	U 0.005 U 206	0.005 1 183	U 0.005 U 183	0.005 I	J 0.005 U	J 0.005 L 97.5	J 0.005 U 97.5	-	0.005 U	U 0.005 U 238	0.005 U 238
Chromium	mg/L		0.01 U	0.01 U	0.01 U	J 0.01 U	0.01 U	-	0.01 L	J 0.01 U	J 0.01 U	0.01	U 0.01 U	0.01	U 0.01 U	0.01	J 0.01 U	J 0.01 U	J 0.01 U	-	0.01 U	U 0.01 U	0.01 U
Iron	mg/L		3.27	-	4.5	4.5	4.5	-	1.98	1.98	1.98	-	1.93	1.93	1.93	-	2.6	2.6	2.6	-	5.25	5.25	5.25
Lead	mg/L		0.0125 U	0.01 U	0.015 U	J 0.0125 U	0.0125 U	-	0.015 L	J 0.015 L	0.015 U	0.01	U 0.015 U	0.0125	U 0.0125 U	0.01	J 0.015 U	J 0.0125 L	J 0.0125 U	-	0.015 U	U 0.015 U	0.015 U
Magnesium Manganese	mg/L mg/L	0.05	49.9 0.37	47 -	62.6 0.5	54.8 0.5	54.8 0.5	-	59.8 0.5	59.8 0.5	59.8 0.5	59 -	77.8 0.52	68.4 0.52	68.4 0.52	44	50.4 0.4	47.2 0.4	47.2 0.4	-	104 0.49	104 0.49	0.49
Mercury	mg/L		0.0011 U	0.0002 U	0.002 U	J 0.0011 U	0.0011 U	-	0.002 L	J 0.002 L	U 0.002 U	0.0002	U 0.002 U	0.0011	U 0.0011 U	0.0002	J 0.002 U	J 0.0011 L	J 0.0011 U	-	0.49 0.002 U	U 0.002 U	0.002 U
Potassium	mg/L		5.37	5.1	6.01	5.56	5.56	-	7.55	7.55	7.55	5	U 5.53	5.27	5.27	5 1	J 4.11	4.56	4.56	-	12.9	12.9	12.9
Selenium	mg/L		0.0425	0.034	0.04 U	J 0.037	0.037	-	0.04 L	J 0.04 U	U 0.04 U	0.061	0.04 U	0.0505	0.0505	0.035	0.04 U	J 0.0375	0.0375	-	0.04 U	U 0.0400 U	0.04 U
Sodium Strontium	mg/L mg/L		436 0.87	350 1	451 1.24	401 1.12	401 1.12	-	479 0.9	479 0.9	479 0.9	330 1.1	463 1.37	397 1.24	397 1.24	450 0.74	491 0.78	471 0.76	471 0.76	-	1730 2.21	1730 2.21	1730 2.21
Zinc	mg/L		0.065	0.1	0.02 U		0.06	-	0.02 L	J 0.02 U		0.082	0.02 U	0.051	0.051	0.092	0.02 U	J 0.056	0.056	-	0.02 U	U 0.02 U	0.02 U
Total Metals																	<u> </u>	<u> </u>					
Arsenic	mg/L		DISS		0.01	0.01 U	DISS	0.032	0.01 L	J 0.021	DISS		0.01 U	0.01	U DISS		0.01 U	J 0.01 L	J DISS	0.019	0.01 U	U 0.0145	DISS
Barium Cadmium	mg/L		DISS		1.3 0.005 U	1.3 J 0.005 U	DISS	0.59 0.005 U	0.51 J 0.005 L	0.55 J 0.005 L	DISS J DISS		1.21 0.005 U	0.005	DISS U DISS		0.61 0.005 U	0.61 J 0.005 L	DISS J DISS	1.4 0.005 U	2.04 0.005 U	1.72 U 0.005 U	DISS DISS
Cadmium	mg/L mg/L		DISS		198	198	DISS	97	113	105	DISS		202	202	DISS		107	107	DISS	150	223	187	DISS
Chromium	mg/L		DISS		0.074	0.074	DISS	0.014	0.01 L	J 0.012	DISS		0.014	0.014	DISS		0.029	0.029	DISS	0.01	0.01 U	U 0.01	DISS
Iron	mg/L		DISS		27.4	27.4	DISS	-	2.6	2.6	DISS		6.88	6.88	DISS		11.1	11.1	DISS	-	7.19	7.19	DISS
Lead	mg/L	0.015	DISS		0.027	0.027 U	DISS	0.01 U	J 0.015 L	0.0125 U	DISS		0.015 U	0.015	U DISS		0.015 U	J 0.015 L	J DISS	0.01 U	0.015 U	U 0.0125 U	DISS
Magnesium Manganese	mg/L mg/L	0.05	DISS DISS		65.1 0.86	65.1 0.86	DISS	50	56.8 0.49	53.4 0.49	DISS		74.1	74.1 0.6	DISS DISS		51.8 0.5	51.8 0.5	DISS	80	97.7 0.47	88.9 0.47	DISS DISS
Mercury	mg/L		DISS				DISS	0.0002 L	J	0.0002 L	J DISS				DISS				DISS	0.0002 U		0.0002 U	DISS
Potassium	mg/L		DISS		7.57	7.57	DISS	7.1	7.53	7.32	DISS		5.84	5.84	DISS		5.19	5.19	DISS	14	12	13	DISS
Selenium	mg/L		DISS		0.04 U	J 0.04 U	DISS	0.035	0.04 L	0.0375	DISS		0.04 U	0.04	U DISS		0.04 U	J 0.04 L	J DISS	0.041	0.04 U	U 0.0405 U	DISS
Sodium Strontium	mg/L mg/L		DISS DISS		482 1.35	482 1.35	DISS	390 0.82	508 0.9	0.86	DISS		457 1.37	457 1.37	DISS		495 0.82	495 0.82	DISS	570 1.5	1700 2.07	1140 1.79	DISS
Zinc	mg/L		DISS		0.091	0.091	DISS	0.073	0.02 L	J 0.0465	DISS		0.02 U	0.02	U DISS		0.053	0.053	DISS	0.054	0.02 U	U 0.037	DISS
BTEX	X																						
Benzene	mg/L		0.005 U	0.005 U	0.005 U	J 0.005 U	0.005 U	0.005 U	J 0.005 L	J 0.005 L	U 0.005 U	0.005	U 0.005 U	0.005	U 0.005 U	0.005	J 0.005 U	J 0.005 L	J 0.005 U	0.005 U	0.005 U	U 0.005 U	0.005 U
Ethylbenzene Toluene	mg/L	0.7	0.005 U	0.005 U	0.005 U	J 0.005 U J 0.0075 U	0.005 U 0.0075 U	0.005 U	J 0.005 L	J 0.005 L	U 0.005 U	0.005	U 0.005 U U 0.005 U	0.005	U 0.005 U U 0.0075 U	0.005	J 0.005 U	J 0.005 L J 0.0075 L	J 0.005 U J 0.0075 U	0.005 U	0.005 U	U 0.005 U 0.00789	0.005 U 0.00789
Xylene (total)	mg/L mg/L	10	0.0075 U 0.03 U	0.01 U 0.05 U	0.005 U	J 0.0075 U	0.0075 U	0.01 U	J 0.005 L J 0.01 L	J 0.0075 L J 0.03 L	U 0.0075 U 0.03 U	0.01	U 0.005 U	0.0075	U 0.0075 U	0.01 U	J 0.005 U	J 0.0075 L	J 0.0075 U	0.01 U 0.05 U	0.00577 0.01 U	U 0.00789 U 0.03 U	0.00789 0.03 U
TPH Mixtures	s																						
TPH-Gasoline Range	mg/L	0.15	FRAC	0.15 U		0.15 U	FRAC	0.15 U	J	0.15 U	FRAC	0.15	U	0.15	U FRAC	0.15	J	0.15 U	J FRAC	0.15 U		0.15 U	FRAC
TPH-Diesel Range	mg/L	0.15	FRAC	0.13 U		0.13 U	FRAC	0.13 U	J	0.13 U	FRAC	0.13	U	0.13	U FRAC	0.13	J	0.13 U	J FRAC	0.13 U		0.13 U	FRAC
TPH-Oil Range TPH Fractions	mg/L	0.15	FRAC	0.12 U		0.12 U	FRAC	0.12 U		0.12 U	FRAC	0.12	U	0.12	U FRAC	0.12	J	0.12 U	J FRAC	0.12 U		0.12 U	FRAC
Aliphatic >C10-C12	mg/L	0.15	0.15 U	-	0.15 U	J 0.15 U	0.15 U	-	0.15 L	J 0.15 U	0.15 U	-	0.15 U	0.15	U 0.15 U	-	0.15 U	J 0.15 U	J 0.15 U	-	0.15 U	U 0.15 U	0.15 U
Aliphatic >C12-C16	mg/L	0.15	0.15 U	-	0.15 U	J 0.15 U	0.15 U	-	0.15 L	J 0.15 U	0.15 U	-	0.15 U	0.15	U 0.15 U	-	0.15 U	J 0.15 U	J 0.15 U	-	0.15 U	U 0.15 U	0.15 U
Aliphatic >C16-C35	mg/L	7.3	0.15 U	-	0.15 U	J 0.15 U	0.15 U	-	0.15 L	J 0.15 U	0.15 U	-	0.15 U	0.15	U 0.15 U	-	0.15 U	J 0.15 U	J 0.15 U	-	0.15 U	U 0.15 U	0.15 U
Aliphatic >C8-C10 Aliphatic C6-C8	mg/L mg/L		0.15 U 0.15 U	-	0.15 U	J 0.15 U J 0.15 U	0.15 U 0.15 U	-	0.15 U	U 0.15 U	0.15 U	-	0.15 U 0.15 U	0.15 U	U 0.15 U 0.15 U	-	0.15 U	J 0.15 U	J 0.15 U J 0.15 U	-	0.15 U	U 0.15 U 0.15 U	0.15 U 0.15 U
Aromatic >C10-C12	mg/L mg/L	0.15	0.15 U	-	0.15 U	J 0.15 U	0.15 U	-	0.15 L	J 0.15 U	0.15 U	-	0.15 U	0.15	U 0.15 U		0.15 U	J 0.15 U	J 0.15 U	-	0.15 U	U 0.15 U	0.15 U
Aromatic >C12-C16	mg/L	0.15	0.15 U		0.15 U	J 0.15 U	0.15 U		0.15 L	U 0.15 U	0.15 U	-	0.15 U	0.15 I	U 0.15 U		0.15 U	J 0.15 U	J 0.15 U		0.15 U	U 0.15 U	0.15 U
Aromatic >C16-C21	mg/L		0.15 U	-	0.15 U	J 0.15 U	0.15 U	-	0.15 L	J 0.15 U	0.15 U	-	0.15 U	0.15	U 0.15 U	-	0.15 U	J 0.15 U	J 0.15 U	-	0.15 U	U 0.15 U	0.15 U
Aromatic >C21-C35 Aromatic >C8-C10	mg/L	0.15 0.15	0.15 U	-	0.15 U		0.15 U 0.15 U	-	0.15 L 0.15 L	0.15 U		-	0.15 U 0.15 U		U 0.15 U U 0.15 U	-	0.15 U	J 0.15 U		-	0.15 U		0.15 U
Aromatic >C8-C10 Other		0.15	0.15 U	-	0.15	J 0.15 U	0.15	-	0.15	0.15 U	0.15	-	0.15 U	0.15	0.15	-	0.15	J 0.15 U	0.15	-	0.15	U.15 U	0.15 U
Sulfate	mg/L		5 U	-	5 t	J 5 U	5 U	-	21.7	21.7	21.7	-	16.4	16.4	16.4	-	5 t	J 5 L	J 5 U	-	10.1	10.1	10.1
Bicarbonate Alkalinity	mg/L CaCO3		382	460	447	454	454	360		353	353	320	330	325	325		410	430	430	420	603	512	512
Carbonate Alkalinity	mg/L CaCO3		5.5 U	10 U	1 U		5.5 U	10 U		J 5.5 U	0.0	10	U 1 U	5.5	U 5.5 U	10 1	J 1 U	0.0	0.0	10 U	1 U	U 5.5 U	5.5 U
Total Dissolved Solids Chloride	mg/L mg/L		1860 826	2200 920	1660 817	1930 869	1930 869	2000 890	1680 831	1840 861	1840 861	2700 1100	1920 957	2310 1030	2310 1030	1800 834	1570 808	1690 821	1690 821	3300 1500	3090 1520	3200 1510	3200 1510
Field Turbidity	NTU		251	796	470	633	633	1748	27	888	888	275	313	294	294	226	390	308	308	27.5	28	27.8	27.8
Field EC	uS			-	-			-	-														
Field pH	SU			-	-			-	-														
																	-					-	

Page 3 of 5

East White Lake Field Vermilion Parish, Louisiana

	1	TAT 11 4	IID.		T IID	IID	TID.	IID	III	IID	YAZYAZ	TATTAL	747747		747747	WW	X47747	Y47Y47	TAZTAZ	XA/XA/
-		Well type	HP	HP	HP	HP	HP	HP	HP	HP	WW	WW Purvis	WW Purvis	WW	WW	WW	ww	WW	WW	ww
												Hebert Well	Hebert Well	Purvis Hebert	Purvis Heber	t Purvis Hebert	A. Crouch Well	A. Crouch Well	A. Crouch Well	A. Crouch Well
		Sample ID	HP-MPA-09-T		HP-MPA-09-T		HP-MPA-10-		T HP-MPA-10-T			(in use)	(in use)	Well (in use)	Well (in use)		(abandoned)	(abandoned)	(abandoned)	(abandoned)
		e Interval (ft) Sample Date		(42-45') 10/1/2010		(42-45') 10/1/2010		(42-45') 10/1/2010		(42-45') 10/1/2010	-	(est. 41ft) 9/1/10		(est. 41ft) 9/1/10	(est. 41 ft) 4/21/2014	(est. 41 ft) 4/21/2014	1	(est. 34ft) 9/1/10		(est. 34ft) 9/1/10
		Sampled By	ICON	MPA	AVG	AVG	ICON	MPA	AVG	AVG	ICON	MPA	AVG	ICON Dup	MPA	most recent	ICON	MPA	AVG	AVG
Parameter	Units	GW SS				REPRESENT				REPRESENT			i			REPRESENT				REPRESENT
Dissolved Metals																				
Arsenic	mg/L	0.01	-	0.01 U	U 0.01 I	U 0.01 U	0.019	0.01	U 0.0145	0.0145					0.01	U 0.01 U				
Barium Cadmium	mg/L mg/L	0.005	-	1.62 0.005 U	1.62 U 0.005	1.62 U 0.005 U	0.88	1.02 U 0.005	0.95 U 0.005 U	0.95 0.005 U	J				0.24	U 0.005 U				
Calcium	mg/L		-	178	178	178	120	146	133	133										
Chromium	mg/L	0.1	-	0.01 U	U 0.01 I	U 0.01 U			U 0.01 U	0.01 U	J			-	0.01	U 0.01 U		-		
Iron Lead	mg/L mg/L	0.3 0.015	-	3.57 0.015 U	3.57 U 0.015	3.57 U 0.015 U	0.01	2.11 U 0.015	2.11 U 0.0125 U	2.11 0.0125 U	J				10.9 0.015	10.9 U 0.015 U				
Magnesium	mg/L	0.013	-	112	112	112	42	52.7	47.4	47.4					0.013					
Manganese	mg/L	0.05	-	0.76	0.76	0.76	-	0.31	0.31	0.31					1.69	1.69				
Mercury	mg/L	0.002	-	0.002 U	U 0.002 I	U 0.002 U		U 0.002	U 0.0011 U	0.0011 U	J				0.0002	U 0.0002 U				
Potassium Selenium	mg/L mg/L	0.05	-	18.6 0.04 U	18.6 U 0.0400 I	18.6 U 0.04 U	5 0.032	U 5.35 0.04	5.18 U 0.0360	5.18 0.036										
Sodium	mg/L		-	1140	1140	1140	380	485	433	433										
Strontium	mg/L	2.2	-	2.68	2.68	2.68	1.1	1.24	1.17	1.17					0.47	0.47				
Zinc Total Metals	mg/L	1.1	-	0.02 U	U 0.02 I	U 0.02 U	0.072	0.02	U 0.046	0.046					0.062	0.062				
Arsenic	mg/L	0.01	0.019	0.01 U	U 0.0145	DISS		0.032	0.032	DISS	0.01	U 0.01	U 0.01 U	J 0.01 U	U 0.01	U 0.01 U	0.01 L	J 0.01 U	J 0.01 U	0.01 U
Barium	mg/L	2	0.66	1.59	1.13	DISS		1.42	1.42	DISS	0.25	0.28	0.265	0.258	0.22	0.22	0.517	0.61	0.564	0.564
Cadmium	mg/L	0.005	0.005 U	U 0.005 U	U 0.005 1	U DISS		0.005	U 0.005 U	DISS	0.005	U 0.005	U 0.005 U	U 0.005 L	U 0.005	U 0.005 U	0.005 L	J 0.005 U	J 0.005 U	0.005 U
Calcium Chromium	mg/L mg/L	0.1	70 0.01 U	170 U 0.01 U	120 U 0.01	DISS U DISS		185 0.081	185 0.081	DISS	0.01	88.6 U 0.01	88.6 U 0.01 U	 U 0.01 U	61.5 U 0.01	61.5 U 0.01 U	0.01 U	160 J 0.01 U	160 J 0.01 U	160 0.01 U
Iron	mg/L	0.3	-	5.92	5.92	DISS		34.7	34.7	DISS		13.5	13.5		10.5	10.5		68.9	68.9	68.9
Lead	mg/L	0.015	0.01 U	0.000	U 0.0125 I	U DISS		0.032	0.032	DISS	0.01	U 0.015	U 0.0125 U	J 0.01 L	U 0.015	U 0.015 U	0.01	0.015 U	J 0.0125	0.0125
Magnesium Manganese	mg/L mg/L	0.05	88	106 0.76	97 0.76	DISS DISS		59.7 0.92	59.7 0.92	DISS		56.3 2.42	56.3 2.42		41.9 1.57	41.9 1.57		94.5 4.3	94.5 4.3	94.5 4.3
Mercury	mg/L	0.002	0.0002 U	U	0.0002	U DISS				DISS		0.0002	U 0.0002 U	J	0.0002	U 0.0002 U		0.0002 U	J 0.0002 U	0.0002 U
Potassium	mg/L		21	18.2	19.6	DISS		8.17	8.17	DISS		7.89	7.89		6.09	6.09		14.5	14.5	14.5
Selenium Sodium	mg/L mg/L	0.05	0.061 810	0.04 U	U 0.0505 1110	DISS		0.04 472	U 0.04 U 472	DISS	0.02	U 0.04 389	U 0.03 U	U 0.02 U	U 309	0.03 U 309	0.02 L	0.04 U	J 0.03 U	0.03 U
Strontium	mg/L	2.2	1.2	2.57	1.89	DISS		1.35	1.35	DISS	0.55	0.66	0.605	0.568	0.47	0.47	1.2	1.38	1.29	1.29
Zinc	mg/L	1.1	0.1	0.02 U	U 0.06	DISS		0.12	0.12	DISS	0.042	0.035	0.0385	0.042	0.053	0.053	0.116	0.11	0.113	0.113
BTEX					1					<u> </u>										
Benzene Ethylbenzene	mg/L mg/L	0.005	0.005 U		0.00504 U 0.005	0.00504 U 0.005 U		U 0.005 U 0.005	U 0.005 U U 0.005 U	0.005 U 0.005 U	J 0.005 J 0.005	U 0.005 U 0.005	U 0.005 U U 0.005 U	U 0.005 L U 0.005 L	U 0.005 U 0.005	U 0.005 U U 0.005 U	0.005 L 0.005 L	J 0.005 U	J 0.005 U J 0.005 U	0.005 U 0.005 U
Toluene	mg/L	1	0.005 U		0.00823	0.00823	0.01	U 0.005	U 0.0075 U	0.005 U	J 0.01	U 0.005	U 0.0075 U	J 0.01 L	U 0.005	U 0.005 U	0.003 C	J 0.005 U	J 0.0075 U	0.0075 U
Xylene (total)	mg/L	10	0.05 U	U 0.01 U	U 0.03 I	U 0.03 U	0.05	U 0.01	U 0.03 U	0.03 U	J 0.05	U 0.01	U 0.03 U	U 0.05 L	U 0.01	U 0.01 U	0.05 L	J 0.01 U	J 0.03 U	0.03 U
TPH Mixtures	1 1				<u> </u>			**					 	 		777.4				777.4.0
TPH-Gasoline Range TPH-Diesel Range	mg/L mg/L	0.15 0.15	0.15 U 0.14 U		0.15 U	U FRAC U FRAC	0.15 0.13	U U	0.15 U 0.13 U	FRAC FRAC	0.15 0.136	U U	0.15 U 0.136 U	J 0.15 L J 0.135 L	U U	FRAC FRAC	0.15 U 0.14 U	J J	0.15 U 0.14 U	FRAC FRAC
TPH-Oil Range	mg/L	0.15	0.14 U		0.14 U	U FRAC	0.13	U	0.13 U	FRAC	0.126	U	0.126 U	J 0.125 L	U	FRAC	0.14 U	J	0.14 U	FRAC
TPH Fractions																				
Aliphatic >C10-C12	mg/L	0.15	-	0.15 U	U 0.15 U	U 0.15 U	-	0.15	U 0.15 U	0.15 U	J	0.15	U 0.15 U	J	0.15	U 0.15 U		0.15 U	J 0.15 U	0.15 U
Aliphatic >C12-C16 Aliphatic >C16-C35	mg/L mg/L	0.15 7.3	-	0.15 U	U 0.15 U 0.15	U 0.15 U 0.15 U	-	0.15 0.15	U 0.15 U U 0.15 U	0.15 U 0.15 U	J J	0.15 0.15	U 0.15 U U 0.15 U	J	0.15 0.15	U 0.15 U 0.15 U		0.15 U	J 0.15 U J 0.15 U	0.15 U 0.15 U
Aliphatic >C8-C10	mg/L	0.15	-	0.15 U	U 0.15 I	U 0.15 U	-	0.15	U 0.15 U	0.15 U	J	0.15	U 0.15 U	J	0.15	U 0.15 U		0.15 U	J 0.15 U	0.15 U
Aliphatic C6-C8	mg/L	3.2	-	0.15 U	U 0.15 I	U 0.15 U	-	0.15	U 0.15 U	0.15 U	J	0.15	U 0.15 U	J	0.15	U 0.15 U		0.15 U	J 0.15 U	0.15 U
Aromatic >C10-C12 Aromatic >C12-C16	mg/L mg/L	0.15 0.15	-	0.15 U	U 0.15 U U 0.15 U	U 0.15 U 0.15 U	-	0.15 0.15	U 0.15 U U 0.15 U	0.15 U 0.15 U	J J	0.15 0.15	U 0.15 U U 0.15 U	J	0.15 0.15	U 0.15 U 0.15 U		0.15 U	J 0.15 U J 0.15 U	0.15 U 0.15 U
Aromatic >C16-C21	mg/L	0.15	-	0.15 U	U 0.15 U	U 0.15 U	-	0.15	U 0.15 U	0.15 U	,	0.15	U 0.15 U	J	0.15	U 0.15 U		0.15 U	J 0.15 U	0.15 U
Aromatic >C21-C35	mg/L	0.15	-	0.15 U	U 0.15 U	U 0.15 U	-	0.15	U 0.15 U	0.15 U	J	0.15	U 0.15 U	J	0.15	U 0.15 U		0.15 U	J 0.15 U	0.15 U
Aromatic >C8-C10 Other	mg/L	0.15	-	0.15 U	U 0.15 I	U 0.15 U	-	0.15	U 0.15 U	0.15 U	J	0.15	U 0.15 U	J	0.15	U 0.15 U		0.15 U	J 0.15 U	0.15 U
Sulfate	mg/L		-	69.1	69.1	69.1	_	5	U 5 U	5 U	J	90	90			90		176	176	176
Bicarbonate Alkalinity	mg/L CaCO3		230	270	250	250	460	426	443	443		225	225		177	177		120	120	120
Carbonate Alkalinity	mg/L CaCO3		10 U		U 5.5 I	U 5.5 U			U 5.5 U	5.5 U	J	1	U 1 U	J	<u> </u>	U 1 U		1 U	J 1 U	1 U
Total Dissolved Solids Chloride	mg/L mg/L		4400 2200	4520 2350	4460 2280	4460 2280	1900 820	1680 850	1790 835	1790 835	1800 824	1780 851	1790 838	1720 852	1240 555	1240 555	3400 1630	3240 1570	3320 1600	3320 1600
Field Turbidity	NTU		35.8	27	31.4	31.4	1057	>1000	1060	1060							1030	1370		
								 				1 1 1		-	+			1 +		
Field EC	uS								-											

Page 4 of 5

Table E-3

40-Foot Zone Groundwater Data May 2010 Split Groundwater Analytical Results

East White Lake Field Vermilion Parish, Louisiana

Notes:

The following notes apply to ground water data sets provided in Tables E-2 through E-6.

- -- Indicates no standard in the RECAP standard column, or parameter not analyzed in the data section
- U Not detected, value is the detection limit
- B For inorganics, this qualifier indicates the result is between the Reporting Detection Limit (RDL) and Methold Detection Limit (MDL)
- HP Hydropunch sampling technology
- MW Monitoring Well
- WW Water Well

Yellow highlighting indicates a detected concentration exceeds the screening level.

Grey shading indicates the total metals results are not included in the quantitative risk evaluation (see DISS definition).

FRACT - TPH fraction data are available for this location and are utilized in lieu of TPH mixtures.

DISS - Dissolved metals, when available, were used in lieu of total metals for all HP samples and for samples with a turbidity greater than 40 NTU.

GWSS = RECAP Screening Standard from Table 1 of RECAP 2003.

AVG - represents the average of split sample results, calculated as outlined below.

REPRESENT - This column presents the constituent concentrations considered representative for each sample. When more than one sample event is available for a single location, the representative concentrations were determined as the most recent independent concentration available for each constituent. Independent concentrations were identified as the following:

- Single sample results provided by one lab, where no split sample was collected.
- If split samples were collected, the average concentration for each parameter was determined as follows:
 - o Parameters with detected concentrations in both splits: the detected concentrations were averaged.
 - Parameters reported as nondetect in both splits: the detection limits were averaged and the average is considered not detected at the averaged detection limit.
 - Parameters analyzed in only one of the split samples: the result (detection or nondetect) for the parameter was identified in the "average" column for that sample.
 - Parameters that were detected in one split but not detected in the other split: the detection limit was used as a proxy concentration and averaged with the detected concentration.
 - Duplicates were considered independent samples and were not averaged with the parent samples. If a duplicate was split, the split results were averaged as outlined above.

Once the most recent, independent result was identified as outlined above, two other considerations were made:

- If TPH fractions are available, they were utilized as the most representative results. In these instances, the note "FRACT" is inserted for TPH mixture results.
- Dissolved metals, when available, were used in lieu of total metals for all hydropunch (HP) samples and for samples with a turbidity greater than 40 NTU. In these instances, the note "DISS" is inserted for total metals results. Total metals results for these samples are shaded grey to indicate the results are not included in the quantitative risk evaluation.

GWss for strontium is not provided in RECAP; the risk-based values were calculated in accordance with Appendix H of RECAP 2003 (see Appendix G).

GWss for iron and manganese are not provided in RECAP; the EPA Secondary MCLs were used as the GWss for iron and manganese.

The following wells were sampled during more than one sampling event over the investigation history, and the most recent sample results were used in the quantitative assessment to represent current conditions (RECAP Section 2.5):

- SB-1-MW sampled May 7, 2010, June 8, 2010, and April 21, 2014;
- Facility well (also called WW-1 and AWW1) sampled April 3, 1995 (for chlorides only), November 11, 2006, and May 25, 2010; and
- Hebert water well sampled September 1, 2010 and April 21, 2014.

East White Lake Field Vermilion Parish, Louisiana

March Marc																			
							HP	HP	HP									1	
March Marc				MW-6D		MW-6D		MW-4D		MW-4D		MW-5D		MW-5D		SB-1-MW-D		SB-1-MW-I	
Process of Control Manual Control Ma			y ·																
Transport Tran				MDA		AVC		MDA		AVC		MDA		AVC		MDA		AVC	
Company Comp	Parameter	Units		7411 71	ICON	7170		74171	ICON	7170		1411 71	ICOIV	7170	_	1411 71	RON	7170	
Section Sect		1 011110					I I I I I I I I I I I I I I I I I I I		+		ALL ALLOLA (1		+	+ +	REFREGENT				REFREGERI
Column C		mg/L	0.01	0.01	II 0.01	II 0.01	II 0.01 II	0.0012 B	0.01	II 0.0056	0.0056	0.01	0.01 I	I 0.01 I	I 0.01 II	0.01	0.01	0.01	II 0.01 II
Control Cont							0.02												
Procession																	+		
Second Second	Calcium	mg/L		86.1		86.1	86.1	112		112	112	140		140	140	188		188	188
March Marc	Chromium	mg/L	0.1	-	0.01	U 0.01	U 0.01 U		0.01	U 0.01 U	0.01 U		0.01 U	J 0.01 L	J 0.01 U		0.01 U	0.01	U 0.01 U
Suggestion Page P	Iron	mg/L	0.3	4.07		4.07	4.07	5.84		5.84	5.84	5.16		5.16	5.16	9.28		9.28	9.28
Margares Page 10 10 10 10 10 10 10 1	Lead	mg/L	0.015		0.01	U 0.01	U 0.01 U		0.01	U 0.01 U	0.01 U		0.01 U		J 0.01 U		0.01 U	0.01	U 0.01 U
Nerwy Page																			
Palacients																	+ + + + + + + + + + + + + + + + + + + +	1	
Selection			+						1				+						
Section																			
Section Sect									1				+				+	1	
Text Maths																		1	
Table Metals Control		U,																	
Entire Decision		3,																	
Calmisted mg/L 0.003	Arsenic	mg/L	0.01	0.0041	В	0.0041	DISS	0.0047 B		0.0047	DISS	0.0099 B		0.0099	DISS	0.017		0.017	DISS
Chromitism mg/L 894 894 1895 118 118 DES 148 243 DES 244 204 DES DES Chromitism mg/L 0.33 0.33 0.33 0.055 0.33 0.055 0.33 0.055 0.33 0.055 0.33 0.055 0.33 0.055 0.33 0.055 0.33 0.055 0.33 0.055 0.33 0.055 0.035 0.055 0.0	Barium	mg/L	2	1.31		1.31	DISS	0.79		0.79	DISS	1.32		1.32	DISS	2.11		2.11	DISS
Checked Page 1			0.005																
Decompose Control Co				89.4		89.4		118		118	DISS	143		143		204		204	
Lead																			
Magazane									1								1	1	
Margares									-										
Markary Mark	0								-										
Extension mg/L 701 7									1										
Schelam			+						1										
Scitism 100/11 11 12 148 15 148 15 15 15 15 15 15 15 1			0.05																
Part Part	Sodium	mg/L		445		445	DISS	200		200	DISS	442		442	DISS	628		628	DISS
## Personal	Strontium	mg/L	2.2				DISS				DISS				DISS				DISS
Ferror May M		mg/L	1.1				DISS				DISS				DISS				DISS
Effylenements	BTEX																		
Tolerene													0.000						
Syleng (solar)			0.7															1	
TPH Mistures		U,	1																
PFF-Caseline Range	, , ,	mg/L	10	0.01	U 0.05	0.03	0.03	0.01	0.05	0.03	0.03 U	0.01	0.05 C	0.03	0.03	0.01	0.01	0.01	0 0.01 0
TPH-Folk Range		_	-		0.15	11 0.15	II EDAC	-	0.15	II 0.15 II	EDAC		0.15	I 0.15 I	I EDAC		0.15	0.15	II EDAC
Fig. Fig.	U																		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- 0																		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		'			J.122	- 0.122	- 1110		J.121	- 0.121	11		5.125	0.120	11010		0.110	0.110	1110
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Aliphatic >C10-C12	mg/L	0.15	0.15	U	0.15	U 0.15 II	0.15		0.15	0.15	0.15	† <u></u> †	0.15 I	J 0.15 II	0.15		0.15	U 0.15 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1																		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Aliphatic >C16-C35				U				1										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	*		0.15	0.15	U	0.15	U 0.15 U	0.15 U		0.15 U	0.15 U	0.15 U		0.15 U	J 0.15 U	0.15 U		0.15	U 0.15 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	*				U														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									1				1						
Aromatic >C21-C35													+						
Aromatic > C8-C10 mg/L 0.15 0.15 U 0.15 U 0.15												00					+		
Other Sulfate mg/L 37.8 37.8 37.8 5 U 5 U 5		U,											1						
Sulfate mg/L 37.8 37.8 37.8 37.8 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5		nig/ L	0.15	0.15	U	0.15	0.15	0.15		0.15	0.15	0.15		0.15	0.15	0.15		0.15	0.15
Bicarbonate Alkalinity		mg/I	1	37 8	 	27 8	37 8	5 11	.	5 11	5 11	5 11	 _ 	5 1	5 11	5 11	+ +	5	11 5 11
Bicarbonate Alkalinity	Canac																	, J	0 0
Carbonate Alkalinity CaCO3 1 U 10 U 5.5 U 5.5 U 1 U 10 U 5.5 U 5.5 U 1 U 10 U 5.5	Bicarbonate Alkalinity			588	430	509	509	328	288	308	308	364	298	331	331	356	288	322	322
Carbonate Alkalinity CaCO3 1 0 10 0 5.5 0 5.5 0 1 0 10 0 5.5 0				_									40 -		, , ,		10		
Chloride mg/L 598 550 574 574 447 426 437 437 944 923 934 934 1420 1310 1370 1370	Carbonate Alkalinity			1	10	U 5.5	U 5.5 U	1 U	10	U 5.5 U	5.5 U	1 U	10 U	5.5 L	5.5 U	1 U	10 U	5.5	U 5.5 U
						1520		1230	1030	1130	1130	2110			1990	2800	2660		2730
Field Turbidity NTU 548.6 549 549 292 292 292 1286 1290 12					550				426				923			1420			
	Field Turbidity	NTU		548.6		549	549	292		292	292	1286		1290	1290		454.7	455	455

Page 1 of 4 2015\116008\24472MappE.xls

East White Lake Field Vermilion Parish, Louisiana

		Well type HP HP HP						HD HD HD HD HD HD												
						00.7	HP	HP	HP	HP	HP		HP	HP	HP	HP	HP	HP	HP	HP
		Sample ID	HP-MPA-02-	-I HP-MPA-02	-I HP-MPA-	02-I	HP-MPA-02-I	HP-MPA-03-I	1	-I HP-MPA-03-	-I HP-MPA-03-I	Н	IP-MPA-04-I		-I HP-MPA-04-	_	HP-MPA-0	5-I HP-MPA-05	-I HP-MPA-05-	
	Samp	ole Interval (ft)		(72-75')			(72-75')		(72-75')		(72-75')	-		(80-83')		(80-83')		(72-75')		(72-75')
		Sample Date Sampled By	ICON	9/29/2010 MPA	AVG		9/29/2010 AVG	ICON	10/4/2010 MPA	AVG	10/4/2010 AVG	-	ICON	10/4/2010 MPA	AVG	10/4/2010 AVG	ICON	10/6/2010 MPA	AVG	10/6/2010 AVG
Parameter	Units	GW SS	ICON	MITA	AVG		REPRESENT	ICON	WIFA	AVG	REPRESENT	-	ICON	MITA	AVG	REPRESENT	ICON	MITA	AVG	REPRESENT
Dissolved Metals	Citits	1				+	REFREGER				REFREGER	-				REFRESEIVE				REFRESEIVI
Arsenic	mg/L	0.01	0.033	0.01	U 0.0215		0.0215	0.01 U	0.01	U 0.01	U 0.01 L	ī	0.01 U	0.01	U 0.01 I	U 0.01 U	0.0142	0.01	U 0.0121	0.0121
Barium	mg/L	2	0.85	0.99	0.92		0.92	1.48	1.58	1.53	1.53		0.605	0.76	0.683	0.683	0.543	0.59	0.567	0.567
Cadmium	mg/L	0.005		U 0.005	U 0.005	U	0.005 U	0.005 U	0.005		U 0.005 L	J	0.005 U		U 0.005 I	U 0.005 U	0.005	U 0.005	U 0.005	U 0.005 U
Calcium	mg/L		94	123	109		109	160	186	173	173		97	129	113	113	83	107	95	95
Chromium	mg/L	0.1	0.01	U 0.01	U 0.01	U	0.01 U	0.01 U	0.01	U 0.01	U 0.01 L	J	0.0105	0.041	0.0258	0.0258	0.01	U 0.01	U 0.01	U 0.01 U
Iron	mg/L	0.3	-	4.67	4.67		4.67		5.36	5.36	5.36		-	12	12	12	-	3.21	3.21	3.21
Lead	mg/L	0.015	0.01	U 0.015	U 0.0125	U	0.0125 U	0.01 U	0.015	U 0.0125	U 0.0125 L	J	0.01 U	0.015	U 0.0125 I	U 0.0125 U	0.01	U 0.015	U 0.0125	U 0.0125 U
Magnesium	mg/L		37	45.9	41.5		41.5	54	63	58.5	58.5		36	43	39.5	39.5	33	39.1	36.1	36.1
Manganese	mg/L	0.05	-	0.28	0.28		0.28	-	0.37	0.37	0.37		-	0.36	0.36	0.36	-	0.23	0.23	0.23
Mercury	mg/L	0.002	0.000	U -	0.0002	U	0.0002 U	0.0002 U	0.0002	U 0.0002	U 0.0002 L	J	0.0002 U	0.0002	U 0.0002 U	U 0.0002 U	0.0002	U 0.0002	U 0.0002	U 0.0002 U
Potassium	mg/L	 0.0F	-	U 4.76	4.88	\dashv	4.88	5 U	5.72	5.36	5.36	-	5.6	6.7	6.15	6.15	5	U 5.24	5.12	5.12
Selenium	mg/L	0.05	0.034	0.04 352	U 0.037		0.037	0.0891 390	0.04 445	U 0.0646	0.0646	-	0.0699	0.04	U 0.055	0.055	0.0584 330	0.04	U 0.0492 359	0.0492
Sodium Strontium	mg/L mg/L	2.2	270 0.8	0.91	311 0.855	+	311 0.855	1.33	1.42	418 1.38	418 1.38	\blacksquare	380 0.909	449 1.02	415 0.965	415 0.965	0.792	387 0.86	0.826	359 0.826
Zinc	mg/L	1.1	0.0		U 0.06	++	0.06	0.0983	0.03	0.0642	0.0642	┪	0.909	0.081	0.0584	0.965	0.0204	0.02	U 0.0202	0.0202
Total Metals	6/ 2	1.1	0.1	3.02	0.00	+	0.00	0.0700	5.05	0.0012	5.5012	┱	3.0000	5.561	0.0001	0.0301	5.0201	0.02	0.0202	0.0202
Arsenic	mg/L	0.01		0.01	U 0.01	U	DISS		0.01	U 0.01	U DISS			0.01	U 0.01 I	U DISS		0.01	U 0.01	J DISS
Barium	mg/L	2		1.5	1.5		DISS		1.8	1.8	DISS			1.02	1.02	DISS		0.7	0.7	DISS
Cadmium	mg/L	0.005		0.005	U 0.005	U	DISS		0.005	U 0.005	U DISS			0.005	U 0.005 I	U DISS		0.005	U 0.005	U DISS
Calcium	mg/L			124	124		DISS		195	195	DISS			136	136	DISS		102	102	DISS
Chromium	mg/L	0.1		0.045	0.045		DISS		0.063	0.063	DISS			0.18	0.18	DISS		0.031	0.031	DISS
Iron	mg/L	0.3		16.3	16.3		DISS		18.7	18.7	DISS			40.9	40.9	DISS		11.6	11.6	DISS
Lead	mg/L	0.015		0.015	U 0.015	U	DISS		0.015	U 0.015	U DISS	_		0.032	0.032	DISS		0.015	U 0.015	U DISS
Magnesium	mg/L			47.4	47.4		DISS		67.8	67.8	DISS			47.1	47.1	DISS		39.7	39.7	DISS
Manganese	mg/L	0.05		0.49	0.49	+	DISS		0.53	0.53	DISS	4		0.69	0.69	DISS		0.42	0.42	DISS
Mercury Potassium	mg/L	0.002		F 00	5.99	++	DISS		0.0002	U 0.0002	U DISS	+		0.0002	U 0.0002 U	U DISS		 E (1	 F (1	DISS
Selenium	mg/L mg/L	0.05		5.99 0.04	U 0.04	II	DISS DISS		6.83 0.04	6.83 U 0.04	U DISS	╋		8.31 0.04	8.31 U 0.04 I	DISS U DISS		5.61 0.04	5.61 U 0.04	DISS U DISS
Sodium	mg/L			379	379		DISS		473	473	DISS	-		460	460	DISS		380	380	DISS
Strontium	mg/L	2.2		0.97	0.97	+++	DISS		1.51	1.51	DISS			1.05	1.05	DISS		0.83	0.83	DISS
Zinc	mg/L	1.1		0.037	0.037		DISS		0.19	0.19	DISS			0.34	0.34	DISS		0.067	0.067	DISS
BTEX						П						1								
Benzene	mg/L	0.005	0.005	U 0.005	U 0.005	U	0.005 U	0.005 U	0.005	U 0.005	U 0.005 L	J	0.005 U	0.005	U 0.005 I	U 0.005 U	0.005	U 0.005	U 0.005	U 0.005 U
Ethylbenzene	mg/L	0.7	0.005	U 0.005	U 0.005	U	0.005 U	0.005 U	0.005	U 0.005	U 0.005 L	J	0.005 U	0.005	U 0.005 I	U 0.005 U	0.005	U 0.005	U 0.005	U 0.005 U
Toluene	mg/L	1	0.01	U 0.00574	0.00787		0.00787	0.01 U	0.00774	0.00887	0.00887		0.01	0.011	0.0105	0.0105	0.01	U 0.00711	0.00856	0.00856
Xylene (total)	mg/L	10	0.05	U 0.01	U 0.03	U	0.03 L	0.05 U	0.005	U 0.0275	U 0.0275 L	J	0.05 U	0.005	U 0.0275 I	U 0.0275 U	0.05	U 0.005	U 0.0275	U 0.0275 U
TPH Mixtures																				
TPH-Gasoline Range				U	0.15	U	FRAC	0.15 U			U FRAC	4	0.15 U		0.15 U	U FRAC	0.15	U	0.15	J FRAC
TPH-Diesel Range				U	0.13	U	FRAC	0.13 U		0.20	U FRAC	╂	0.13 U		0.13 U	U FRAC	0.13	U	0.13	
TPH-Oil Range TPH Fractions			0.12	U	0.12	U	FRAC	0.12 U		0.12	U FRAC	╂	0.12 U		0.12 U	U FRAC	0.12	U	0.12	J FRAC
Aliphatic >C10-C12	ma/I	0.15		0.15	II 0.15	т т	0.15		0.15	II 0.15	U 0.15 L	т		0.15	U 0.15 I	II 015 II	1	0.15	U 0.15	T 0.15 TT
Aliphatic >C10-C12 Aliphatic >C12-C16	mg/L mg/L	0.15 0.15	-		U 0.15 U 0.15	TT.	0.15 U	-	0.15 0.15		U 0.15 U	Ţ	-	0.20	U 0.15 U 0.15	U 0.15 U 0.15 U	-	0.15 0.15	U 0.15 U 0.15	
Aliphatic >C16-C35	mg/L	7.3	-		U 0.15	11	0.15 U		0.15		U 0.15 U	J	-		U 0.15 U	U 0.15 U	-	0.15	U 0.15	
Aliphatic >C8-C10	mg/L	0.15	-		U 0.15	IJ	0.15 U	-	0.15		U 0.15 U	J	-		U 0.15 U	U 0.15 U	-	0.15	U 0.15	
Aliphatic C6-C8	mg/L	3.2	-		U 0.15	U		-	0.15		U 0.15 L	J	-		U 0.15 I	U 0.15 U	-	0.15	U 0.15	
Aromatic >C10-C12	mg/L	0.15	-		U 0.15	U		-			U 0.15 L	J	-		U 0.15 I	U 0.15 U	-	0.15	U 0.15	
Aromatic >C12-C16	mg/L	0.15	-		U 0.15	U	0.15 U	-	0.15		U 0.15 L	J	-	0.15	U 0.15 I	U 0.15 U	-	0.15	U 0.15	U 0.15 U
Aromatic >C16-C21	mg/L	0.15	-		U 0.15	U	0.15 U	-	0.15		U 0.15 L	J	-	0.20	U 0.15 I	U 0.15 U	-	0.15	U 0.15	
Aromatic >C21-C35	mg/L	0.15	-		U 0.15	U	0.15 U	-	0.15		U 0.15 L	J	-		U 0.15 I	U 0.15 U	-	0.15	U 0.15	
Aromatic >C8-C10	mg/L	0.15	-	0.15	U 0.15	U	0.15 U	-	0.15	U 0.15	U 0.15 L	J	-	0.15	U 0.15 U	U 0.15 U	-	0.15	U 0.15	U 0.15 U
Other	/т					1.1					T	,		_			I	 	-	
Sulfate	mg/L		-	5	U 5	U	5 U		5	U 5	U 5 L	J		5	U 5 I	U 5 U	-	5	U 5	U 5 U
Bicarbonate Alkalinity	mg/L CaCO3		310	352	331		331	360	351	356	356		360	379	370	370	320	407	364	364
Carbonate Alkalinity	mg/L CaCO3		10	U 1	U 5.5	U	5.5 U	10 U	1	U 5.5	U 5.5 L	J	10 U	1	U 5.5 I	U 5.5 U	10	U 1	U 5.5	U 5.5 U
Total Dissolved Solids Chloride	mg/L		2500	1260	1880	+	1880	1800	2220	2010	2010	╂	1800	1900	1850	1850	1600	1530	1570	1570
Field Turbidity	mg/L NTU		1300 96	641 96	971 96	++	971 96	820 1351	959 1111	890 1230	890 1230	╂	820 2119	809 862	815 1490	815 1490	760 217	629 285	695 251	695 251
ricia raibianty	1110		90	90	90		90	1331	1111	1230	1230		4117	002	1470	1470	∠1/	200	201	231

Page 2 of 4 2015\116008\24472MappE.xls

East White Lake Field Vermilion Parish, Louisiana

Mell type HP HP HP HP HP HP HP H	-09-I	#P HP-MPA-09-I AVG J 0.01 U 1.56 J 0.005 U 154 J 0.01 U 7.45	HP HP-MPA-09-1 (72-75') 10/6/2010 AVG REPRESENT J 0.01 U 1.56 J 0.005 U	ICON U 0.0255 0.717	0-I HP-MPA-10-I (72-75') 10/6/2010 MPA 0.01	HP II HP-MPA-10-I AVG U 0.0178	HP HP-MPA-10-I (72-75') 10/6/2010 AVG REPRESENT
Sample Interval (ft)	(72-75') 10/6/2010 N MPA U 0.01 U 1.64 U 0.005 U 167 U 0.01 U 7.45 U 0.015 U	J 0.01 U 1.56 J 0.005 U 154 J 0.01 U	(72-75') 10/6/2010 AVG REPRESENT J 0.01 U 1.56 J 0.005 U	ICON U 0.0255 0.717	(72-75') 10/6/2010 MPA 0.01 I	AVG	(72-75') 10/6/2010 AVG
Sample Date 10/6/2010 10	10/6/2010 N MPA U 0.01 U 1.64 U 0.005 U 167 U 0.01 U 7.45 U 0.015 U	J 0.01 U 1.56 J 0.005 U 154 J 0.01 U	10/6/2010 AVG REPRESENT J 0.01 U 1.56 J 0.005 U	U 0.0255 0.717	10/6/2010 MPA 0.01 I		10/6/2010 AVG
Parameter Units GWSS	U 0.01 U 1.64 U 0.005 U 167 U 0.01 U 7.45 U 0.015 U	J 0.01 U 1.56 J 0.005 U 154 J 0.01 U	REPRESENT	U 0.0255 0.717	0.01 U		
Dissolved Metals	1.64 U 0.005 U 167 U 0.01 U 7.45 U 0.015 U 0.015	1.56 J 0.005 U 154 J 0.01 U	J 0.01 U 1.56 J 0.005 U	0.717		II 0.0179	REPRESENT
Arsenic mg/L 0.01 0.0127 0.01 U 0.0114 0.0114 0.0114 0.01 U 0.005 U 0.0005 U 0.	1.64 U 0.005 U 167 U 0.01 U 7.45 U 0.015 U 0.015	1.56 J 0.005 U 154 J 0.01 U	1.56 J 0.005 U	0.717		11 0.0170	
Barium mg/L 2 1 1.02 1.01 1.01 0.878 0.9 0.889 0.889 0.607 0.64 0.624 0.624 0.624 1.48	1.64 U 0.005 U 167 U 0.01 U 7.45 U 0.015 U 0.015	1.56 J 0.005 U 154 J 0.01 U	1.56 J 0.005 U	0.717		11 0.0170	
Cadmium mg/L 0.005 0.005 U 0.001 <t< td=""><td>U 0.005 U 167 U 0.01 U 7.45 U 0.015 U</td><td>U 0.005 U 154 U 0.01 U</td><td>J 0.005 U</td><td></td><td></td><td></td><td>0.0178</td></t<>	U 0.005 U 167 U 0.01 U 7.45 U 0.015 U	U 0.005 U 154 U 0.01 U	J 0.005 U				0.0178
Calcium mg/L - 100 117 109 109 88 102 95 95 72 85.3 78.7 78.7 140 Chromium mg/L 0.1 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.010 U 0.010 U 0.01 U	167 U 0.01 U 7.45 U 0.015 U	154 U 0.01 U			0.78	0.749	0.749
Chromium mg/L 0.1 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.010 U 0.0	U 0.01 U 7.45 U 0.015 U	J 0.01 U		0.000	U 0.005 U	U 0.005 U	0.005 U
From mg/L 0.3 - 4.99 4.99 4.99 - 5.79 5.79 5.79 - 3.41 3.41 3.41 - - - - - - - - -	7.45 U 0.015 U		J 0.01 U	76 U 0.02	96.4 0.01 U	86.2 U 0.015	86.2 0.015
Lead mg/L 0.015 0.01 U 0.015 U 0.0125 U 0.0125 U 0.0125 U 0.015 U 0.015 U 0.015 U 0.015 U 0.0125 U 0.0	U 0.015 U		7.45	- 0.02	4.37	4.37	4.37
Manganese mg/L 0.05 - 0.24 0.24 0.24 - 0.29 0.29 0.29 - 0.24 0.24 - - Mercury mg/L 0.002 0.0002 U 0	55.8	J 0.0125 U	J 0.0125 U	U 0.01	U 0.015 U	U 0.0125 U	J 0.0125 U
Mercury mg/L 0.002 0.0002 U 0.		50.9	50.9	25	30.7	27.9	27.9
	0.36	0.36	0.36	-	0.2	0.2	0.2
Potassium		J 0.0002 U	J 0.0002 U	U 0.0002	U 0.0002 U	U 0.0002 U	J 0.0002 U
	U 7.16	6.08	6.08	6.2	8.07	7.14	7.14
Selenium mg/L 0.05 0.0368 0.04 U 0.0384 0.0976 0.04 U 0.0688 0.0704 0.04 U 0.0552 0.0552 0.0754 Sodium mg/L 440 491 466 466 370 391 381 381 390 465 428 428 520		J 0.0577	0.0577 572	0.0428 330	0.04 U	U 0.0414 373	0.0414 373
Sodium mg/L 440 491 466 466 370 391 381 381 390 465 428 428 520 Strontium mg/L 2.2 1 1 1 1 0.863 0.87 0.867 0.867 0.749 0.78 0.765 0.765 1.23	624 1.37	572 1.3	1.3	0.689	416 0.77	0.73	0.73
Zinc mg/L 1.1 0.0192 0.02 U 0.0196 0.0196 0.0371 0.034 0.0356 0.0356 0.0133 0.02 U 0.0167 0.0167 0.0289		J 0.0245	0.0245	0.0272	0.02	U 0.0236	0.0236
Total Metals						1	
Arsenic mg/L 0.01 0.013 0.013 DISS 0.01 U 0.01 U DISS 0.01 U 0.01 U DISS	0.01 U	J 0.01 U	J DISS		0.028	0.028	DISS
Barium mg/L 2 1.45 1.45 DISS 1.1 1.1 DISS 0.89 0.89 DISS	1.93	1.93	DISS		1.42	1.42	DISS
Cadmium mg/L 0.005 0.005 U 0.005 U DISS 0.005 U DISS 0.005 U DISS 0.005 U DISS 0.005 U DISS	0.005 U	U 0.005 U	J DISS		0.005 U	U 0.005 U	DISS
Calcium mg/L 145 145 DISS 110 110 DISS 129 129 DISS	176	176	DISS		132	132	DISS
Chromium mg/L 0.1 0.21 0.21 DISS 0.095 0.095 DISS 0.034 0.034 DISS	0.13	0.13	DISS		0.34	0.34	DISS
Iron mg/L 0.3 49.8 49.8 DISS 22.7 DISS 31.7 31.7 DISS Lead mg/L 0.015 0.028 DISS 0.015 U DISS 0.027 DISS	31.1 0.015 U	31.1 J 0.015 U	J DISS		82.8 0.057	82.8 0.057	DISS DISS
Magnesium mg/L 49.6 49.6 DISS 42.2 DISS 66.3 66.3 DISS	61	61	DISS		45.5	45.5	DISS
Manganese mg/L 0.05 1.01 1.01 DISS 0.46 DISS 0.83 0.83 DISS	0.86	0.86	DISS		1.74	1.74	DISS
Mercury mg/L 0.002 0.0002 U 0.0002 U DISS 0.0002 U DISS 0.0002 U DISS 0.0002 U DISS 0.0002 U DISS	0.0002 U	J 0.0002 U	J DISS		0.0002 U	U 0.0002 U	DISS
Potassium mg/L 8.59 8.59 DISS 6.06 6.06 DISS 13.1 13.1 DISS	8.99	8.99	DISS		11.9	11.9	DISS
Selenium mg/L 0.05 0.04 U 0.04 U DISS 0.04 U DISS 0.04 U DISS 0.04 U DISS 0.04 U DISS 0.05 -	0.04 U	J 0.04 U	J DISS		0.04 U	U 0.04 U	J DISS
Sodium mg/L 488 488 DISS 429 DISS 466 466 DISS	626	626	DISS		383	383	DISS
Strontium mg/L 2.2 1.1 1.1 DISS 0.93 0.93 DISS 0.84 0.84 DISS Zinc mg/L 1.1 0.24 0.24 DISS 0.22 0.22 DISS 0.13 0.13 DISS	1.41 0.16	1.41 0.16	DISS		0.88	0.88	DISS DISS
Zinc mg/L 1.1 0.24 0.24 DISS 0.22 DISS 0.13 0.13 DISS BTEX	0.16	0.16	D133		0.33	0.33	D155
Benzene mg/L 0.005 0.005 U 0.0	U 0.005 U	J 0.005 U	J 0.005 U	U 0.005	U 0.005 U	U 0.005 U	J 0.005 U
Ethylbenzene mg/L 0.7 0.005 U	U 0.005 U	J 0.005 U	J 0.005 U	U 0.005	U 0.005 U	U 0.005 U	U 0.005 U
Toluene mg/L 1 0.01 U 0.00657 0.00829 0.00829 0.01 U 0.00757 0.00879 0.00879 0.01 U 0.00635 0.00818 0.00818 0.01	U 0.00822	0.00911	0.00911	0.01	U 0.0072	0.0086	0.0086
	U 0.005 U	J 0.0275 U	J 0.0275 U	U 0.05	U 0.005 U	U 0.0275 U	U 0.0275 U
TPH Mixtures							
TPH-Gasoline Range 0.15 U 0.15 U FRAC 0.15 U 9.15 U FRAC 0.15 U FRAC 0.15 U FRAC 0.15 U FRAC 0.15		0.15 U	J FRAC	0.20	U	0.15 U	FRAC
TPH-Diesel Range 0.13 U 0.13 U FRAC 0.13 U 0.13 U FRAC 0.13 U 0.13 U FRAC 0.13 U 0.13 U FRAC 0.13 U 0.13 U FRAC 0.13 U 0.13 U FRAC 0.13 U 0.13 U FRAC 0.13 U 0.13 U FRAC 0.13 U 0.13 U 0.13 U FRAC 0.13 U 0.13	U	0.13 U	J FRAC	0.10	U	0.13 U	FRAC
TPH-Oil Range 0.12 U 0.12 U FRAC 0.12 U 0.12 U FRAC 0.12 U 0.12 U FRAC 0.12 U 0.12 U FRAC 0.12 U 0.12 U FRAC 0.12 U	U	0.12 U	J FRAC	0.12	U	0.12 U	FRAC
Aliphatic >C10-C12 mg/L 0.15 - 0.15 U 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U 0.15 U - 0.15 U 0.15 U 0.15 U - 0.15 U	0.15 U	J 0.15 U	J 0.15 U	1	0.15 U	U 0.15 U	J 0.15 U
Aliphatic >C12-C16 mg/L 0.15 - 0.15 U 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U 0.15 U - 0.15 U 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U 0.15 U - 0.15 U 0.15	0.15 U	U 0.15 U	J 0.15 U		0.15 U	U 0.15 U	U 0.15 U
Aliphatic >C16-C35 mg/L 7.3 - 0.15 U 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U 0.15 U - 0.15 U 0.15 U 0.15 U - 0.15 U	0.15 U	U 0.15 U	J 0.15 U	U -	0.15 U	U 0.15 U	U 0.15 U
Aliphatic >C8-C10 mg/L 0.15 - 0.15 U 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U - 0.15 U - 0.15 U - 0.15 U 0.15 U -	0.15 U	U 0.15 U	J 0.15 U	U -	0.15 U	U 0.15 U	U 0.15 U
Aliphatic C6-C8 mg/L 3.2 - 0.15 U 0.15 U 0.15 U - 0.15 U 0.15 U 0.15 U - 0.15 U 0.1			J 0.15 U	U -	0.15 U	U 0.15 U	
Aromatic >C10-C12 mg/L 0.15 - 0.15 U 0.15 U 0.15 U - 0.15 U 0.15 U 0.15 U - 0.15 U 0.15	0.15 U		J 0.15 U	U -	0.15 U	U 0.15 U	
Aromatic >C12-C16 mg/L 0.15 - 0.15 U 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U 0.15 U - 0.15 U 0.15	0.15 U	0.15 U	J 0.15 U	U -	0.15 U	U 0.15 U	U 0.15 U
Aromatic >C16-C21 mg/L 0.15 - 0.15 U 0.15 U 0.15 U 0.15 U - 0.15 U 0.15 U - 0.15 U 0.15 U 0.15 U - 0.15 U 0.15 U 0.15 U - 0.15 U 0	0.15 U 0.15 U	U 0.15 U 0.15 U	J 0.15 U	U -	0.15 U	U 0.15 U 0.15 U	U 0.15 U 0.15 U
Aromatic >C21-C35 mg/L 0.15 - 0.15 U 0.15	0.15 U	U 0.15 U	J 0.15 U	U -	0.15 U	U 0.15 U	U 0.15 U
Other 0.15 0 0.1	0.10	0.15	0.10		0.10	0.10	0.10
Sulfate mg/L 5 U 5 U 5 U - 5 U 5 U 5 U 5	5 U	J 5 U	J 5 T	U -	5 t	U 5 U	J 5 U
Bicarbonate Alkalinity	405	343	343	340	442	391	391
mg/L 10 II 1 II 55 II 55 II 10 II 1 II 55 II 10	U 1 U	J 5.5 U	J 5.5 U	U 10	U 1 T	U 5.5 U	J 5.5 U
Carbonate Alkalinity	2610	2710	2710	1400	1520	1460	1460
Chloride mg/L 990 851 921 921 850 696 773 773 830 737 784 784 1500	1110	1310	1310	690	613	652	652
Field Turbidity NTU 3519 441 1980 1980 854 497 676 676 193 88 141 141 1470	759	1110	1110	3477	461	1970	1970

Page 3 of 4 2015\116008\24472MappE.xls

Table E-4

70-Foot Zone Groundwater Data May 2010 Split Groundwater Analytical Results

East White Lake Field Vermilion Parish, Louisiana

Notes:

The following notes apply to ground water data sets provided in Tables E-2 through E-6.

- -- Indicates no standard in the RECAP standard column, or parameter not analyzed in the data section
- U Not detected, value is the detection limit
- B For inorganics, this qualifier indicates the result is between the Reporting Detection Limit (RDL) and Methold Detection Limit (MDL)
- HP Hydropunch sampling technology
- MW Monitoring Well
- WW Water Well

Yellow highlighting indicates a detected concentration exceeds the screening level.

Grey shading indicates the total metals results are not included in the quantitative risk evaluation (see DISS definition).

FRACT - TPH fraction data are available for this location and are utilized in lieu of TPH mixtures.

DISS - Dissolved metals, when available, were used in lieu of total metals for all HP samples and for samples with a turbidity greater than 40 NTU.

GWSS = RECAP Screening Standard from Table 1 of RECAP 2003.

AVG - represents the average of split sample results, calculated as outlined below.

REPRESENT - This column presents the constituent concentrations considered representative for each sample. When more than one sample event is available for a single location, the representative concentrations were determined as the most recent independent concentration available for each constituent. Independent concentrations were identified as the following:

- Single sample results provided by one lab, where no split sample was collected.
- If split samples were collected, the average concentration for each parameter was determined as follows:
 - Parameters with detected concentrations in both splits: the detected concentrations were averaged.
 - Parameters reported as nondetect in both splits: the detection limits were averaged and the average is considered not detected at the averaged detection limit.
 - Parameters analyzed in only one of the split samples: the result (detection or nondetect) for the parameter was identified in the "average" column for that sample.
 - Parameters that were detected in one split but not detected in the other split: the detection limit was used as a proxy concentration and averaged with the
 detected concentration.
 - Duplicates were considered independent samples and were not averaged with the parent samples. If a duplicate was split, the split results were averaged as outlined above.

Once the most recent, independent result was identified as outlined above, two other considerations were made:

- If TPH fractions are available, they were utilized as the most representative results. In these instances, the note "FRACT" is inserted for TPH mixture results.
- Dissolved metals, when available, were used in lieu of total metals for all hydropunch (HP) samples and for samples with a turbidity greater than 40 NTU. In these instances, the note "DISS" is inserted for total metals results. Total metals results for these samples are shaded grey to indicate the results are not included in the quantitative risk evaluation.

GWss for strontium is not provided in RECAP; the risk-based values were calculated in accordance with Appendix H of RECAP 2003 (see Appendix G).

GWss for iron and manganese are not provided in RECAP; the EPA Secondary MCLs were used as the GWss for iron and manganese.

The following wells were sampled during more than one sampling event over the investigation history, and the most recent sample results were used in the quantitative assessment to represent current conditions (RECAP Section 2.5):

- SB-1-MW sampled May 7, 2010, June 8, 2010, and April 21, 2014;
- Facility well (also called WW-1 and AWW1) sampled April 3, 1995 (for chlorides only), November 11, 2006, and May 25, 2010; and
- Hebert water well sampled September 1, 2010 and April 21, 2014.

East White Lake Field Vermilion Parish, Louisiana

		Well type	HP		HP		HP		HP	
		Sample ID	MW-1C		MW-1C		MW-1C		MW-1C	
	San	nple Interval (ft)			(97-100)				(97-100)	
		Sample Date			5/13/2010				5/13/2010	
		Sampled By	MPA		ICON		AVG		AVG	
Parameter	Units	GW SS							REPRESENT	[
Dissolved Metals										
Arsenic	mg/L	0.01	0.01	U	0.01	U	0.01	U	0.01	U
Barium	mg/L	2	1.12	Ť	0.908	Ť	1.01		1.01	
Cadmium	mg/L	0.005			0.005	U	0.005	U	0.005	U
Calcium	mg/L		120	T		Ť	120		120	
Chromium	mg/L	0.1		T	0.01	U	0.01	U	0.01	U
Iron	mg/L	0.3	4.51	T		+	4.51		4.51	
Lead	mg/L	0.015			0.01	U	0.01	U	0.01	U
Magnesium	mg/L		42.7				42.7		42.7	
Manganese	mg/L	0.05	0.21	+		+	0.21		0.21	
Mercury	mg/L	0.002		T	0.0002	U	0.0002	U	0.0002	U
Potassium	mg/L		5.84	+		Ť	5.84	Ť	5.84	_
Selenium	mg/L	0.05	0.04	U	0.031	+	0.0355		0.0355	
Sodium	mg/L		467	Ť		+	467		467	
Strontium	mg/L	2.2		\top	0.824	+	0.824	H	0.824	\dagger
Zinc	mg/L	1.1		+	0.01	IJ	0.01	U	0.01	U
Total Metals	11.6/ 2	1.1		+	0.01	۲	0.01		0.01	
Arsenic	mg/L	0.01	0.01	U			0.01	U	DISS	
Barium	mg/L	2	1.18	+		+	1.18		DISS	-
Cadmium	mg/L	0.005		+		+	1.10		DISS	
Calcium	mg/L	0.003	124	+		+	124		DISS	
Chromium	mg/L	0.1		+		+	124		DISS	
Iron	mg/L	0.3	7.45	+		+	7.45		DISS	
Lead	mg/L	0.015	7.43	+		+	7.40		DISS	-
Magnesium	mg/L	0.015	43.8	+		+	43.8		DISS	-
Manganese	mg/L	0.05	0.24	+		+	0.24		DISS	-
Mercury	mg/L	0.002	0.24	+		+			DISS	-
Potassium	mg/L	0.002	6.03	+		+	6.03		DISS	
Selenium		0.05		U		+		U	DISS	
Sodium	mg/L		0.04 494	U		+	0.04	U		
	mg/L		494	+		+	494		DISS DISS	
Strontium Zinc	mg/L mg/L	2.2		+		+			DISS	
BTEX	mg/ L	1.1							D155	
	/1	0.005	0.005	T T	0.005	T T	0.005	TT	0.005	T.T.
Benzene	mg/L	0.005	0.005	U	0.005	U	0.005	U	0.005	U
Ethylbenzene	mg/L	0.7	0.005	U	0.005	U	0.005	U	0.005	U
Toluene	mg/L	1 10	0.000	U	0.01	U	0.0075	U	0.0075	U
Xylene (total) TPH Mixtures	mg/L	10	0.01	U	0.05	U	0.03	U	0.03	U
				_	0.45		0.45		TD 1.0	
TPH-Gasoline Range				_	0.15	U	0.15	U	FRAC	
TPH-Diesel Range				_	0.131	U	0.131	U	FRAC	
TPH-Oil Range				_	0.121	U	0.121	U	FRAC	
TPH Fractions						_				
Aliphatic >C10-C12	mg/L	0.15	0.15	U		_	0.15	U	0.15	U
Aliphatic >C12-C16	mg/L	0.15	0.15	U	-		0.15	U	0.15	U
Aliphatic >C16-C35	mg/L	7.3	0.15	U		_	0.15	U	0.15	U
Aliphatic >C8-C10	mg/L	0.15	0.15	U	-		0.15	U	0.15	U
Aliphatic C6-C8	mg/L	3.2	0.15	U			0.15	U	0.15	U
Aromatic >C10-C12	mg/L	0.15	0.15	U			0.15	U	0.15	U
Aromatic >C12-C16	mg/L	0.15	0.15	U			0.15	U	0.15	U
Aromatic >C16-C21	mg/L	0.15	0.15	U			0.15	U	0.15	U
Aromatic >C21-C35	mg/L	0.15	0.15	U			0.15	U	0.15	U
Aromatic >C8-C10	mg/L	0.15	0.15	U			0.15	U	0.15	U
Other										
Sulfate	mg/L		5	U			5	U	5	U
Bicarbonate Alkalinity	mg/L CaCO3		351		340		346		346	
Carbonate Alkalinity	mg/L CaCO3		1	U	10	U	5.5	U	5.5	U
Total Dissolved Solids	mg/L		2150		1820		1990		1990	
Chloride	mg/L		1000		888		944		944	
Field Turbidity	NTU		37.73				37.7		37.7	
				_		•				

Table E-5

90-Foot Zone Groundwater Data May 2010 Split Groundwater Analytical Results

East White Lake Field Vermilion Parish, Louisiana

Notes:

The following notes apply to ground water data sets provided in Tables E-2 through E-6.

- -- Indicates no standard in the RECAP standard column, or parameter not analyzed in the data section
- U Not detected, value is the detection limit
- B For inorganics, this qualifier indicates the result is between the Reporting Detection Limit (RDL) and Methold Detection Limit (MDL)
- HP Hydropunch sampling technology
- MW Monitoring Well
- WW Water Well

Yellow highlighting indicates a detected concentration exceeds the screening level.

Grey shading indicates the total metals results are not included in the quantitative risk evaluation (see DISS definition).

FRACT - TPH fraction data are available for this location and are utilized in lieu of TPH mixtures.

DISS - Dissolved metals, when available, were used in lieu of total metals for all HP samples and for samples with a turbidity greater than 40 NTU.

GWSS = RECAP Screening Standard from Table 1 of RECAP 2003.

AVG - represents the average of split sample results, calculated as outlined below.

REPRESENT - This column presents the constituent concentrations considered representative for each sample. When more than one sample event is available for a single location, the representative concentrations were determined as the most recent independent concentration available for each constituent. Independent concentrations were identified as the following:

- Single sample results provided by one lab, where no split sample was collected.
- If split samples were collected, the average concentration for each parameter was determined as follows:
 - o Parameters with detected concentrations in both splits: the detected concentrations were averaged.
 - Parameters reported as nondetect in both splits: the detection limits were averaged and the average is considered not detected at the averaged detection limit.
 - O Parameters analyzed in only one of the split samples: the result (detection or nondetect) for the parameter was identified in the "average" column for that sample.
 - Parameters that were detected in one split but not detected in the other split: the detection limit was used as a proxy concentration and averaged with the detected concentration.
 - Duplicates were considered independent samples and were not averaged with the parent samples. If a duplicate was split, the split results were averaged as outlined above.

Once the most recent, independent result was identified as outlined above, two other considerations were made:

- If TPH fractions are available, they were utilized as the most representative results. In these instances, the note "FRACT" is inserted for TPH mixture results.
- Dissolved metals, when available, were used in lieu of total metals for all hydropunch (HP) samples and for samples with a turbidity greater than 40 NTU. In these instances, the note "DISS" is inserted for total metals results. Total metals results for these samples are shaded grey to indicate the results are not included in the quantitative risk evaluation.

GWss for strontium is not provided in RECAP; the risk-based values were calculated in accordance with Appendix H of RECAP 2003 (see Appendix G).

GWss for iron and manganese are not provided in RECAP; the EPA Secondary MCLs were used as the GWss for iron and manganese.

The following wells were sampled during more than one sampling event over the investigation history, and the most recent sample results were used in the quantitative assessment to represent current conditions (RECAP Section 2.5):

- SB-1-MW sampled May 7, 2010, June 8, 2010, and April 21, 2014;
- Facility well (also called WW-1 and AWW1) sampled April 3, 1995 (for chlorides only), November 11, 2006, and May 25, 2010; and
- Hebert water well sampled September 1, 2010 and April 21, 2014.

Table E-6 Upper Sand of Chicot Aquifer Groundwater Data May 2010 Split Groundwater Analytical Results

East White Lake Field Vermilion Parish, Louisiana

		Well type	WW	WW	WW	WW	WW	WW	WW	l ww	WW	WW	WW	WW
		Sample ID	AWW1	AWW1	MPA WW-1	WW-1	WW-1	WW-1	I Guidru Well	I Guidry Well	I Guidry Well	I Guidry Well	I Guidry Well	I Guidry Well
	Sam	ple Interval (ft)	Chicot (400 ft)	Chicot (400 ft)	1,111111111111	Chicot (400 f		Chicot (400 ft)	, cumy men	(est. 519 ft)) cuiting tress	(est. 519 ft)	(est. 519 ft)	(est. 519 ft)
		Sample Date	4/3/1995	11/14/2006		5/25/2010	•	5/25/2010		9/1/2010		9/1/2010	9/1/2010	9/1/2010
		Sampled By	Resource Aquis. SWD Appl.	ICON	MPA	ICON	AVG	most recent	ICON	MPA	AVG	MPA	MPA	AVG or Max
Parameter	Units	GWSS	77					REPRESENT						REPRESENT
Total Metals														
Arsenic	mg/L	0.01		0.011	0.01	U 0.01	U 0.01 L	U 0.01 U	0.01	U 0.01 U	J 0.01 U	0.01 U	0.01 U	0.01 U
Barium	mg/L	2		0.431	0.47	0.432	0.451	0.451	0.64	0.78	0.71	0.73	0.74	0.74
Cadmium	mg/L	0.005		0.001 U	J	0.005	U 0.005 L	U 0.005 U	0.005	U 0.005 U	J 0.005 U	0.005 U	0.005 U	0.005 U
Calcium	mg/L				49.9		49.9	49.9		72.5	72.5	68.3	70.5	72.5
Chromium	mg/L	0.1				0.01	U 0.01 L	U 0.01 U	0.01	U 0.01 U	J 0.01 U	0.01 U	0.01 U	0.01 U
Iron	mg/L	0.3			0.75		0.75	0.75		1.08	1.08	1.02	1.01	1.08
Lead	mg/L	0.015		0.005 L	J	0.01	U 0.01 L	U 0.01 U	0.01	U 0.015 U	J 0.0125 U	0.015 U	0.015 U	0.015 U
Magnesium	mg/L				17.7		17.7	17.7		23.8	23.8	22	22.8	23.8
Manganese	mg/L	0.05			0.082		0.082	0.082		0.073	0.073	0.068	0.068	0.073
Mercury	mg/L	0.002								0.0002 U	J 0.0002 U	0.0002 U	0.0002 U	0.0002 U
Potassium	mg/L				2.47		2.47	2.47		2.68	2.68	2.47	2.46	2.68
Selenium	mg/L	0.05			0.04	U 0.02	U 0.03 L	U 0.03 U	0.02	U 0.04 U	J 0.03 U	0.04 U	0.04 U	0.04 U
Sodium	mg/L				161		161	161		117	117	109	109	117
Strontium	mg/L	2.2		0.46		0.461	0.461	0.461	0.463	0.57	0.517	0.54	0.54	0.54
Zinc	mg/L	1.1				0.022	0.022	0.022	0.247	0.32	0.284	0.31	0.26	0.31
BTEX														
Benzene	mg/L	0.005		0.005 L	J 0.005 I	U 0.005	U 0.005 L	U 0.005 U	0.005	U 0.005 U	J 0.005 U	0.005 U	0.005 U	0.005 U
Ethylbenzene	mg/L	0.7		0.005 L	J 0.005 I	U 0.005	U 0.005 L	U 0.005 U	0.005	U 0.005 U	J 0.005 U	0.005 U	0.005 U	0.005 U
Toluene	mg/L	1		0.005 L	J 0.005 I	U 0.01	U 0.0075 L	U 0.0075 U	0.01	U 0.005 U	J 0.0075 U	0.005 U	0.005 U	0.0075 U
Xylene (total)	mg/L	10		0.015 L	J 0.01 I	U 0.05	U 0.03 L	U 0.03 U	0.05	U 0.01 U	J 0.03 U	0.01 U	0.01 U	0.03 U
TPH Mixtures														
TPH-Gasoline Range	mg/L	0.15		0.15 U	J	0.15	U 0.15 L	J FRAC	0.15	U	0.15 U			FRAC
TPH-Diesel Range	mg/L	0.15		0.839		0.135	U 0.135 L	FRAC	0.136	U	0.136 U			FRAC
TPH-Oil Range	mg/L	0.15		0.447		0.125	U 0.125 L	FRAC	0.126	U	0.126 U			FRAC
TPH Fractions														
Aliphatic >C10-C12	mg/L	0.15			0.15 I	U	0.15 U	0.15 U		0.15 U	J 0.15 U	0.15 U	0.15 U	0.15 U
Aliphatic >C12-C16	mg/L	0.15			0.15	U	0.15 L	+		0.15 U	J 0.15 U		0.15 U	0.15 U
Aliphatic >C16-C35	mg/L	7.3			0.15	U	0.15 L	U 0.15 U		0.15 U	J 0.15 U	0.15 U	0.15 U	0.15 U
Aliphatic >C8-C10	mg/L	0.15			0.15 T	U	0.15 L			0.15 U	J 0.15 U		0.15 U	0.15 U
Aliphatic C6-C8	mg/L	3.2			0.15 U	U	0.15 L	0.15 U		0.15 U	J 0.15 U		0.15 U	0.15 U
Aromatic >C10-C12	mg/L	0.15			0.15	U	0.15 L			0.15 U	J 0.15 U		0.15 U	0.15 U
Aromatic >C12-C16	mg/L	0.15			0.15	U	0.15 L	0.15 U		0.15 U	J 0.15 U	0.15 U	0.15 U	0.15 U
Aromatic >C16-C21	mg/L	0.15			0.15 U	U	0.15 L	0.15 U		0.15 U	J 0.15 U	0.15 U	0.15 U	0.15 U
Aromatic >C21-C35	mg/L	0.15			0.15 I	U	0.15 L			0.15 U	J 0.15 U		0.15 U	0.15 U
Aromatic >C8-C10	mg/L	0.15			0.15 I	U	0.15 L	0.15 U		0.15 U	J 0.15 U	0.15 U	0.15 U	0.15 U
Other														
Sulfate	mg/L				5 [U	5 U	5 U		5 U	J 5 U	5 U	5 U	5 U
Bicarbonate Alkalinity	mg/L CaCO3				356	368	362	362		340	340	334	345	345
Carbonate Alkalinity	mg/L CaCO3				1 [U 10	U 5.5 U	5.5 U		1 U	J 1 U	1 U	1 U	1 U
Total Dissolved Solids	mg/L		564	553	616	663	640	640	607	604	606	582	632	632
Chloride	mg/L	250	84	170	195	192	194	194	163	139	151	139	139	151
Field Turbidity	NTU			8										

Table E-6 Upper Sand of Chicot Aquifer Groundwater Data May 2010 Split Groundwater Analytical Results

East White Lake Field Vermilion Parish, Louisiana

Notes:

The following notes apply to ground water data sets provided in Tables E-2 through E-6.

- -- Indicates no standard in the RECAP standard column, or parameter not analyzed in the data section
- U Not detected, value is the detection limit
- B For inorganics, this qualifier indicates the result is between the Reporting Detection Limit (RDL) and Methold Detection Limit (MDL)
- HP Hydropunch sampling technology

MW - Monitoring Well

WW - Water Well

Yellow highlighting indicates a detected concentration exceeds the screening level.

Grey shading indicates the total metals results are not included in the quantitative risk evaluation (see DISS definition).

FRACT - TPH fraction data are available for this location and are utilized in lieu of TPH mixtures.

DISS - Dissolved metals, when available, were used in lieu of total metals for all HP samples and for samples with a turbidity greater than 40 NTU.

GWSS = RECAP Screening Standard from Table 1 of RECAP 2003.

AVG - represents the average of split sample results, calculated as outlined below.

REPRESENT - This column presents the constituent concentrations considered representative for each sample. When more than one sample event is available for a single location, the representative concentrations were determined as the most recent independent concentration available for each constituent. Independent concentrations were identified as the following:

- Single sample results provided by one lab, where no split sample was collected.
- If split samples were collected, the average concentration for each parameter was determined as follows:
 - Parameters with detected concentrations in both splits: the detected concentrations were averaged.
 - Parameters reported as nondetect in both splits: the detection limits were averaged and the average is considered not detected at the averaged detection limit.
 - Parameters analyzed in only one of the split samples: the result (detection or nondetect) for the parameter was identified in the "average" column for that sample.
 - Parameters that were detected in one split but not detected in the other split: the detection limit was used as a proxy concentration and averaged with the detected concentration.
 - Ouplicates were considered independent samples and were not averaged with the parent samples. If a duplicate was split, the split results were averaged as outlined above.

Once the most recent, independent result was identified as outlined above, two other considerations were made:

- If TPH fractions are available, they were utilized as the most representative results. In these instances, the note "FRACT" is inserted for TPH mixture results.
- Dissolved metals, when available, were used in lieu of total metals for all hydropunch (HP) samples and for samples with a turbidity greater than 40
 NTU. In these instances, the note "DISS" is inserted for total metals results. Total metals results for these samples are shaded grey to indicate the results are not included in the quantitative risk evaluation.

GWss for strontium is not provided in RECAP; the risk-based values were calculated in accordance with Appendix H of RECAP 2003 (see Appendix G).

GWss for iron and manganese are not provided in RECAP; the EPA Secondary MCLs were used as the GWss for iron and manganese.

The following wells were sampled during more than one sampling event over the investigation history, and the most recent sample results were used in the quantitative assessment to represent current conditions (RECAP Section 2.5):

- SB-1-MW sampled May 7, 2010, June 8, 2010, and April 21, 2014;
- Facility well (also called WW-1 and AWW1) sampled April 3, 1995 (for chlorides only), November 11, 2006, and May 25, 2010; and
- Hebert water well sampled September 1, 2010 and April 21, 2014.

Table E-7 Surface Water Data Split Surface Water Analytical Results

East White Lake Field Vermilion Parish, Louisiana

		SW	·		7-02	SW			V-04		W-05		W-06		V-07	SW		SW-109*		W-10	SW	
		MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	ICON	MPA	MPA	ICON	MPA	ICON
Analytical Parameters	Units	5/6/2010	5/6/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/6/2010	5/6/2010	5/6/2010	5/6/2010	5/6/2010	5/6/2010	5/6/2010	5/6/2010	5/6/2010	5/7/2010	5/7/2010
Total Metals	S /v						2.24.22															+
Arsenic	mg/L	<0.00079	<0.0100	<0.00079	<0.0100	<0.00079	<0.0100	<0.00079	<0.0100	0.0019	B <0.0100	<0.00079	<0.0100	<0.00079	<0.0100	<0.00079	<0.0100	<0.00079	<0.00079	<0.0100	0.013	
Barium	mg/L	0.28	0.284	0.29	0.285	0.3	0.262	0.27	0.245	0.29	0.265	0.39	0.346	0.45	0.413	0.42	0.378	0.41	0.38	0.345	1.23	
Cadmium	mg/L	<0.00016	<0.00500	<0.00016	<0.00500	<0.00016	<0.00500	<0.00016	<0.00500	<0.00016	<0.00500	<0.00016	<0.00500	<0.00016	<0.00500	<0.00016	<0.00500	<0.00016	<0.00016	<0.00500	<0.00016	
Calcium	mg/L	38.4		44.1		43.3		44.6	 D -0.0400	43.1	<0.0100	54.3	D -0.0100	56.1	 D -0.0100	58.6		59.4	50.6	D -0.0100	73.9	 D
Chromium	mg/L	0.0026 H	3 <0.0100	0.0023 I	3 <0.0100	0.0026 B	<0.0100	0.0022	B <0.0100	0.0025	B <0.0100	0.0025	B <0.0100	0.0025	B <0.0100	0.0027 H	3 <0.0100	0.0027	B 0.0022	B <0.0100	0.0075	В
Iron	mg/L	1.26		0.8		1.08		0.49		0.85		0.94		0.94		1.12		1.11	1.09		11.3	
Lead	mg/L	<0.0015	<0.0100	<0.0015	<0.0100	<0.0015	<0.0100	<0.0015	<0.0100	<0.0015	<0.0100	<0.0015	<0.0100	<0.0015	<0.0100	<0.0015	<0.0100	<0.0015	<0.0015	<0.0100	0.021	
Magnesium	mg/L	88.2		100		98.3		103		99.1		127		130		140		141	120		149	
Manganese	mg/L	0.23		0.27		0.3		0.16		0.31		0.46		0.61		0.51		0.5	0.48		0.83	
Mercury	mg/L	0.00007 U	<0.000200	0.00009 U	<0.000200	0.00007 U	<0.000200	0.00009 U	<0.000200	0.00009 U	<0.000200	0.00008 U	<0.000200	0.00008 U	<0.000200	0.00011 U	<0.000200	0.00006 U	0.00007 U	<0.000200	0.0001 U	
Potassium	mg/L	29.2	0.025	33.3	0.024	32.7	0.020	34.4 <0.0037	0.000	33.1	0.027	38.6 JH		40.7	0.022	42.6 <0.0037		42.9 <0.0037	37.2 <0.0037		59.6	
Selenium	mg/L	<0.0037	0.035	<0.0037	0.034	<0.0037	0.039		0.033	<0.0037	0.037	<0.0037	0.048	<0.0037	0.032		0.036			0.039	<0.0037	
Sodium	mg/L	631	0.554	727	0.627	771	0.559	808	0.614	769	0.602	935	0.720	981	0.779	915	0.820	1100	917	0.721	1230	
Strontium	mg/L	0.64	0.554	0.71	0.637	0.7	0.558	0.72	0.614	0.72	0.602	0.9	0.729	0.95	0.778	0.99	0.829	1.01	0.86	0.721	1.74	
Zinc Disselved Matel	mg/L	0.0062 I	3 0.017	0.0045 I	0.013	<0.004	0.015	<0.004	0.012	<0.004	0.012	<0.004	0.016	<0.004	<0.0100	<0.004	<0.0100	< 0.004	<0.004	0.020	0.067	
Dissolved Metals	mg/I	<0.00070	+ +	<0.00070	+	<0.00070		<0.00070	+	<0.00070	+	<0.00070	+	<0.00070	+ +	<0.00070	+ +	<0.00070	<0.00070	+	0.0075	
Arsenic	mg/L	<0.00079 0.28		<0.00079 0.28		<0.00079 0.29		<0.00079 0.26		<0.00079		<0.00079		<0.00079 0.42		<0.00079		<0.00079 0.38	<0.00079 0.35		0.0075	В
Barium Cadmium	mg/L	0.28 0.00026 U		0.28 0.00027 U		<0.00016		0.26 0.00035 U		<0.00016		0.0002 U		0.42 0.00024 U		<0.00016		0.00027 U	<0.00016		<0.00016	
Chromium	mg/L mg/L	0.00026 U	3	0.00027 U	3	0.0018 B		0.00033 U	В	0.0018	В	0.0021	В	0.0024 U	В	0.00016 0.0024 H	3	0.00027 U	B 0.0022	В	0.0051	В
Lead	mg/L	<0.0017		<0.0015		<0.0015		<0.0017		<0.0018	D	<0.0021	D	<0.002	D	<0.0024		<0.0022	<0.0022	D	0.0031	I
Mercury	Ų.	<0.00055		0.00009 H	3	0.00009 B		0.00006	В	0.00007	В	0.0001	В	0.00019	В	0.00013	3	0.00006	B 0.00012	В	<0.00055	
Selenium	mg/L	<0.00037		<0.0037		<0.0037		<0.0037	 	<0.0007	D	<0.0037	D	< 0.00037	D	<0.0037		<0.0037	<0.0037	D	<0.0037	
Strontium	mg/L mg/L	0.69		0.74		0.71		0.73		0.69	-	0.0037		0.93		1		1.03	0.88		1.66	
	mg/L	<0.004		<0.004		<0.004		<0.004		<0.004		<0.004		<0.004		0.0095 H	3	<0.004	<0.004		0.023	
Zinc	O.	<0.004		<0.004		<0.004		<0.004		<0.004		<0.004		<0.004		0.0093	,	V0.004	<0.004		0.023	+
2-Methylnaphthalene	mg/L	<0.0000519	-	<0.0000527		<0.0000527		<0.0000525		<0.0000514	-	<0.0000522		<0.0000519		<0.0000519		<0.0000519	<0.0000519	-	<0.0000514	
Acenaphthene	mg/L	<0.0000319		<0.0000327		<0.0000327		<0.0000323		<0.0000314		<0.0000322	-	<0.0000319		<0.0000319		<0.0000317	<0.0000319		<0.0000314	
Acenaphthylene	mg/L	<0.0000137		<0.0000159		<0.0000159		<0.0000150		<0.0000133	-	<0.0000157	-	<0.0000137		<0.0000137		<0.0000137	<0.0000137		<0.0000133	
Anthracene	mg/L	<0.0000149		<0.0000131		<0.0000131		<0.0000131		<0.0000147		<0.000013		<0.0000149		<0.0000149		<0.0000149	<0.0000149		<0.0000147	+ +
Benzo(a)anthracene	mg/L	<0.0000503		<0.0000533		<0.0000533		<0.0000508		<0.0000498		<0.0000506		<0.0000503		<0.0000503		<0.0000503	<0.0000503		<0.0000498	
Benzo(a)pyrene	mg/L	<0.0000137		<0.000011		<0.000011		<0.0000138		<0.0000135		<0.0000137		<0.0000137		<0.0000137		<0.0000137	<0.0000137		<0.0000135	+ +
Benzo(b)fluoranthene	mg/L	<0.0000328		<0.0000333		<0.0000333		<0.0000331		<0.0000324		<0.0000329		<0.0000328		<0.0000328		<0.0000328	<0.0000328		<0.0000324	
Benzo(k)fluoranthene	mg/L	<0.0000223		<0.0000227		<0.0000227		<0.0000226		<0.0000221		<0.0000225		<0.0000223		<0.0000223		<0.0000223	<0.0000223		<0.0000221	
Chrysene	mg/L	< 0.000043		< 0.0000436		< 0.0000436		< 0.0000434		< 0.0000425		<0.0000432		< 0.000043		< 0.000043		< 0.000043	< 0.000043		< 0.0000425	
Dibenz(a,h)anthracene	mg/L	<0.0000195		<0.0000198		<0.0000198		<0.0000197		<0.0000123		<0.0000196		<0.0000195		<0.0000195		<0.0000195	<0.0000195		<0.0000123	
Fluoranthene	mg/L	<0.0000134		<0.0000136		<0.0000136		<0.0000135		<0.0000132		<0.0000134		< 0.0000133		<0.0000134		< 0.0000134	<0.0000134		<0.0000132	
Fluorene	mg/L	<0.0000184		<0.0000187		<0.0000187		<0.0000186		<0.0000182		<0.0000185		<0.0000184		<0.0000184		<0.0000184	<0.0000184		<0.0000182	
Indeno(1,2,3-cd)pyrene	mg/L	<0.0000171		< 0.0000174		< 0.0000174		<0.0000173		< 0.000017	-	<0.0000172		<0.0000171		<0.0000171		<0.0000171	<0.0000171		<0.000017	
Naphthalene	mg/L	<0.0000283		<0.0000287		<0.0000287		<0.0000286		<0.000028	-	<0.0000284		<0.0000171		<0.0000283		<0.0000283	<0.0000283		<0.000028	
Phenanthrene	mg/L	<0.0000166		< 0.0000169		< 0.0000169		<0.0000168		<0.0000165	-	< 0.0000167		<0.0000166		<0.0000166		<0.0000166	<0.0000166		<0.0000165	
Pyrene	mg/L	<0.0000181		<0.0000183		< 0.0000183		<0.0000182		< 0.0000179	-	<0.0000182		<0.0000181		<0.0000181		<0.0000181	<0.0000181		<0.0000179	
TPH Mixtures	Ji -		† †				† †		1						1							
TPH-Diesel Range	mg/L		<0.135		<0.135		<0.134		< 0.135		<0.135		<0.135	1	<0.134	† †	<0.134		1	<0.133		1.34
TPH-Oil Range	mg/L		<0.125		<0.125		<0.124	-	<0.125		<0.135		<0.125	1	<0.124	† †	<0.124		1	0.173		1.11
TPH-Gasoline Range	mg/L													1		† †			1			
Other Parameters	Gr -	† †	† †			† †	† †		1					1	1	† †			1			
Chloride	mg/L	1210	1530	1330	1560	1250	1490	1420	1530	1290	1630	1610	1920	1640	2130	1870	2410	1840	1610	2200	2220	2700
Total Dissolved Solids	mg/L	2710	2580	2900	2740	2780	2670	3050	2960	2880	2660	3800	3630	3590	3260	4220	3450	4150	3520	3220	4920	4820
Suspended Solids	mg/L											2,500		2370				-100	5520			
Salinity	ppt	2.4	+ +		 	+			†		+				1	3.7			3.2			
Hardness	mg/L	378	495	432	578	424	502	441	558	425	545	541	653	554	692	591	746	597	619	646	677	
Bicarbonate Alkalinity	mg/L CaCO3											60 R						67.4				
Carbonate Alkalinity	mg/L CaCO4											<0.17						<0.17				
Sulfate	mg/L	105	-		-							NO.17				83.9			106			
Junate	mg/ L	100										1				0.7.7			100			

Page 1 of 3 $2015\116008\24472 \text{MappE.xls}$

Table E-7 Surface Water Data Split Surface Water Analytical Results

East White Lake Field Vermilion Parish, Louisiana

Column			OTAT TO	V 01	0***	PIV 02	0717	BI/ 02	OT 17	DIV 04	67	DIV OF	OT 17	DIV OV	OT-T	RIV 07	OX.	DIV 00	OTAT TO	T/ 00	OT-1	DV 10	OV.	01/ 11	SW-1 Pit	SW-2 Pit	1
Part							+									1									Remed.	Remed.	Remed.
Teach Series Column Colu	A malvetical Dagamators	Ilmito	ł	1	+			-	1	-		-	1	+		-		+		-			1		MPA 11/20/2014	MPA 11/20/2014	MPA 11/20/2014
Second S	,	Units	5/10/2010	5/10/2010	5/10/2010	3/10/2010	5/10/2010	3/10/2010	3/10/2010	3/10/2010	5/11/2010	5/11/2010	5/11/2010	5/10/2010	5/11/2010	3/11/2010	3/11/2010	5/11/2010	5/11/2010	3/11/2010	5/11/2010	5/11/2010	5/11/2010	5/11/2010	11/20/2014	11/20/2014	11/20/2014
		ma/I	<0.00079	<0.0100	<0.00079	<0.0100	<0.00079	<0.0100	<0.00079	<0.0100	<0.00079	<0.0100	0.0024	B <0.0100	<0.00079	<0.0100	<0.00079	<0.0100	0.004	R	0.0035	В	0.0054				
Property Property		O.		t										+	.							-	-				
Section Sect		Ü.	t	t	+	++			+	+			-		.	+	t	+ +	+	+ +	1	+	t				
Second S		0.		-	+			+	+	+ +		+ +		+ +				+ +		+			-				
March Marc		0.															-					+ +	-	3			
Mary Mary		O.		1		 		+		+ +		+		+ +				+ + +		+			+				
Marganes		0.	ļ			 	+						+		l				+	_	-						
Mary Mary		O.		-	+		+	+	+	+ +		+	-	+	l			+					-				
Martin M		O.					+						-		l				+				+				
Marcian Margia	Mercury	O.	< 0.000055	< 0.000200	< 0.000055	<0.000200	< 0.000055	< 0.000200	< 0.000055	<0.000200	< 0.000055	<0.000200	< 0.000055	< 0.000200	<0.000055	< 0.000200	0.00007	B <0.000200	< 0.000055		< 0.000055		< 0.000055				
Section Sect		-	52			 	42.2		53.4	+ +			1	+			50.3						+				
Marche M	Selenium	-	< 0.0037	0.054	< 0.0037	0.047		0.039	< 0.0037	0.051	< 0.0037	0.037	< 0.0037	0.051	< 0.0037	0.036	< 0.0037	0.042	< 0.0037		< 0.0037		< 0.0037				
Part	Sodium		1230		1320		1050		1340		1270		2010		1080		1180		1230						237	244	237
Propose Prop		O.		0.980		1.09		0.788		1.00		0.989	1.65	1.52		0.898		0.903			0.38		0.52				
Marche M	Zinc	mg/L	0.0045 B	0.055	0.13	0.013	0.013	B 0.013	0.01	B 0.020	0.0074	B 0.033	0.0092	B 0.018	< 0.004	0.022	0.0085	B 0.014	0.0076	В	0.013	В	0.0097 E	3			
Marie Mari	Dissolved Metals		1																								
Common	Arsenic	mg/L	< 0.00079		< 0.00079		< 0.00079		< 0.00079		< 0.00079		0.0047	В	0.0033	В	< 0.00079		< 0.00079		0.003	B 0.011	0.0029 E	0.014			
Chamisman Migrid 1907 1908 1	Barium	mg/L	0.28		0.3		0.28		0.29		0.3		0.39		0.4		0.31		0.33		0.14	0.144	0.18	0.216			
Fig. Fig.	Cadmium	mg/L	< 0.00016		< 0.00016		< 0.00016		< 0.00016		< 0.00016		< 0.00016		< 0.00016		< 0.00016		< 0.00016		0.00086	В <0.00500	0.00078 E	< 0.00500			
Marche M	Chromium	mg/L	0.0032 B		0.0033	В	0.0025	В	0.003	В	0.003	В	0.0036	В	0.0024	В	0.0028	В	0.003	В	0.00071	B <0.0100	0.0011 E	< 0.0100			
Seriorism	ead	mg/L	0.0023 B		< 0.0015		< 0.0015		< 0.0015		< 0.0015		0.0021	В	< 0.0015		< 0.0015		< 0.0015		< 0.0015	< 0.0100	< 0.0015	< 0.0100			
Secondary Seco	Mercury	mg/L	0.00006 B		< 0.000055		<0.000055		0.00006	В	<0.000055		< 0.000055		< 0.000055		< 0.000055		<0.000055		<0.000055	<0.000200	< 0.000055	< 0.000200			
Part	Selenium	mg/L	< 0.0037		< 0.0037		< 0.0037		< 0.0037		< 0.0037		< 0.0037		< 0.0037		< 0.0037		< 0.0037		< 0.0037	0.024	< 0.0037	0.032			
Part	Strontium	mg/L	1.05		1.12		0.84		1.06		1.04		1.56		0.95		1.04		1.06		0.34	0.339	0.52	0.497			
Description Description	Zinc	mg/L	< 0.004		< 0.004		< 0.004		< 0.004		< 0.004		< 0.004		< 0.004		< 0.004		< 0.004		< 0.004	<0.0100	< 0.004	0.011			
Accors A	PAHs																										
According to blooms Margin	-Methylnaphthalene	mg/L	<0.0000522		<0.0000522		<0.0000525		<0.0000519		<0.0000519		<0.0000519		<0.000053		<0.0000519		<0.0000519		<0.0000519		<0.0000536				
	Acenaphthene	mg/L	<0.0000137										1		< 0.000014		<0.0000137		<0.0000137				-				
Bennes Mary	Acenaphthylene	0.																									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.	t							+ +					.		t										
Benzelly floramethene mg/L 0,0000329 0,0000328 0,0000328 0,0000328 0,0000328 0,00000328 0,0000328	. ,	O.		 						+ +			+														
Bernodylfooranthene mg/L 0,0000225 0,0000225 0,0000225 0,00000225 0,00000225 0,00000225 0,00000225 0,00000225 0,00000225 0,00000225 0,00000225 0,00000225 0,00000225 0,00000225 0,00000225 0,00000225 0,00000225 0,00000225 0,00000225 0,00000225 0,0000025	1 71 2	0.		-				-		_			1				-					+	-				
Chysene mg/L 0,0000432 - 0,0000432 - 0,0000432 - 0,0000434 - 0,0000434 - 0,0000434 - 0,0000434 - 0,0000434 - 0,0000434 - 0,0000435 - 0,0000434 - 0,0000435 - 0,000	, ,	0.		-						+		+	1				-					+	-				
District District	. ,	O.	t	-	+				+	_		+	+		.		t		+		1	+	ł				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	0.	+	-	+		+			+		+	1		l			+	+		+		ł	+			
Florence mg/L	, ,	0.	+	-	+		+			+		+	1	+	l			+	+				ł	+			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.		-		 				+		+	1				-	+		++			-	+			
Naphthalene mg/L <pre>-</pre>		0.	+			 - 	_	+ -+		_			+			+ +		+	+	++	-	+ - +		+			
Phenathrene mg/L	(,,,,1,)	0.	+	-	+	 	+	++	+	+			-		l			+	+	+ +	+	+ - +	ł	1			
Pyrene mg/L < 0.0000182	1	O.	+	-	+	 	+	+	+	+ +		+	-	+	l			+	+		+	+	ł	+			
TPH Mixtures		O.	+	 	+	 	+	+	+	+ -		+	-		l				+	+	+	+ -	ł	 			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	mg/L	N.0000102	 	~0.000010Z	 - 	NO.0000102	+	~0.0000101	+ +	<0.0000101	+	~0.0000101		10.0000104		*0.0000101		NO.0000101	+	~0.0000101	+	\$0.0000100		+		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	EDIT D: 1 D	mg/I	 	<0.134		<0.131		<0.134		<0.135		<0.136		<0.135		<0.135		<0.133		<0.142			+ +		<0.13	<0.13	<0.13
TPH-Gasoline Range mg/L			-		-		-		+				1						+		1		 		<0.13	<0.13	<0.13
Other Parameters Image: Control of the properties of the prop			 	1	-	 			+	+ +		+	1	+ +	1	+	1	+ + +	+ +	+ +	-		 	+	<0.12	<0.12	<0.12
Chloride mg/L 2510 2910 2680 2770 2060 2060 2660 2560 2560 2550 2340 3690 4400 2210 2410 2490 2700 2530 2910 834 852 834 1240 1		6/ L	+	+	1	+				+ - +			 		-					+ +			+	1	-0.10	-5.15	-0.10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		mg/I.	2510	2910	2680	2770	2060	2060	2660	2560	2550	2340	3690	4400	2210	2410	2490	2700	2530	2910	834	852	834	1240	483	483	440
Suspended Solids mg/L		-																							825	895	865
Salinity ppt 4.5 4.5 6.3		-			2,000	2300	5520	2370	-510				2200		1		t	2200	+		1				130	128	100
Hardness mg/L 811 863 652 828 808 1250 709 840 785 277 277 403 Bicarbonate Alkalinity mg/L Caccos 64.6 64.6 65.5 65.5 75.1	•	-	4.5	+		 _ 			4.5	 			6.3						+ +	 _ 							
Bicarbonate Alkalinity mg/LCsc03 64.6 63.5 75.1 75.1				-	863	H + +	652			+ +		+	1	+	l	+ +	-	+ +		+			277				
		-					332	+	520			+	1250	+		+ +		+	+	+		+ +		+			
	Carbonate Alkalinity	mg/L CaCO4	† †		<0.17						<0.17				<0.17												
Sulfate mg/L 149 215 187			149		3.17	 	<u> </u>	++	215			++	187	+	,			+	+	+	 		+ +	 			

Page 2 of 3 2015\116008\24472MappE.xls

Table E-7 Surface Water Data Split Surface Water Analytical Results

East White Lake Field Vermilion Parish, Louisiana

Notes:

The following notes apply to the surface water data set provided in Table E-7.

- -- Analysis not performed for this sample.
- B For inorganics, result is between Reporting Limit and Method Detection Limit
- JH bias is likely high
- U not detected based on quality control criteria. Constituent was detected in the laboratory methods blank and
- < Not detected at the method detection detection limit (MDL) shown
- * SW 109 is a field duplicate of SW 09.

SW-1, SW-2, and SW-3 were collected from the canal near the SED15 Pit area before initiation of remediation activities.

TABLE E-8

CRAB EDIBLE TISSUE DATA

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

			Meat (mg/kg-wet weight)									Hepatopancreas (mg/kg-wet weight)							
	Sample ID ^(a)	ТРН (C8-C16)		TPH (C16-28)		Total Arsenic	Inorganic Arsenic		Total Barium	Total Mercury	Methyl Mercury	ТРН (C8-C16)		ТРН (C16-28)	Total Arsenic	Inorganic Arsenic	Total Barium	Total Mercury	Methyl Mercury
	EWL-T-01A-C	4.5	UR	4.5	UR	0.117	0.005	U	4.92	0.0772	0.0286	21.6	U	59.4	0.677	0.03	13.8	0.0445	0.0316
	EWL-T-01-C	9.4	U	9.4	U	0.172	0.005	U	8.18	0.0899	0.0688	70.3		167	1.06	0.041	29.3	0.0377	0.0231
	EWL-T-02-C	5	U	5	U	0.164	0.005	U	8.08	0.068	0.0323	22.2	U	90.8	1.19	0.052	15.3	0.0284	0.0193
	EWL-T-03-C (c)	13.9	U	13.9	U	0.168	0.006	U	11.83	0.1035	0.0498	242		242	0.963	0.037	22.9	0.03095	0.01825
	EWL-T-04-C	5.5	U	5.5	U	0.137	0.005	U	4.83	0.0646	0.0477	5.8	U	9.9	0.948	0.065	15.8	0.0334	0.0171
	EWL-T-05-C	5.1	U	5.1	U	0.159	0.006	U	4.28	0.078	0.054	136	U	856	1.3	0.058	19.9	0.0341	0.0187
	EWL-T-06-C	8	U	8	U	0.17	0.006	U	4.88	0.0841	0.0497	34.1	U	174	0.913	0.035	24.5	0.0412	0.0202
Site	EWL-T-07-C	6.5	U	6.5	U	0.161	0.006	U	9.08	0.0707	0.046	47.1		101	1.07	0.051	21	0.0341	0.0224
S	EWL-T-08-C	5	U	5	U	0.128	0.005	J	8.89	0.0689	0.0439	90		300	0.86	0.051	18.1	0.0419	0.0388
	EWL-T-09-C	6.7	U	6.7	U	0.163	0.005	U	5.55	0.0699	0.0473	54	U	209	0.879	0.036	19.9	0.0325	0.025
	EWL-T-10-C (c)	12.6	U	12.6	U	0.209	0.0065	J	4.935	0.0906	0.0348	142		314	1.23	0.0335	31.9	0.02365	0.01735
	EWL-T-11-C	12.9	U	12.9	U	0.159	0.005	U	6.47	0.0733	0.0377	111		443	1.14	0.079	19.2	0.0214	0.009
	EWL-T-12-C	4.4	U	4.4	U	0.251	0.006	U	5.13	0.058	0.0166	60.6	J	277	1.23	0.048	26.4	0.0318	0.0118
	Average (d)	NC		NC		0.17	0.0032		6.7	0.077	0.043	69		249	1.0	0.047	21	0.034	0.021
	EWL-TR-01-C	8.7	U	8.7	U	0.209	0.006	J	6.0	0.0662	0.0391	NA	П	NA	1.12	0.06	19.5	0.0295	0.0236
	EWL-TR-02-C	4.7	U	4.7	U	0.177	0.005	U	5.59	0.0597	0.0323	61.1	Ħ	143	0.899	0.048	17.9	0.0195	0.0141
	EWL-TR-03A-C	5.2	U	5.2	U	0.23	0.006	U	10.1	0.0953	0.0204	135		305	1.29	0.042	22.7	0.0318	0.0169
	EWL-TR-03-C	4.9	U	4.9	U	0.14	0.005	U	6.5	0.0692	0.029	34.3	U	145	0.896	0.059	23.7	0.0272	0.0152
ခ	EWL-TR-04-C	4.6	U	4.6	U	0.162	0.006	U	8.94	0.0796	0.0403	91.6	Ħ	262	0.991	0.061	33.1	0.0353	0.024
l ĕ	EWL-TR-05-C	4.8	U	4.8	U	0.196	0.006	U	13.7	0.0476	0.0247	53.9	U	82 J	1.5	0.054	21.7	0.0394	0.0064
Ē	EWL-TR-06-C	7.4	U	7.4	U	0.251	0.009	J	13.1	0.106	0.0608	21.7	U	144	1.09	0.047	27.3	0.0259	0.0126
Reference	EWL-TR-07-C	4.8	U	4.8	U	0.299	0.006	U	4.08	0.0517	0.0254	85.5		302	1.31	0.052	24.2	0.0309	0.0093
-	EWL-TR-08-C	5.0	U	5.0	U	0.202	0.006	U	6.77	0.0473	0.0257	188		254	1.78	0.066	29.8	0.0315	0.0065
	EWL-TR-09-C	5.2	U	5.2	U	0.181	0.007	U	9.46	0.0551	0.019	100		393	1.95	0.052	23.7	0.0556	0.0082
								Ш											
	Average (d)	NC		NC		0.20	0.0039		8.4	0.068	0.032	80		226	1.3	0.054	24	0.033	0.014
	EWL-BIL-C	3.5	U	4.4	J	1.78	0.014	J	0.477	0.0494	0.0279	22.4	U	140	3.95	0.072	1.19	0.0347	0.0148
	EWL-BR-C	9.6	U	9.6	U	1.06	0.008	J	1.08	0.032	0.0119	23.7	U	241	2.56	0.049	1.58	0.0108	0.0047
	EWL-DES-C	5.6	U	8.1	J	0.237	0.005	J	1.33	0.0173	0.0117	22.7	U	88.1	0.994	0.028	4.91	0.0098	0.00579
kel	EWL-HOU-C	5.3	U	7.5	J	0.989	0.008	J	1.31	0.0332	0.0292	28.4	U	174	2.15	0.036	2.61	0.0173	0.0104
Market	EWL-LC-C (c)	16.2	U	16.2	U	0.886	0.0075	Ħ	0.893	0.05025	0.0192	310.5	Ħ	351	3.15	0.0585	0.9935	0.0421	0.00925
Z	EWL-NO-C	14.4	U	14.4	U	0.408	0.006	U	2.5	0.0536	0.016	197	П	298	1.34	0.05	6.05	0.0172	0.0085
								Ħ					П						
	Average (d)	NC		6.7		0.89	0.0076		1.3	0.039	0.019	93		215	2.4	0.049	2.9	0.022	0.0089

Notes:

- U = Result was reported as not detected by the laboratory (i.e., less than the MDL, defined by the laboratory as the "Adjusted Method Detection Limit"); value shown is the MDL.
- J = Laboratory qualifier indicating that the reported value is an estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- UR = Surrogate recovery identified as less than 10%; therefore, this non-detect result is considered not reliable for use in quantitative analysis.
- NA = Edible Tissue Concentration could not be calculated due to unavailable meat or hepatopancreas data (either due to insufficient hepatopancreas sample to analyze TPH or R-qualified results).
- NC = Not calculated; for datasets that were completely nondetect, an average concentration was not calculated.
- (a) Consistent with Louisiana regulatory agency Protocol (LDHH et al., 2012), crab meat and hepatopancreas were analyzed separately in composite samples collected during the field study (December 2010 through January 2011). These tissues comprise the edible tissues for regular human consumption.
- (b) Edible Tissue Concentration (ETC) for each composite crab sample, the ETC was calculated as the sum of the mass-weighted TPH concentrations for crab meat and hepatopancreas, using sample-specific tissue weight (mass) data reported by the laboratory for meat and hepatopancreas as follows:
 - ETC = (concentration in meat) x (% edible tissue comprised of meat) + (concentration in hepatopancreas) x (% edible tissue comprised of hepatopancreas).
 - In accordance with Louisiana regulatory agency guidance for treatment of nondetect results in tissues (LDHH et al, 2012), one-half the detection limit was used for non-detect results to calculate Edible Tissue Concentrations (ETCs), so ETCs with U are calculated from one-half detection limits for non-detect meat or hepatopancreas results.
- (c) Duplicate samples were prepared by the sample preparation laboratory (Columbia Analytical Services, Inc.) as separate aliquots from the same composite homogenized tissue (i.e., meat or hepatopancreas), where one aliquot is considered the parent and the other is labeled as a laboratory duplicate. The concentrations listed in this table, and used in the risk assessment, represent the average concentration from the parent sample and the duplicate. Since the tissue weight data was obtained from the composite homogenized tissue, the tissue weights are equal for the parent sample and duplicate.
- (d) For averaging datasets comprised of both nondetect values and detections, one-half detection limits were used to represent concentrations of nondetect results in accordance with Louisiana regulatory agency guidance for treatment of nondetect results in tissues (LDHH et al, 2012).

Page 1 of 2 2015\116008\24472MappE.xls

TABLE E-8

CRAB EDIBLE TISSUE DATA

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

				Edible Tis	sue	e Concentrati	on (HP & Meat	t) (r	ng/kg-wet we	eight) (b)	
	Sample ID ^(a)	ТРН (C8-C16)		TPH (C16-28)		Total Arsenic	Inorganic Arsenic		Total Barium	Total Mercury	Methyl Mercury
	EWL-T-01A-C	NA		NA		0.205	0.00683		6.32	0.072	0.0291
	EWL-T-01-C	15.8		32.2		0.322	0.00902		11.8	0.0811	0.0611
	EWL-T-02-C	3.96	U	17.5	T	0.338	0.0109		9.3	0.0613	0.0301
	EWL-T-03-C (c)	48.4		48.3		0.308	0.00899		13.8	0.0907	0.0442
	EWL-T-04-C	2.77	U	3.91	T	0.268	0.0126		6.6	0.0596	0.0428
	EWL-T-05-C	13.7	U	148	T	0.354	0.0124		6.95	0.0705	0.048
	EWL-T-06-C	6.14	U	31.8		0.292	0.00824		8.09	0.0771	0.0449
Site	EWL-T-07-C	10.8		20.1	T	0.318	0.0113		11.1	0.0644	0.0419
S	EWL-T-08-C	15.3		46.1	T	0.235	0.0117		10.2	0.0649	0.0432
	EWL-T-09-C	7.54	U	39.8		0.29	0.00843		8.09	0.0633	0.0434
	EWL-T-10-C (c)	30.9		62.1		0.394	0.0114		9.82	0.0784	0.0316
	EWL-T-11-C	24.3		81.2		0.327	0.0156		8.65	0.0644	0.0328
	EWL-T-12-C	12.9		52.4		0.43	0.0112		9.01	0.0532	0.0157
					T						
	Average (d)	16		49		0.31	0.011		9.2	0.069	0.039
	EWL-TR-01-C	NA		NA		0.369	0.0155		8.36	0.0598	0.0364
	EWL-TR-02-C	14.1		30.5		0.322	0.0116		8.06	0.0516	0.0287
	EWL-TR-03A-C	27		58.3		0.425	0.0102		12.4	0.0836	0.0198
	EWL-TR-03-C	5.19	U	29		0.281	0.013		9.7	0.0614	0.0264
ခ	EWL-TR-04-C	15.3		40		0.282	0.0114		12.5	0.0732	0.0379
en	EWL-TR-05-C	7.19	U	17.9		0.45	0.0129		15.3	0.046	0.0211
Reference	EWL-TR-06-C	4.96	U	28.5		0.399	0.0157		15.6	0.0918	0.0523
Re	EWL-TR-07-C	15.4		49.2		0.457	0.0107		7.23	0.0484	0.0229
	EWL-TR-08-C	40.3		53.8		0.524	0.0159		11.5	0.0441	0.0218
	EWL-TR-09-C	23.2		85		0.554	0.0137		12.5	0.0552	0.0167
	Average (d)	17		44		0.41	0.013		11.3	0.062	0.028
	EWL-BIL-C	3.27	U	26.2	ı	2.13	0.0233		0.591	0.047	0.0258
	EWL-BR-C	6.2	U	51.6	T	1.36	0.0161	1	1.18	0.0278	0.0105
	EWL-DES-C	3.54	U	15.1	T	0.303	0.007		1.64	0.0166	0.0112
Market	EWL-HOU-C	4.08	U	28.1	T	1.13	0.0115	1	1.47	0.0312	0.0269
ar	EWL-LC-C (c)	71.3	Ħ	79.8	T	1.36	0.0182	\top	0.914	0.0485	0.0171
\mathbf{Z}	EWL-NO-C	38.8	П	55.6	1	0.563	0.0108		3.09	0.0475	0.0148
			П		Ť	***		Ť			
	Average (d)	21		43		1.1	0.015		1.5	0.036	0.018

	ed on Reported Weight
3/14	IID
Meat	HP
84%	16%
83%	17%
83%	17%
82%	18%
84%	16%
83%	17%
84%	16%
83%	17%
85%	15%
82%	18%
82%	18%
83%	17%
82%	18%
0.83	0.17
82%	18%
80%	20%
82%	18%
81%	19%
85%	15%
80%	20%
82%	18%
84%	16%
80%	20%
79%	21%
0.82	0.18
84%	16%
80%	20%
91%	9%
88%	12%
79%	21%
83%	17%
0370	17/0
0.84	0.16
0.04	0.10

Notes:

- U = Result was reported as not detected by the laboratory (i.e., less than the MDL, defined by the laboratory as the "Adjusted Method Detection Limit"); value shown is the MDL.
- J = Laboratory qualifier indicating that the reported value is an estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- UR = Surrogate recovery identified as less than 10%; therefore, this non-detect result is considered not reliable for use in quantitative analysis.
- NA = Edible Tissue Concentration could not be calculated due to unavailable meat or hepatopancreas data (either due to insufficient hepatopancreas sample to analyze TPH or R-qualified results).
- NC = Not calculated; for datasets that were completely nondetect, an average concentration was not calculated.
- (a) Consistent with Louisiana regulatory agency Protocol (LDHH et al., 2012), crab meat and hepatopancreas were analyzed separately in composite samples collected during the field study (December 2010 through January 2011). These tissues comprise the edible tissues for regular human consumption.
- (b) Edible Tissue Concentration (ETC) for each composite crab sample, the ETC was calculated as the sum of the mass-weighted TPH concentrations for crab meat and hepatopancreas, using sample-specific tissue weight (mass) data reported by the laboratory for meat and hepatopancreas as follows:
 - ETC = (concentration in meat) x (% edible tissue comprised of meat) + (concentration in hepatopancreas) x (% edible tissue comprised of hepatopancreas).
 - In accordance with Louisiana regulatory agency guidance for treatment of nondetect results in tissues (LDHH et al, 2012), one-half the detection limit was used for non-detect results to calculate Edible Tissue Concentrations (ETCs), so ETCs with U are calculated from one-half detection limits for non-detect meat or hepatopancreas results.
- (c) Duplicate samples were prepared by the sample preparation laboratory (Columbia Analytical Services, Inc.) as separate aliquots from the same composite homogenized tissue (i.e., meat or hepatopancreas), where one aliquot is considered the parent and the other is labeled as a laboratory duplicate. The concentrations listed in this table, and used in the risk assessment, represent the average concentration from the parent sample and the duplicate. Since the tissue weight data was obtained from the composite homogenized tissue, the tissue weights are equal for the parent sample and duplicate.

⁽d) For averaging datasets comprised of both nondetect values and detections, one-half detection limits were used to represent concentrations of nondetect results in accordance with Louisiana regulatory agency guidance for treatment of nondetect results in tissues (LDHH et al, 2012).

TABLE E-9

FORAGE FISH TISSUE DATA

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

	TPH and N	Ietal Conce	entr	ations in Fo	ra	ge Fish (W	ho	le Body; mg	ζ/k	g-wet weigh	it)	
	Sample ID (a)	TPH (C8-C16)		TPH (C16-C28)		Total Arsenic		Inorganic Arsenic		Total Barium	Total Mercury	Methyl Mercury
	EWL T-01-F-COMPOSITE_Shad	24.1	U	24.1	U	0.644		0.106		16.4	0.0119	0.0041
	EWL T-02-F-COMPOSITE_Shad	20	U	87.2		0.629		0.1		17	0.0105	0.0029
	EWL T-03-F-COMPOSITE_Shad	22.8	U	27.2	J	0.557		0.09		15.9	0.0098	0.0031
	EWL T-04-F-COMPOSITE_Shad	17.2	U	40.3		0.614		0.103		17.1	0.0131	0.0031
	EWL T-05-F-COMPOSITE_Shad	30	U	106		0.631		0.088		19.1	0.0117	0.0031
	EWL T-06-F-COMPOSITE_Shad	10.6	U	16.5	J	0.602		0.102		16.4	0.0109	0.006
	EWL T-07-F-COMPOSITE_Shad	16.4	U	26.9	J	0.655		0.096		17	0.0102	0.0078
Site	EWL T-08-F-COMPOSITE_Shad	23.2	U	23.2	U	0.65		0.105		17.1	0.0097	0.0033
S	EWL T-09-F-COMPOSITE_Shad	17.6	U	24.2	J	0.691		0.089		16.7	0.0104	0.0038
	EWL T-10-F-COMPOSITE_Shad	21.8	U	26.5	J	0.658		0.094		20.1	0.0125	0.0044
	EWL T-11-F-COMPOSITE_Shad	24.2	U	24.2	U	0.623		0.086		18	0.0114	0.0036
	EWL T-12-F-COMPOSITE_Shad	13.3	U	15.2	J	0.549		0.093		14.7	0.0106	0.0036
	EWL T-02-F-COMPOSITE_Bluegill	13.3	U	19	J	0.315		0.003	J	15.6	0.0941	0.0784
	EWL T-05-F-COMPOSITE_Bluegill	NA		NA		0.389		0.036		15.2	0.0659	0.0473
	Average (b)	NC		33		0.59		0.085		17	0.021	0.012
			1 1									
	EWL TR-02-F-COMPOSITE_Shad	17.3	U	61.1		0.393	-	0.064	H	9.1	0.012	0.0068
	EWL TR-03-F-COMPOSITE_Shad	28.2	U	28.2	U	0.596	-	0.077	H	9.49	0.0098	0.0048
	EWL TR-04-F-COMPOSITE_Shad	5.7	UR	24.7		0.551	-	0.164	H	13.4	0.0116	0.0046
4)	EWL TR-05-F-COMPOSITE_Shad	44.9	U	44.9	U	0.676	-	0.124		13	0.0104	0.0046
Reference	EWL TR-06-F-COMPOSITE_Shad	21.1	U	21.1	U	0.574		0.093		10.8	0.0101	0.0035
i.e	EWL TR-07-F-COMPOSITE_Shad	27.1	U	27.1	U	0.61		0.102		11.5	0.0098	0.005
efe	EWL TR-08-F-COMPOSITE_Shad	28.5	U	28.5	U	0.617		0.113		11.9	0.0101	0.0045
	EWL TR-09-F-COMPOSITE_Shad	5.6	UR	16	Ш	0.621	<u> </u>	0.111	Ш	12.1	0.0101	0.0035
	EWL TR-01-F-COMPOSITE_Bluegill	23.7	U	23.7	U	0.102	J	0.01	Ш	12.5	0.0444	0.0324
	EWL TR-04A-F-COMPOSITE_Bluegill	21.2	U	21.2	U	0.194	<u> </u>	0.031		19.8	0.0553	0.0408
	Average (b)	NC		20		0.49		0.089		12	0.018	0.011

Notes:

- U = Result was reported as not detected by the laboratory (i.e., less than the MDL, defined by the laboratory as the "Adjusted Method Detection Limit"); value shown is the MDL.
- J = Laboratory qualifier indicating that the reported value is an estimated concentration above the adjusted method detection limit and below the adjusted
- UR = Surrogate recovery identified as less than 10%; therefore, this non-detect result is considered not reliable for use in quantitative analysis.
- NA = Insufficient sample to analyze TPH.
- NC = Not calculated; for datasets that were completely nondetect, an average concentration was not calculated.
- (a) Fish were collected during the field study (December 2010 through January 2011) in accordance with the protocol outlined in a Quality Assurance Project Plan/Sampling Analysis and Assessment Plan for Crab and Forage Fish Tissue dated December 6, 2010.
- (b) For averaging datasets comprised of both nondetect values and detections, one-half detection limits were used to represent concentrations of nondetect results, as recommended in the Protocol for Issuing Public Health Advisories for Chemical Contaminants in Recreationally Caught Fish and Shellfish ("Louisiana Protocol", LDHH et al., 2012).

Data Quality Review Documentation

Appendix F

Project No. 0116008 UNOCAL Vermilion Parish, Louisiana

Environmental Resources Management Southwest, Inc.

3838 North Causeway Boulevard, Suite 3000 Metairie, Louisiana 70002 (504) 831-6700

Data Validation and Usability Review by Quality Assurance Associates, Inc., July 2, 2010

Appendix F-1

DATA VALIDATION AND USABILITY REVIEW OF CHEMICAL ANALYSIS DATA

EAST WHITE LAKE

Prepared by Quality Assurance Associates (QAA, L.L.C.)

1007 Francis Drive
College Station, TX 77840
www.qaallc.com
979-694-7199

TABLE OF CONTENTS

1.0	PRO	JECT O	VERVIEW AND SUMMARY	1
2.0	PRO	CEDURI	ES	3
3.0	DAT	A VALID	ATION RESULTS	5
	3.1	COMP	ARABILITY	5
	3.2	ACCU	RACY	5
		3.2.1	Laboratory Control Sample (LCS) Accuracy	5
		3.2.2	Matrix Spike (MS) Accuracy	5
		3.2.3	Surrogate (SU) Recovery	6
	3.3	PREC	ISION	6
		3.3.1	Laboratory Control Sample Duplicate (LCSD) Precision	6
		3.3.2	Matrix Spike Duplicate (MSD) and Laboratory Duplicate (DUP) Precision	6
		3.3.3	Field Duplicate (FD) Precision	7
	3.4	REPRI	ESENTATIVENESS	7
		3.4.1	Data Completeness	7
		3.4.2	Chain-of-Custody	7
		3.4.3	Sample Preservation and Holding Time	7
		3.4.4	Blank Contamination	8
		3.4.5	Analytical Procedures	8
		3.4.6	Results Assessment	8
	3.5	COMP	LETENESS	9
4.0	DAT	A USABI	LITY	10
	4.1	METH	ODOLOGY	10
	4.2	REPO	RTING LIMITS	10
	4.3	QC PE	RFORMANCE	10

LIST OF TABLES

Table 1 - Sample Summary

Table 2 - Qualified Sample Results

Table 3 – Data Validation Qualifiers (DVQs)

Table 4 - Method Summary

Table 5 - QC Check Results

Table 6 – Field Duplicate Summary

1.0 PROJECT OVERVIEW AND SUMMARY

Quality Assurance Associates (QAA) completed a third party QA/QC data validation and usability review of chemical analysis data from the East White Lake site. The purpose of the validation and review is to ensure that the data is technically valid and also appropriate and reliable for use in quantitative risk assessment, including under Louisiana's Risk Evaluation/Corrective Action Program (RECAP). The data includes sediment, soil, surface water, and groundwater samples collected by Michael Pisani and Associates (MPA) during February 2010 through June 2010 and analyzed by Gulf Coast Analytical Laboratories, Inc. (GCAL). A complete list of samples and the tests performed on each is shown in Table 1. All samples were included in the validation and review.

The following summarizes the results of the validation and usability review:

- 1) Analytical Methodology The laboratory used SW-846 or other rigorous analytical methodology and is accredited in accordance with LAC, Title 33, Part I, Subpart 3 (certification number 01955). The methods are appropriate for the intended use of risk assessment per the Louisiana Department of Environmental Quality (LDEQ) and provide definitive (i.e., analyte-specific with confirmation of identity and concentration) and usable data.
- Sample Reporting Limits The analytical results are in ppm (mg/L for waters and mg/kg for solids) and include a Result, Method Detection Limit (MDL), and Reporting Detection Limit (RDL) for each sample. The MDL is a detection limit, which provides a measure of the concentration an instrument can detect or 'see' in a given sample. The RDL is a quantitation limit, which provides a measure of the concentration an instrument can accurately measure in a given sample. Both the MDL and RDL are adjusted for sample-specific actions such as dilution or use of a smaller aliquot size. Results for solid samples are reported on a wet-weight basis. The laboratory reported non-detects as 'ND' and detects at a concentration between the MDL and RDL as estimated (i.e., with a B flag for inorganics and a J flag for organics). Non-detects should be considered not present at or above the RDL per RECAP format. (In the EDD, the RDL is reported under the Detection_Limit column and the MDL is not reported.) Some samples required dilution due to target analyte concentrations but there are no elevated reporting limits for non-detects except for two samples. Samples SED-6 (0-2) and SED-8 (0-2) for PCB, which are all non-detect, required a 5x dilution due to sample matrix. The RDLs for all non-detects are below the limiting RECAP screening standard (GW_SS) for all groundwater samples and below the limiting screening standard (the lowest of SOIL_SSni, SOIL_SSi, and SOIL_SSGW) for all soil samples and thus can be used to demonstrate conformance with the limiting standards.
- 3) Blank Sample Results The laboratory analyzed a preparation blank for every analytical batch (maximum 20 samples) and the results are all below the RDL, indicating that no significant contamination was introduced in the laboratory, except for one blank with sodium. The levels of sodium in the associated samples are well above that in the laboratory blank and thus data quality is not affected. A trip blank was shipped with the groundwater samples collected for BTEX on March 5, 2010 and on May 25, 2010. The trip blank results are all non-detect, indicating that no contamination was introduced during shipment.
- 4) QC Outcomes and Data Qualifiers For all tests except two general chemistry parameters (Alkalinity and Salinity), the laboratory prepared and analyzed a Laboratory Control Sample (LCS) for every analytical batch (maximum 20 samples). Some batches also include a Laboratory Control Sample Duplicate (LCSD). LCS/LCSD allow assessment of laboratory performance. For most tests, the laboratory prepared and analyzed a Matrix Spike (MS) for every analytical batch (maximum 20 samples), generally using a sample from site. Some of these batches also include a Matrix Spike Duplicate (MSD). MS/MSD provide an indication of how the sample matrix affects method performance. Additionally, three field duplicates were collected with the samples including a sediment sample, a surface water, and a groundwater. Field duplicates allow assessment of the precision of the sampling, preparation, and analysis technique.

QAA, L.L.C.

There are no significant QC deficiencies, and thus all data is considered technically valid and acceptable for risk assessment purposes. Some of the sample results are qualified due to minor QC deviations as shown in Table 2. Results with a data validation qualifier of UJ should be considered not present above the reporting limit, and the reporting limit as an estimated value. Results with a data validation qualifier of J should be regarded as present, and the reported concentration as an estimated value. Additionally, results with a laboratory qualifier of B or J (i.e., results between the MDL and RDL) should be considered estimates in accordance with EPA method definitions.

2.0 PROCEDURES

QAA completed the validation by examining the hardcopy data packages produced by the laboratory. The validation included QC Checks covering data comparability, accuracy, precision, representativeness, and completeness. The laboratory packages include analysis results and laboratory QC reports plus supporting raw data for select Total Petroleum Hydrocarbon (TPH) analyses. QAA examined the data for 100% of the samples to determine if the analyses meet the QC requirements for:

- Chain-of-Custody,
- Data Completeness,
- · Reporting Limits,
- Sample Preservation and Holding Time,
- · Blanks (Laboratory and Field),
- Laboratory Control Samples (LCS/LCSD),
- Matrix Spike Samples (MS/MSD),
- · Field Duplicates (FD),
- Surrogates (SU),

Additionally, for most of the TPH analyses (as indicated in Table 1), QAA examined the data to determine if the analyses meet the QC requirements for:

- Instrument Calibration,
- Calibration Verification,
- · Analyte Qualitative Identification, and
- Sample Quantitation.

A QAA Data Validation Specialist performed the examination using the results and QC reports supplied by the laboratory and data validation checklists. The validator used the following control limits based on requirements in the analytical methods and to provide a consistent approach for similar analytes, which allows the user to easily assess data quality:

- Inorganics and General Chemistry Parameters: 75-125% spike recovery and <u>+</u>RDL difference (if either result < 5x RDL) or 25% RPD for laboratory duplicates. Spike recovery considered inconclusive if the unspiked sample concentration is greater than four times the amount of spike added.
- Purgeable Organics (BTEX) and Total TPH: 70-130% spike recovery and ±RDL difference (if either result < 5x RDL) or 20% RPD for laboratory duplicates. Spike recovery considered inconclusive if the unspiked sample concentration is greater than one-fourth of the amount of spike added.
- Extractable Organics (PCB, PAH) and Fractionated TPH: 60-140% spike recovery and <u>+</u>RDL difference (if either result < 5x RDL) or 20% RPD for laboratory duplicates. Spike recovery considered inconclusive if the unspiked sample concentration is greater than one-fourth of the amount of spike added.
- Solid Samples: + 3 x MQL difference (if either result < 5x RDL) or 50% RPD for field duplicates
- Aqueous Samples: + 2 x MQL difference (if either result < 5x RDL) or 30% RPD for field duplicates

After completing the examination, the validator applied qualifying flags to any data associated with a QC deviation. The qualifiers were applied in accord with the USEPA's *National Functional Guidelines for Organic Data Review*, October 1999

and *National Functional Guidelines for Inorganic Data Review*, October 2004 (i.e., the NFG). The Data Validation Qualifiers (DVQs) are defined in Table 3.

The Project Manager then performed a usability review for the intended use of risk assessment taking into consideration the analytical methodology, laboratory reporting limits, and QC performance identified during validation. The PM consulted the USEPA's *Guidance for Data Useability in Risk Assessment, Part A* (April 1992) for guidelines on data usability.

QA oversight was provided by the Quality Assurance Manager (QAM) to insure that the validation and usability review were appropriate for this project. Findings for the validation and review are discussed below.

3.0 DATA VALIDATION RESULTS

The data set includes 104 sediment samples including one field duplicate, 71 soil samples, 5 SPLP (Synthetic Precipitation Leachate Procedure) samples, 22 surface water samples including one field duplicate, 15 groundwater samples including one field duplicate, two field MS/MSD pairs, and two trip blanks that were analyzed for various parameters as shown in Table 1. All samples were included in the validation and thus a total of 3,085 sample results were validated. The outcomes are discussed below.

3.1 COMPARABILITY

Samples were analyzed using standard EPA protocols or other rigorous methods as summarized in Table 4. All analytical results were reviewed and validated. The analytical results are considered comparable to other results similarly generated and validated.

3.2 ACCURACY

QAA evaluated the analytical accuracy of the sample results using the percent recovery (%R) results for the laboratory control samples (LCS/LCSD), matrix spikes (MS/MSD), and surrogate spikes. LCS/LCSD are prepared using a clean sample matrix (reagent water or sand) that is spiked with the analytes of interest before preparation and analysis. They provide an indication of the accuracy of the preparation and analysis technique on a sample free of matrix effects. MS/MSD are prepared using a field sample that is spiked with the analytes of interest before preparation and analysis. They provide an indication of the accuracy of the preparation and analysis technique on the given sample matrix. Surrogates are compounds similar to the analytes of interest that are added to each sample before preparation and analysis and provide an indication of accuracy for each individual sample analysis.

3.2.1 LABORATORY CONTROL SAMPLE (LCS) ACCURACY

For all tests except two general chemistry parameters (Alkalinity and Salinity), the laboratory prepared and analyzed a Laboratory Control Sample (LCS) for every analytical batch (maximum 20 samples) as required. Some batches also include a LCSD. For this data set, there are 104 LCS and 30 LCSD each with recoveries reported for one or more target analytes. The LCS or average LCS/LCSD recoveries are within the control limits except in two cases (2-methylnaphthalene and naphthalene have low recoveries for one of the four PAH-water batches). The associated samples (i.e., those prepared and/or analyzed with the LCS/LCSD) were qualified as shown in Table 5.

3.2.2 MATRIX SPIKE (MS) ACCURACY

For all tests except four general chemistry parameters (Alkalinity, Salinity, TDS, and TOC) plus TPH-water and Fractionated-TPH, the laboratory prepared and analyzed a MS for every analytical batch (maximum 20 samples). Some batches also include a MSD. For this data set, there are 96 MS and 35 MSD each with recoveries reported for one or more target analytes. At least one MS was prepared using a sample from the site for every test except PCB-solid (for which there was only one batch) as shown in Table 1. The validator used the LCS to assess accuracy for batches without a MS prepared using a sample from the site. The MS or average MS/MSD recoveries are within the control limits or the test is considered inconclusive per method protocol based on the amount of spike added except in eight cases. The associated samples (i.e., those prepared and/or analyzed with the MS/MSD and of similar matrix) were qualified as shown in Table 5. Note that the recovery for zinc in the MS prepared using SED-BK-10 is exceptionally low at 0%. A laboratory duplicate was also prepared using this sample and indicates that the sample is non-homogeneous (91 RPD), which skewed the recovery results. Thus,

the low recovery is attributed to the non-homogeneous sample rather than poor method accuracy. All potentially affected samples were qualified as shown in Table 5.

3.2.3 SURROGATE (SU) RECOVERY

The laboratory spiked all samples for the applicable tests (i.e., BTEX, Fractionated TPH, PAH, PCB, and TPH) with one or more surrogates before preparation and analysis. There are 186 samples with surrogate spikes for this data set. All recoveries are within the control limits except as noted in Table 5. As shown, five samples required dilution and the surrogate was diluted out and thus the test is inconclusive, in accordance with method protocol. Additionally, for several PAH samples (SW-846 8270), only one of the three surrogates used for the analysis was outside the limits. Per the NFG, no qualifiers are warranted nor were any applied. Three TPH (TNRCC 1005) samples have high surrogate recoveries, which indicates a potential bias for detects, but all results for the samples are non-detect and thus there is no effect on data quality. Ultimately, the validator qualified four surface water PAH samples (SW-05, SW-03, SW-04, and SW-10) due to low surrogate recovery, two sediment TPH (TNRCC 1005) samples (SED-10 (2-4) and SED-11 (2-4)) due to high recovery, and one groundwater Fractionated TPH (TNRCC 1006) sample (SB-1-MW-D) due to low surrogate recovery.

3.3 PRECISION

QAA evaluated the sampling and analytical precision of the sample results using the relative percent difference (RPD) for the laboratory control sample duplicate (LCS/LCSD), matrix spike duplicate (MS/MSD), laboratory duplicate (DUP), and field duplicate (FD) pairs. LCS/LCSD are prepared using a clean sample matrix (reagent water or sand) that is spiked with the analytes of interest before preparation and analysis. They provide an indication of the precision of the preparation and analysis technique on a sample free of matrix effects. MS/MSD are prepared using a field sample that is spiked with the analytes of interest before preparation and analysis. They provide an indication of the precision of the preparation and analysis technique on the given sample matrix. FD are prepared by the sampler in the field and provide an indication of the precision of the sampling technique plus the preparation and analysis technique.

3.3.1 LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) PRECISION

For BTEX, PAH, PCB, TOC, TPH, and Fractionated TPH, the laboratory prepared and analyzed a LCSD for every analytical batch (maximum 20 samples). For this data set, there are 30 LCSD each with RPDs reported for one or more target analytes. The LCS/LCSD RPDs are within the control limits except in three cases as noted in Table 5. 2-Methylnaphthalene, anthracene, and naphthalene have high RPDs, which indicates a potential bias for detects, for one of the four PAH-water batches. The results for the associated samples (i.e., those prepared and/or analyzed with the LCS/LCSD) are all non-detect, and thus there is no effect on data quality.

3.3.2 MATRIX SPIKE DUPLICATE (MSD) AND LABORATORY DUPLICATE (DUP) PRECISION

For all tests except TPH-water and Fractionated TPH, the laboratory prepared and analyzed a MSD or DUP for every analytical batch (maximum 20 samples). For this data set, there are 35 MSD each with RPDs reported for one or more target analytes. At least one MSD or DUP was prepared using a sample from the site for every test except PCB-solid (for which there was only one batch) as shown in Table 1. The validator used the LCSD to assess precision for batches without a MSD or DUP prepared using a sample from the site. The MS/MSD and DUP RPDs are within the control limits except in two cases. The associated samples (i.e., those prepared and/or analyzed with the MSD or DUP and of similar matrix) were qualified as shown in Table 5.

3.3.3 FIELD DUPLICATE (FD) PRECISION

Three field duplicates were collected with the samples including one sediment, one surface water, and one groundwater. The RPDs or differences between the results (if either result is < 5x RDL) are within the control limits for all target analytes for all three duplicates as shown in Table 6.

3.4 REPRESENTATIVENESS

QAA evaluated analytical representativeness of the sample results by verifying the data completeness, examining the custody procedures, calculating holding times, examining blanks for evidence of contamination, and comparing the actual analytical procedures to those described in the analysis methods. Additionally, QAA examined and compared the analytical results for reasonableness. QAA did not evaluate sample representativeness.

3.4.1 DATA COMPLETENESS

The data packages contain all necessary information. The validator noted that the sample date for MPA-AB13 0-3 (DRY) (21005242817) is reported as 5/20/2000 in the laboratory package instead of 5/20/2010 as shown on the custody record.

3.4.2 CHAIN-OF-CUSTODY

All samples were hand-delivered with properly executed Chain-of-Custody records, which ensures sample integrity was maintained. The validator noted some minor discrepancies on the custody records and obtained clarification from the samplers as follows:

- The Comp(osite)/Grab designation is missing or incorrect in some cases. All samples were collected as grab samples per MPA.
- There is no place on the custody record to indicate how the dissolved metals aliquots were collected. All aliquots were filtered in the field and then placed in the sample container with nitric acid preservative per MPA.

The validator also noted that several of the samples were received four or more days after collection. Per MPA, all samples remained inside the sample coolers and in the possession of the sampler after collection until transferred to the laboratory courier personnel for delivery. Frequent checks and replenishment of ice were made.

3.4.3 SAMPLE PRESERVATION AND HOLDING TIME

All samples were properly preserved and analyzed within the holding times listed in the analytical methodology. The validator noted the following regarding sample preservation and holding time:

- For laboratory work order 210051128, CaCO3 is shown as a preservative on the custody record. This aliquot was
 originally collected for Salinity but it was not used by the laboratory since it is not required per the analytical
 methodology.
- TNRCC method 1005 includes a stipulation that solid samples be frozen within two days of collection, which comes
 from the Texas Commission for Environmental Quality (TCEQ, formerly the TNRCC) guidance for using method
 SW846-5035. The guidance applies when collecting samples for volatile analysis (i.e., when samples are expected
 to contain lighter ends). Only >C10 hydrocarbons were requested and reported for the solid samples for this site

- and thus the method 5035 recommendations (collection using a coring device and 2 days holding time before analysis or freezing) do not apply and were not used.
- The date reported as the extraction date for the Fractionated TPH (TNRCC 1006) analyses is actually the
 fractionation date. The TPH (TNRCC 1005) extracts were used for the fractionation, and thus the extraction date
 reported for the TNRCC 1005 analysis was used to determine if holding time requirements were met.

3.4.4 BLANK CONTAMINATION

The laboratory analyzed a preparation blank for every analytical batch (maximum 20 samples). There are 107 laboratory blanks for this data set. No organic compounds were detected in the laboratory blanks. As shown in Table 5, several inorganic compounds (chloride, barium, cadmium, calcium, chromium, magnesium, manganese, potassium, sodium, zinc, and mercury) were detected in the laboratory blanks. Per the NFG, sample results are not qualified if the inorganic analyte concentration in a preparation blank is less than the Contract Required Quantitation Limit (CRQL), which is equivalent to GCAL's RDL. In all but one case, the concentration in the preparation blank is below the RDL, and thus no qualifiers were applied in accord with NFG. (Other guidance documents including those for the LDEQ's RECAP and for the TCEQ's Texas Risk Reduction Program (TRRP) allow for qualification of samples if there are detectable concentrations in a preparation blank.) The sodium concentration in the preparation blank for batch 431670 is above the RDL. Sodium was detected in the associated samples (i.e., those prepared with the laboratory blank) at levels well above that in the blank (> 10x the blank concentration per the NFG), and thus no qualifiers were applied.

Additionally, two trip blanks were shipped with groundwater samples collected for BTEX: one on March 5, 2010 and one on May 25, 2010. The trip blank results are non-detect, indicating that the samples were not affected by contamination during shipment.

3.4.5 ANALYTICAL PROCEDURES

For the TPH samples with supporting raw data, the analytical procedures (instrument calibration, calibration verification, analyte qualitative identification, and sample quantitation) met the requirements in the analytical method. The validator did note the following regarding the TPH analyses:

• For some of the analyses of the aliphatic fraction for TNRCC method 1006, the printout of the chromatogram as presented in the hardcopy report indicates that the analyst selected a baseline that meets the end of the chromatographic 'hump' at a point above the forced baseline projection and before the C35 marker. The laboratory was contacted and a supervisor reviewed each chromatogram and determined that in each case, there is a flat rise in the baseline beyond the oil 'hump'. The analyst felt the oil peak ended at the point of integration. Per the analyst's experience, product ranges often shift retention times due to weathering and this was the analyst's interpretation for each analysis in question. For a conservative approach, the validator selected the chromatogram that appeared to be potentially most affected and the laboratory re-integrated the peak by drawing straight across from the beginning time baseline. The >C16-C35 Aliphatic result changed by only +5%, which is well within the inherent error of the method (+/- 25%). Thus no further action was taken and no data qualifiers were applied.

3.4.6 RESULTS ASSESSMENT

The validator compared the total metals concentration and the dissolved metals concentration for all samples with both analyses. Scientifically, the total metals concentration minus the dissolved metals concentration is expected to be greater than zero. Analytically, the inherent method error (+/-25%) may result in a negative difference. The validator calculated the

difference and compared the result to 2x RDL. For the 288 pairs of results, only six pairs have a dissolved concentration greater than the total concentration and an absolute difference between the results of greater than 2x RDL. The validator qualified each of these results as shown in Table 5.

Additionally, the validator compared the total TPH as determined by TNRCC method 1005 to that determined by TNRCC method 1006. For these procedures, the laboratory extracts each sample with n-pentane and analyzes the extract to determine TPH by TNRCC method 1005. The same extract is then fractionated and the two fractions (aliphatic and aromatic) are analyzed to determine TPH by TNRCC 1006. Since the same extract is used for both analyses, a comparison of the results will show any loss or altering of TPH during the fractionation of the extract on the solid phase silica column. The validator calculated the percent recovery of TPH (1006) compared to TPH (1005) and determined if it was within 60-140%. For the 33 samples with both analyses, only three pairs have a recovery outside of the limits. The validator qualified each of these results as shown in Table 5.

3.5 COMPLETENESS

QAA evaluated completeness by comparing the total number of samples collected with the total number of samples with valid analytical data. The validator did not reject any data. The completeness is 100%.

4.0 DATA USABILITY

QAA evaluated data usability by considering the appropriateness of the analytical methods used by the laboratory, the reporting limits stated by the laboratory, and the qualifiers applied by the validator.

4.1 METHODOLOGY

The SW-846 or other rigorous methodologies employed by the laboratory are appropriate for the intended use of risk assessment, including the LDEQ's RECAP and provide definitive data per RECAP.

4.2 REPORTING LIMITS

Sample results are reported with a Method Detection Limit (MDL) and Reporting Detection Limit (RDL). The MDL is a detection limit and thus corresponds to the lowest concentration at which a target analyte can be positively identified but not necessarily accurately measured and is statistically determined by the laboratory. The RDL is a quantitation limit and thus reflects the lowest concentration at which a target analyte can be both positively identified and accurately measured. The MDLs and RDLs reported by GCAL are adjusted for sample-specific actions such as dilution or use of a smaller aliquot size, and thus are sample detection limits and sample quantitation limits, respectively. Per the RECAP, the sample quantitation limit should be less than the limiting screening standard. The RDLs for all non-detects are below the limiting screening standard (GW_SS) for all groundwater samples and below the limiting screening standard (the lowest of SOIL_SSni, SOIL_SSi, and SOIL_SSGW) for all soil samples.

4.3 QC PERFORMANCE

There are no major QC deficiencies that resulted in rejection of data, and thus all data is acceptable for risk assessment purposes. Results that are qualified with a *UJ* should be considered not present above the reporting limit, and the reporting limit as an estimated value. Results that are qualified with a *J* should be regarded as present, and the reported concentration as an estimated value.

TABLE 1 SAMPLE SUMMARY (SEDIMENTS)

LABORATORY ID	FIELD ID	SAMPLE DATE				TESTS PER	RFORMED			
21003082601	SED-1 (0-2)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082601MS	SED-1 (0-2)	2/25/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082601MSD	SED-1 (0-2)	2/25/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082602	SED-1 (2-4)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082603	SED-1 (4-6)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082604	SED-2 (0-2)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082604MS	SED-2 (0-2)	2/25/10	NA	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082604DUP	SED-2 (0-2)	2/25/10	NA	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082605	SED-2 (2-4)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082606	SED-2 (4-6)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082607	SED-3 (0-2)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082608	SED-3 (2-4)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082609	SED-3 (4-6)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082610	SED-4 (0-2)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	PCB	TPH (1005)*	NA	NA
21003082610MS	SED-4 (0-2)	2/25/10	NA	NA	NA	NA	NA	TPH (1005)*	NA	NA
21003082610MSD	SED-4 (0-2)	2/25/10	NA	NA	NA	NA	NA	TPH (1005)*	NA	NA
21003082611	SED-5 (0-2)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	PCB	TPH (1005)*	NA	NA
21003082612	SED-6 (0-2)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	PCB	TPH (1005)*	NA	NA
21003082613	SED-7 (0-2)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082614	SED-7 (2-4)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	PCB	TPH (1005)*	Frac TPH (1006)*	NA
21003082615	SED-7 (4-6)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	PCB	TPH (1005)*	Frac TPH (1006)*	NA
21003082616	SED-8 (0-2)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	PCB	TPH (1005)*	NA	NA
21003082617	SED-8 (2-4)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082618	SED-9 (0-2)	2/25/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082618MS	SED-9 (0-2)	2/25/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082618MSD	SED-9 (0-2)	2/25/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082619	SED-9 (2-4)	2/25/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA

TABLE 1 SAMPLE SUMMARY (SEDIMENTS)

LABORATORY ID	FIELD ID	SAMPLE DATE				TESTS PER	RFORMED			
21003082620	SED-10 (0-2)	2/25/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082621	SED-10 (2-4)	2/25/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082621MS	SED-10 (2-4)	2/25/10	Chloride	NA	3 ICP Metals	Mercury	NA	NA	NA	NA
21003082621MSD	SED-10 (2-4)	2/25/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082621DUP	SED-10 (2-4)	2/25/10	NA	NA	3 ICP Metals	Mercury	NA	NA	NA	NA
21003082622	SED-11 (0-2)	2/25/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082623	SED-11 (2-4)	2/25/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082624	SED-12 (0-2)	2/25/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082625	SED-12 (2-4)	2/25/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082626	SED-12 (4-6)	2/25/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082627	SED-13 (0-2)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	NA	NA	NA
21003082628	SED-13 (2-4)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	NA	NA	NA
21003082629	SED-14 (0-2)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	NA	NA	NA
21003082630	SED-14 (2-4)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	NA	NA	NA
21003082631	SED-15 (0-2)	2/26/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082632	SED-15 (2-4)	2/26/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082633	SED-16 (0-2)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082634	SED-17 (0-2)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082634MS	SED-17 (0-2)	2/26/10	NA	NA	NA	NA	NA	TPH (1005)*	NA	NA
21003082634MSD	SED-17 (0-2)	2/26/10	NA	NA	NA	NA	NA	TPH (1005)*	NA	NA
21003082635	SED-17 (2-4)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082636	SED-18 (0-2)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082637	SED-18 (2-4)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082638	SED-19 (0-2)	2/26/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082638MS	SED-19 (0-2)	2/26/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082638MSD	SED-19 (0-2)	2/26/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082639	SED-19 (2-4)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA

TABLE 1
SAMPLE SUMMARY
(SEDIMENTS)

LABORATORY ID	FIELD ID	SAMPLE DATE				TESTS PER	RFORMED			
21003082640	SS-08 (0-2)	2/26/10	NA	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082641	SS-08 (2-4)	2/26/10	NA	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082642	SS-10 (0-2)	2/26/10	NA	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082642MS	SS-10 (0-2)	2/26/10	NA	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082642DUP	SS-10 (0-2)	2/26/10	NA	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082643	SS-10 (2-4)	2/26/10	NA	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082644	SED-20 (0-2)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082645	SED-20 (2-4)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082645MS	SED-20 (2-4)	2/26/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082645MSD	SED-20 (2-4)	2/26/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082646	SED-21 (0-2)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082647	SED-21 (2-4)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082648	SED-21 (4-6)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082649	SED-21 (6-8)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082650	SED-22 (0-2)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082651	SED-22 (2-4)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082652	SED-26 (0-2)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082653	SED-26 (2-4)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082654	SED-27 (0-2)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082655	SED-27 (2-4)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082656	SED-28 (0-2)	3/2/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082657	SED-28 (2-4)	3/2/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082658	SED-29 (0-2)	3/2/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082659	SED-29 (2-4)	3/2/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082660	SED-30 (0-2)	3/2/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082661	SED-30 (2-4)	3/2/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA

TABLE 1
SAMPLE SUMMARY
(SEDIMENTS)

LABORATORY ID	FIELD ID	SAMPLE DATE				TESTS PER	RFORMED			
21003082662	SED-31 (4-6)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082662MS	SED-31 (4-6)	3/2/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082662MSD	SED-31 (4-6)	3/2/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082663	SED-32 (4-6)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082663MS	SED-32 (4-6)	3/2/10	NA	NA	3 ICP Metals	Mercury	NA	NA	NA	NA
21003082663DUP	SED-32 (4-6)	3/2/10	NA	NA	3 ICP Metals	Mercury	NA	NA	NA	NA
21003082664	SED-33 (4-6)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082665	SED-23 (0-2)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082665MS	SED-23 (0-2)	3/2/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082665MSD	SED-23 (0-2)	3/2/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082666	SED-23 (2-4)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082667	SED-24 (0-2)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082668	SED-24 (2-4)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082669	SED-25 (0-2)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082670	SED-25 (2-4)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082671	SED-31 (0-2)	3/1/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082672	SED-31 (2-4)	3/1/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082673	SED-32 (0-2)	3/1/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082674	SED-32 (2-4)	3/1/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082675	SED-33 (0-2)	3/1/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082675MS	SED-33 (0-2)	3/1/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082675MSD	SED-33 (0-2)	3/1/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082676	SED-33 (2-4)	3/1/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21005112901	SED-9	5/5/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005112901MS	SED-9	5/5/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21005112901DUP	SED-9	5/5/10	NA	TOC	NA	NA	NA	NA	NA	NA
21005112901MSD	SED-9	5/5/10	Chloride	NA	NA	NA	NA	NA	NA	NA

TABLE 1
SAMPLE SUMMARY
(SEDIMENTS)

LABORATORY ID	FIELD ID	SAMPLE DATE				TESTS PER	RFORMED			
21005112902	SED-24	5/5/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005112903	SED-31	5/5/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005112904	SED-8	5/6/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005112905	SED-11	5/6/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005112906	SED-13	5/6/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005112906MS	SED-13	5/6/10	NA	NA	8 ICP Metals	Mercury	NA	NA	NA	NA
21005112906DUP	SED-13	5/6/10	NA	NA	8 ICP Metals	Mercury	NA	NA	NA	NA
21005112907	SED-15	5/6/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005112908	SED-19	5/6/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005112909	SED-115 ⁽¹⁾	5/6/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005112910	SED-120	5/7/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005112911	SED-26	5/5/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005140201	SED-BK-06	5/10/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005140201MS	SED-BK-06	5/10/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21005140201MSD	SED-BK-06	5/10/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21005140202	SED-BK-01	5/10/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005140202MS	SED-BK-01	5/10/10	NA	NA	8 ICP Metals	Mercury	NA	NA	NA	NA
21005140202DUP	SED-BK-01	5/10/10	NA	NA	8 ICP Metals	Mercury	NA	NA	NA	NA
21005140203	SED-BK-02	5/10/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005140204	SED-BK-03	5/10/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005140205	SED-BK-04	5/10/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005140206	SED-BK-05	5/11/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005140207	SED-BK-09	5/11/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005140208	SED-BK-07	5/11/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005140208MS	SED-BK-07	5/11/10	NA	NA	NA	NA	NA	NA	NA	PAH
21005140208MSD	SED-BK-07	5/11/10	NA	NA	NA	NA	NA	NA	NA	PAH
21005140209	SED-BK-08	5/11/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005140209DUP	SED-BK-08	5/11/10	NA	TOC	NA	NA	NA	NA	NA	NA

TABLE 1
SAMPLE SUMMARY
(SEDIMENTS)

LABORATORY ID	FIELD ID	SAMPLE DATE				TESTS PER	RFORMED			
21005242807	SED-BK-11	5/19/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005242807MS	SED-BK-11	5/19/10	NA	NA	NA	Mercury	NA	NA	NA	PAH
21005242807MSD	SED-BK-11	5/19/10	NA	NA	NA	NA	NA	NA	NA	PAH
21005242807DUP	SED-BK-11	5/19/10	NA	NA	NA	Mercury	NA	NA	NA	NA
21005242808	SED-BK-10	5/19/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005242808MS	SED-BK-10	5/19/10	NA	NA	8 ICP Metals	NA	NA	NA	NA	NA
21005242808DUP	SED-BK-10	5/19/10	NA	NA	8 ICP Metals	NA	NA	NA	NA	NA
21006092101	SED 15 (8-10)	6/8/10	NA	NA	NA	NA	NA	NA	Frac TPH (1006)	NA
21006092102	SED 15 W (0-2)	6/8/10	NA	NA	NA	NA	NA	NA	Frac TPH (1006)	NA
21006092103	SED 15 W 2 (0-2)	6/8/10	NA	NA	NA	NA	NA	NA	Frac TPH (1006)	NA
21006092104	SED 15 E (0-2)	6/8/10	NA	NA	NA	NA	NA	NA	Frac TPH (1006)	NA
21006092105	SED 15 E 2 (0-2)	6/8/10	NA	NA	NA	NA	NA	NA	Frac TPH (1006)	NA
21006092106	SED 15 N (0-2)	6/8/10	NA	NA	NA	NA	NA	NA	Frac TPH (1006)	NA

^{*}Supporting raw data reviewed for this sample

NA - Not analyzed

3 ICP Metals - As,Ba,Se

7 ICP Metals - As,Ba,Cd,Cr,Pb,Se,Sr

8 ICP Metals - As,Ba,Cd,Cr,Pb,Se,Sr,Zn

(1) Field duplicate of SED-15 (21005112907)

TABLE 1 SAMPLE SUMMARY (SOILS/SPLP)

LABORATORY ID	FIELD ID	SAMPLE DATE		TESTS PE	RFORMED	
21005140101	SB-1 (74-76)	5/11/10	Chloride	NA	NA	NA
21005140101MS	SB-1 (74-76)	5/11/10	Chloride	NA	NA	NA
21005140101MSD	SB-1 (74-76)	5/11/10	Chloride	NA	NA	NA
21005140102	SB-1 (78-80)	5/11/10	Chloride	NA	NA	NA
21005140103	SB-1 (62-64)	5/11/10	Chloride	NA	NA	NA
21005140104	SB-1 (66-68)	5/11/10	Chloride	NA	NA	NA
21005140105	SB-1 (70-72)	5/11/10	Chloride	NA	NA	NA
21005140106	SB-1 (42-43)	5/5/10	Chloride	NA	NA	NA
21005140107	SB-1 (13-15)	5/5/10	Chloride	NA	NA	NA
21005140108	SB-1 (58-60)	5/5/10	Chloride	NA	NA	NA
21005140109	SB-1 (62-64)	5/5/10	Chloride	NA	NA	NA
21005140110	SB-1 (46.6-47)	5/5/10	Chloride	NA	NA	NA
21005140110MS	SB-1 (46.6-47)	5/5/10	Chloride	NA	NA	NA
21005140110MSD	SB-1 (46.6-47)	5/5/10	Chloride	NA	NA	NA
21005140111	SB-1 (33-35)	5/5/10	Chloride	NA	NA	NA
21005140112	SB-1 (17-19)	5/5/10	Chloride	NA	NA	NA
21005140113	SB-1 (21-22)	5/5/10	Chloride	NA	NA	NA
21005140114	SB-1 (25-27)	5/5/10	Chloride	NA	NA	NA
21005140115	SB-1 (9-11)	5/5/10	Chloride	NA	NA	NA
21005140116	SB-1 (37-39)	5/5/10	Chloride	NA	NA	NA
21005140117	SB-1 (45.5-46)	5/5/10	Chloride	NA	NA	NA
21005140118	SB-1 (29-31)	5/5/10	Chloride	NA	NA	NA
21005140119	SB-1 (0-7)	5/5/10	Chloride	NA	NA	NA
21005140120	SB-2 (58-60)	5/10/10	Chloride	NA	NA	NA
21005140121	SB-2 (54-56)	5/10/10	Chloride	NA	NA	NA
21005140122	SB-2 (74-76)	5/10/10	Chloride	NA	NA	NA
21005140123	SB-2 (66-68)	5/10/10	Chloride	NA	NA	NA

TABLE 1 SAMPLE SUMMARY (SOILS/SPLP)

LABORATORY ID	FIELD ID	SAMPLE DATE		TESTS PE	RFORMED	
21005140124	SB-2 (62-64)	5/10/10	Chloride	NA	NA	NA
21005140125	SB-2 (70-71.5)	5/10/10	Chloride	NA	NA	NA
21005140126	SB-2 (78-80)	5/10/10	Chloride	NA	NA	NA
21005140127	SB-2 (41-43)	5/7/10	Chloride	NA	NA	NA
21005140127MS	SB-2 (41-43)	5/7/10	Chloride	NA	NA	NA
21005140127MSD	SB-2 (41-43)	5/7/10	Chloride	NA	NA	NA
21005140128	SB-2 (33-35)	5/7/10	Chloride	NA	NA	NA
21005140129	SB-2 (35-36)	5/7/10	Chloride	NA	NA	NA
21005140130	SB-2 (21-23)	5/7/10	Chloride	NA	NA	NA
21005140130MS	SB-2 (21-23)	5/7/10	Chloride	NA	NA	NA
21005140130MSD	SB-2 (21-23)	5/7/10	Chloride	NA	NA	NA
21005140131	SB-2 (29-31)	5/7/10	Chloride	NA	NA	NA
21005140132	SB-2 (17-19)	5/7/10	Chloride	NA	NA	NA
21005140133	SB-2 (25-27)	5/7/10	Chloride	NA	NA	NA
21005140134	SB-2 (13-15)	5/7/10	Chloride	NA	NA	NA
21005140135	SB-2 (9-11)	5/7/10	Chloride	NA	NA	NA
21005140136	SB-2 (0-6)	5/7/10	Chloride	NA	NA	NA
21005140137	SB-3 (56-58)	5/11/10	Chloride	NA	NA	NA
21005140138	SB-3 (21-22)	5/10/10	Chloride	NA	NA	NA
21005140139	SB-3 (64-66)	5/11/10	Chloride	NA	NA	NA
21005140140	SB-3 (8-10)	5/10/10	Chloride	NA	NA	NA
21005140141	SB-3 (12-14)	5/10/10	Chloride	NA	NA	NA
21005140142	SB-3 (16-18)	5/10/10	Chloride	NA	NA	NA
21005140143	SB-3 (24-26)	5/10/10	Chloride	NA	NA	NA
21005140144	SB-3 (72-73)	5/11/10	Chloride	NA	NA	NA
21005140145	SB-3 (59-60)	5/11/10	Chloride	NA	NA	NA
21005140146	SB-3 (49-49.5)	5/10/10	Chloride	NA	NA	NA

TABLE 1 SAMPLE SUMMARY (SOILS/SPLP)

LABORATORY ID	FIELD ID	SAMPLE DATE		TESTS P	ERFORMED	
21005140146MS	SB-3 (49-49.5)	5/10/10	Chloride	NA	NA	NA
21005140146MSD	SB-3 (49-49.5)	5/10/10	Chloride	NA	NA	NA
21005140147	SB-3 (68-68.5)	5/11/10	Chloride	NA	NA	NA
21005140148	SB-3 (77-78)	5/11/10	Chloride	NA	NA	NA
21005140149	SB-3 (40-42)	5/10/10	Chloride	NA	NA	NA
21005140150	SB-3 (37-38)	5/10/10	Chloride	NA	NA	NA
21005140150MS	SB-3 (37-38)	5/10/10	Chloride	NA	NA	NA
21005140150MSD	SB-3 (37-38)	5/10/10	Chloride	NA	NA	NA
21005140151	SB-3 (28-30)	5/10/10	Chloride	NA	NA	NA
21005140152	SB-3 (33-34)	5/10/10	Chloride	NA	NA	NA
21005140153	SB-3 (48-48.5)	5/10/10	Chloride	NA	NA	NA
21005140154	SB-3 (81-82)	5/11/10	Chloride	NA	NA	NA
21005140155	SB-3 (53-54)	5/11/10	Chloride	NA	NA	NA
21005140156	SB-3 (44-46)	5/10/10	Chloride	NA	NA	NA
21005140157	SB-3 (0-6)	5/10/10	Chloride	NA	NA	NA
21005142606	SB-1C (46-48)	5/13/10	Chloride	NA	NA	NA
21005142606MS	SB-1C (46-48)	5/13/10	Chloride	NA	NA	NA
21005142606MSD	SB-1C (46-48)	5/13/10	Chloride	NA	NA	NA
21005142607	SB-1C (51-52)	5/13/10	Chloride	NA	NA	NA
21005142608	SB-1C (53.5-54)	5/13/10	Chloride	NA	NA	NA
21005142609	SB-1C (54-56)	5/13/10	Chloride	NA	NA	NA
21005142610	SB-1C (58-60)	5/13/10	Chloride	NA	NA	NA
21005266601	MPA-SPLP-4	5/25/10	NA	NA	SPLP Mercury	NA
21005266601MS	MPA-SPLP-4	5/25/10	NA	NA	SPLP Mercury	NA
21005266601DUP	MPA-SPLP-4	5/25/10	NA	NA	SPLP Mercury	NA
21005266602	MPA-SPLP-5	5/25/10	NA	NA	SPLP Cr	NA
21005266602MS	MPA-SPLP-5	5/25/10	NA	NA	SPLP Cr	NA
21005266602DUP	MPA-SPLP-5	5/25/10	NA	NA	SPLP Cr	NA

TABLE 1 SAMPLE SUMMARY (SOILS/SPLP)

LABORATORY ID	FIELD ID	SAMPLE DATE		TESTS PE	RFORMED	
21005242809	MPA-SPLP-1	5/20/10	NA	NA	SPLP Ba	NA
21005242809MS	MPA-SPLP-1	5/20/10	NA	NA	SPLP Ba,Pb	NA
21005242809DUP	MPA-SPLP-1	5/20/10	NA	NA	SPLP Ba,Pb	NA
21005242810	MPA-SPLP-2	5/20/10	NA	NA	SPLP Ba,Pb	NA
21005242811	MPA-SPLP-3	5/20/10	NA	NA	SPLP Ba,Pb	NA
21005242812	MPA-AB5(A) 4-6	5/19/10	NA	NA	NA	Frac TPH (1006)
21005242813	MPA-AB5(B) 4-6	5/19/10	NA	NA	NA	Frac TPH (1006)
21005242814	MPA-AB5(C) 4-6	5/19/10	NA	NA	NA	Frac TPH (1006)
21005242815	MPA-AB6 8-10 (DRY)	5/19/10	NA	Arsenic	NA	NA
21005242816	MPA-AB8 6-8 (DRY)	5/19/10	NA	Arsenic	NA	NA
21005242817	MPA-AB13 0-3 (DRY)	5/20/10	NA	Arsenic	NA	NA
21005242818	MPA-AB6 8-10 (NORMAL)	5/19/10	NA	Arsenic	NA	NA
21005242819	MPA-AB8 6-8 (NORMAL)	5/19/10	NA	Arsenic	NA	NA
21005242820	MPA-AB13 0-3 (NORMAL)	5/20/10	NA	Arsenic	NA	NA
21005242820MS	MPA-AB13 0-3 (NORMAL)	5/20/10	NA	Arsenic	NA	NA
21005242820DUP	MPA-AB13 0-3 (NORMAL)	5/20/10	NA	Arsenic	NA	NA

NA - Not analyzed

TABLE 1 SAMPLE SUMMARY (SURFACE WATERS)

LABORATORY ID	FIELD ID	SAMPLE DATE		TESTS PERFORMED										
21005112801	SW-05	5/5/10	NA	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005112801MS	SW-05	5/5/10	NA	NA	NA	NA	Chloride	NA	NA	Arsenic	NA	Mercury	Mercury- Dissolved	NA
21005112801MSD	SW-05	5/5/10	NA	NA	NA	NA	Chloride	NA	NA	NA	NA	NA	NA	NA
21005112801DUP	SW-05	5/5/10	NA	NA	NA	NA	NA	NA	NA	Arsenic	NA	Mercury	Mercury- Dissolved	NA
21005112802	SW-03	5/5/10	NA	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005112803	SW-02	5/5/10	NA	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005112804	SW-04	5/5/10	NA	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005112804MS	SW-04	5/5/10	NA	NA	NA	NA	NA	NA	7 ICP Metals- Dissolved	NA	NA	NA	NA	NA
21005112804DUP	SW-04	5/5/10	NA	NA	NA	NA	NA	NA	7 ICP Metals- Dissolved	NA	NA	NA	NA	NA
21005112805	SW-01	5/6/10	Sulfate	Hardness	Salinity	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005112805DUP	SW-01	5/6/10	NA	NA	Salinity	NA	NA	NA	NA	NA	NA	NA	NA	NA
21005112806	SW-06	5/6/10	Alkalinity	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005112806MS	SW-06	5/6/10	NA	Hardness	NA	NA	NA	13 ICP Metals	NA	NA	NA	NA	NA	NA
21005112806DUP	SW-06	5/6/10	Alkalinity	Hardness	NA	NA	NA	13 ICP Metals	NA	NA	NA	NA	NA	NA

TABLE 1 SAMPLE SUMMARY (SURFACE WATERS)

LABORATORY ID	FIELD ID	SAMPLE DATE		TESTS PERFORMED										
21005112807	SW-07	5/6/10	NA	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005112807MS	SW-07	5/6/10	NA	NA	NA	NA	NA	NA	NA	NA	Arsenic- Dissolved	NA	NA	NA
21005112807DUP	SW-07	5/6/10	NA	NA	NA	NA	NA	NA	NA	NA	Arsenic- Dissolved	NA	NA	NA
21005112808	SW-10	5/6/10	Sulfate	Hardness	Salinity	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005112809	SW-09	5/6/10	Sulfate	Hardness	Salinity	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005112810	SW-109 ⁽¹⁾	5/6/10	Alkalinity	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005112810MS	SW-109 ⁽¹⁾	5/6/10	NA	Hardness	NA	NA	NA	13 ICP Metals	NA	NA	NA	NA	NA	NA
21005112810DUP	SW-109 ⁽¹⁾	5/6/10	NA	Hardness	NA	NA	NA	13 ICP Metals	NA	NA	NA	NA	NA	NA
21005112811	SW-20	5/7/10	NA	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005140210	SW BK-01	5/10/10	Sulfate	Hardness	Salinity	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005140210MS	SW BK-01	5/10/10	NA	Hardness	NA	NA	NA	13 ICP Metals	7 ICP Metals- Dissolved	NA	NA	NA	NA	NA
21005140210DUP	SW BK-01	5/10/10	NA	Hardness	NA	TDS	NA	13 ICP Metals	7 ICP Metals- Dissolved	NA	NA	NA	NA	NA

TABLE 1 SAMPLE SUMMARY (SURFACE WATERS)

LABORATORY ID	FIELD ID	SAMPLE DATE						TESTS	PERFORMED)				
21005140211	SW BK-02	5/10/10	Alkalinity	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005140211MS	SW BK-02	5/10/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Mercury- Dissolved	NA
21005140211DUP	SW BK-02	5/10/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Mercury- Dissolved	NA
21005140212	SW BK-03	5/10/10	NA	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005140213	SW BK-04	5/10/10	Sulfate	Hardness	Salinity	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005140214	SW BK-05	5/11/10	Alkalinity	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	РАН
21005140214MS	SW BK-05	5/11/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	Mercury	NA	NA
21005140214DUP	SW BK-05	5/11/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	Mercury	NA	NA
21005140215	SW BK-06	5/11/10	Sulfate	Hardness	Salinity	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005140215MS	SW BK-06	5/11/10	NA	NA	NA	NA	NA	NA	NA	Arsenic	NA	NA	NA	NA
21005140215DUP	SW BK-06	5/11/10	NA	NA	NA	NA	NA	NA	NA	Arsenic	NA	NA	NA	NA
21005140216	SW BK-07	5/11/10	Alkalinity	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005140217	SW BK-08	5/11/10	NA	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005140218	SW BK-09	5/11/10	NA	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005140218MS	SW BK-09	5/11/10	NA	NA	NA	NA	NA	NA	NA	NA	Arsenic- Dissolved	NA	NA	NA
21005140218DUP	SW BK-09	5/11/10	NA	NA	NA	NA	NA	NA	NA	NA	Arsenic- Dissolved	NA	NA	NA

TABLE 1 SAMPLE SUMMARY (SURFACE WATERS)

LABORATORY ID	FIELD ID	SAMPLE DATE						TESTS	PERFORMED)				
21005242801	SW-BK-11	5/19/10	NA	Hardness	NA	TDS	Chloride	7 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005242802	SW-BK-11 MS	5/19/10	NA	NA	NA	NA	Chloride	7 ICP Metals	NA	Arsenic	NA	Mercury	NA	NA
21005242803	SW-BK-11 MSD	5/19/10	NA	NA	NA	NA	Chloride	7 ICP Metals	NA	Arsenic	NA	Mercury	NA	NA
21005242804	SW-BK-10	5/19/10	NA	Hardness	NA	TDS	Chloride	7 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005242805	SW-BK-10 MS	5/19/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	PAH
21005242806	SW-BK-10 MSD	5/19/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	PAH

NA - Not analyzed

7 ICP Metals - Ba,Cd,Cr,Pb,Se,Sr,Zn

13 ICP Metals - Ba,Cd,Ca,Cr,Fe,Pb,Mg,Mn,K,Se,Na,Sr,Zn

(1) Field duplicate of SW-09 (21005112809)

TABLE 1 SAMPLE SUMMARY (GROUNDWATER)

LABORATORY ID	FIELD ID	SAMPLE DATE		TESTS PERFORMED										
21003085001	MW-1	3/5/10	NA	NA	TDS	Chloride	7 ICP Metals	NA	Arsenic	NA	Mercury	BTEX	Bromide	TPH (1005)*
21003085001MS	MW-1	3/5/10	NA	NA	NA	NA	NA	NA	Arsenic	NA	NA	NA	Bromide	NA
21003085001MSD	MW-1	3/5/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Bromide	NA
21003085001DUP	MW-1	3/5/10	NA	NA	NA	NA	NA	NA	Arsenic	NA	NA	NA	NA	NA
21003085002	MW-2R	3/5/10	NA	NA	TDS	Chloride	7 ICP Metals	NA	Arsenic	NA	Mercury	BTEX	Bromide	TPH (1005)*
21003085003	MW-3R	3/5/10	NA	NA	TDS	Chloride	7 ICP Metals	NA	Arsenic	NA	Mercury	BTEX	Bromide	TPH (1005)*
21003085004	MW-50	3/5/10	NA	NA	TDS	Chloride	7 ICP Metals	NA	Arsenic	NA	Mercury	BTEX	Bromide	TPH (1005)*
21003085004MS	MW-50	3/5/10	NA	NA	NA	NA	7 ICP Metals	NA	NA	NA	NA	NA	NA	NA
21003085004DUP	MW-50	3/5/10	NA	NA	NA	NA	7 ICP Metals	NA	NA	NA	NA	NA	NA	NA
21003085005	TRIP BLANK	3/5/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	BTEX	NA	NA
21005112701	SB-1-MW-S	5/7/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	8 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	NA	BTEX	NA	Frac TPH (1006)*
21005112701DUP	SB-1-MW-S	5/7/10	NA	Alkalinity	TDS	NA	NA	NA	NA	NA	NA	NA	NA	NA
21005112702	SB-1-MW-D	5/6/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	8 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	NA	BTEX	NA	Frac TPH (1006)*
21005140158	SB-2 MW-S	5/11/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	8 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	NA	BTEX	NA	Frac TPH (1006)*
21005140159	SB-3-MW-S	5/12/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	8 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	NA	BTEX	NA	Frac TPH (1006)*
21005140160	SB-3-MW- SD ⁽¹⁾	5/12/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	8 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	NA	BTEX	NA	Frac TPH (1006)*
21005142601	MW-4D	5/12/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	8 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	NA	BTEX	NA	Frac TPH (1006)*

TABLE 1
SAMPLE SUMMARY
(GROUNDWATER)

LABORATORY ID	FIELD ID	SAMPLE DATE		TESTS PERFORMED										
21005142601MS	MW-4D	5/12/10	Sulfate	NA	NA	NA	8 ICP Metals	8 ICP Metals- Dissolved	NA	NA	NA	NA	NA	NA
21005142601DUP	MW-4D	5/12/10	NA	NA	TDS	NA	8 ICP Metals	8 ICP Metals- Dissolved	NA	NA	NA	NA	NA	NA
21005142602	MW-5D	5/12/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	8 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	NA	BTEX	NA	Frac TPH (1006)*
21005142603	MW-6D	5/12/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	8 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	NA	BTEX	NA	Frac TPH (1006)*
21005142604	MW-6S	5/12/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	8 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	NA	BTEX	NA	Frac TPH (1006)*
21005142604MS	MW-6S	5/12/10	NA	NA	NA	NA	NA	NA	Arsenic	Arsenic- Dissolved	NA	NA	NA	NA
21005142604DUP	MW-6S	5/12/10	NA	NA	NA	NA	NA	NA	Arsenic	Arsenic- Dissolved	NA	NA	NA	NA
21005142605	MW-1C (97-100)	5/13/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	8 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	NA	NA	NA	NA
21005266603	MPA-WW-1	5/25/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	NA	Arsenic	NA	NA	BTEX	NA	Frac TPH (1006)
21005266603MS	MPA-WW-1	5/25/10	NA	NA	NA	NA	8 ICP Metals	NA	NA	NA	NA	BTEX	NA	NA
21005266603DUP	MPA-WW-1	5/25/10	NA	Alkalinity	TDS	NA	8 ICP Metals	NA	NA	NA	NA	NA	NA	NA
21005266603MSD	MPA-WW-1	5/25/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	BTEX	NA	NA
21005266604	TRIP BLANK		NA	NA	NA	NA	NA	NA	NA	NA	NA	BTEX	NA	Frac TPH (1006)

^{*}Supporting raw data reviewed for this sample

NA - Not analyzed

7 ICP Metals - Ba,Cd,Cr,Pb,Se,Sr,Zn

8 ICP Metals - Ba,Ca,Fe,Mg,Mn,K,Na,Se

⁽¹⁾ Field duplicate of SB-3-MW-S (21005140159)

TABLE 2
QUALIFIED SAMPLE RESULTS

LAB ID	FIELD ID	SAMPLE DATE	SAMPLE MATRIX	ANALYTE(S)	LABORATORY RESULT	DVQ	QC OUTCOME
21005112801	SW-05	5/5/10	WATER	all PAHs	0.000101 U mg/L	UJ	low base-neutral SU recovery (59%); low base-neutral SU recovery (49%)
21005112802	SW-03	5/5/10	WATER	all PAHs	0.000104 U mg/L	UJ	low base-neutral SU recovery (55%); low base-neutral SU recovery (42%)
21005112804	SW-04	5/5/10	WATER	all PAHs	0.000103 U mg/L	UJ	low base-neutral SU recovery (55%); low base-neutral SU recovery (42%)
21005112808	SW-10	5/6/10	WATER	all PAHs	0.000102 U mg/L	UJ	low base-neutral SU recovery (59%); low base-neutral SU recovery (44%)
21005242801	SW-BK-11	5/19/10	WATER	2-Methylnaphthalene	0.000105 U mg/L	UJ	low LCS recovery (51%), passing LCSD recovery (62%)
21005242801	SW-BK-11	5/19/10	WATER	Anthracene	0.000105 U mg/L	UJ	low MS recovery (59%), low MSD recovery (56%)
21005242801	SW-BK-11	5/19/10	WATER	Benzo(k)fluoranthene	0.000105 U mg/L	UJ	low MS recovery (58%), passing MSD recovery (60%)
21005242801	SW-BK-11	5/19/10	WATER	Naphthalene	0.000105 U mg/L	UJ	low LCS recovery (54%), low LCSD recovery (48%); low MS recovery (52%), low MSD recovery (54%)
21005242804	SW-BK-10	5/19/10	WATER	2-Methylnaphthalene	0.000102 U mg/L	UJ	low LCS recovery (51%), passing LCSD recovery (62%)
21005242804	SW-BK-10	5/19/10	WATER	Anthracene	0.000102 U mg/L	UJ	low MS recovery (59%), low MSD recovery (56%)
21005242804	SW-BK-10	5/19/10	WATER	Benzo(k)fluoranthene	0.000102 U mg/L	UJ	low MS recovery (58%), passing MSD recovery (60%)
21005242804	SW-BK-10	5/19/10	WATER	Naphthalene	0.000102 U mg/L	UJ	low LCS recovery (54%), low LCSD recovery (48%); low MS recovery (52%), low MSD recovery (54%)
21003082601	SED-1 (0-2)	2/25/10	SOLID	Barium	81.2 mg/kg	J	low MS recovery (66%)
21003082602	SED-1 (2-4)	2/25/10	SOLID	Barium	24.1 mg/kg	J	low MS recovery (66%)
21003082603	SED-1 (4-6)	2/25/10	SOLID	Barium	31.1 mg/kg	J	low MS recovery (66%)
21003082604	SED-2 (0-2)	2/25/10	SOLID	Barium	76.8 mg/kg	J	low MS recovery (66%)
21003082605	SED-2 (2-4)	2/25/10	SOLID	Barium	27.9 mg/kg	J	low MS recovery (66%)
21003082606	SED-2 (4-6)	2/25/10	SOLID	Barium	40.9 mg/kg	J	low MS recovery (66%)
21003082607	SED-3 (0-2)	2/25/10	SOLID	Barium	48.2 mg/kg	J	low MS recovery (66%)
21003082608	SED-3 (2-4)	2/25/10	SOLID	Barium	23.1 mg/kg	J	low MS recovery (66%)
21003082609	SED-3 (4-6)	2/25/10	SOLID	Barium	41.2 mg/kg	J	low MS recovery (66%)
21003082610	SED-4 (0-2)	2/25/10	SOLID	Barium	203 mg/kg	J	low MS recovery (66%)
21003082611	SED-5 (0-2)	2/25/10	SOLID	Barium	61.4 mg/kg	J	low MS recovery (66%)
21003082612	SED-6 (0-2)	2/25/10	SOLID	Barium	111 mg/kg	J	low MS recovery (66%)
21003082613	SED-7 (0-2)	2/25/10	SOLID	Barium	228 mg/kg	J	low MS recovery (66%)
21003082614	SED-7 (2-4)	2/25/10	SOLID	Barium	497 mg/kg	J	low MS recovery (66%)
21003082615	SED-7 (4-6)	2/25/10	SOLID	Barium	250 mg/kg	J	low MS recovery (66%)
21003082616	SED-8 (0-2)	2/25/10	SOLID	Barium	238 mg/kg	J	low MS recovery (66%)
21003082617	SED-8 (2-4)	2/25/10	SOLID	Barium	267 mg/kg	J	low MS recovery (66%)

TABLE 2
QUALIFIED SAMPLE RESULTS

LAB ID	FIELD ID	SAMPLE DATE	SAMPLE MATRIX	ANALYTE	LABORATORY RESULT	DVQ	QC OUTCOME
21003082618	SED-9 (0-2)	2/25/10	SOLID	Barium	161 mg/kg	J	low MS recovery (66%)
21003082619	SED-9 (2-4)	2/25/10	SOLID	Barium	224 mg/kg	J	low MS recovery (66%)
21003082620	SED-10 (0-2)	2/25/10	SOLID	Barium	264 mg/kg	J	low MS recovery (66%)
21005112701	SB-1-MW-S	5/7/10	WATER	Barium	5.02 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21005112701	SB-1-MW-S	5/7/10	WATER	Calcium	520 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21005112701	SB-1-MW-S	5/7/10	WATER	Magnesium	201 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21005112701	SB-1-MW-S	5/7/10	WATER	Manganese	2.96 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21005112701	SB-1-MW-S	5/7/10	WATER	Sodium	1710 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21005112801	SW-05	5/5/10	WATER	Potassium	33.1 mg/L	J	high MS recovery (133%)
21005112802	SW-03	5/5/10	WATER	Potassium	32.7 mg/L	J	high MS recovery (133%)
21005112803	SW-02	5/5/10	WATER	Potassium	33.3 mg/L	J	high MS recovery (133%)
21005112804	SW-04	5/5/10	WATER	Potassium	34.4 mg/L	J	high MS recovery (133%)
21005112805	SW-01	5/6/10	WATER	Potassium	29.2 mg/L	J	high MS recovery (133%)
21005112806	SW-06	5/6/10	WATER	Potassium	38.6 mg/L	J	high MS recovery (133%)
21005112807	SW-07	5/6/10	WATER	Potassium	40.7 mg/L	J	high MS recovery (133%)
21005140201	SED-BK-06	5/10/10	SOLID	Barium	229 mg/kg	J	high MS recovery (134%)
21005140202	SED-BK-01	5/10/10	SOLID	Barium	49 mg/kg	J	high MS recovery (134%)
21005140203	SED-BK-02	5/10/10	SOLID	Barium	96.8 mg/kg	J	high MS recovery (134%)
21005140204	SED-BK-03	5/10/10	SOLID	Barium	100 mg/kg	J	high MS recovery (134%)
21005140205	SED-BK-04	5/10/10	SOLID	Barium	212 mg/kg	J	high MS recovery (134%)
21005140206	SED-BK-05	5/11/10	SOLID	Barium	126 mg/kg	J	high MS recovery (134%)
21005140207	SED-BK-09	5/11/10	SOLID	Barium	63.8 mg/kg	J	high MS recovery (134%)
21005140208	SED-BK-07	5/11/10	SOLID	Barium	106 mg/kg	J	high MS recovery (134%)
21005140209	SED-BK-08	5/11/10	SOLID	Barium	92.6 mg/kg	J	high MS recovery (134%)
21005142602	MW-5D	5/12/10	WATER	Sodium	442 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21005242807	SED-BK-11	5/19/10	SOLID	Zinc	18 mg/kg	J	low MS recovery (0%); lab DUP precision of 91 RPD
21005242808	SED-BK-10	5/19/10	SOLID	Zinc	51.4 mg/kg	J	low MS recovery (0%); lab DUP precision of 91 RPD
21005112701	SB-1-MW-S	5/7/10	WATER	Barium	5.61 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21005112701	SB-1-MW-S	5/7/10	WATER	Calcium	568 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21005112701	SB-1-MW-S	5/7/10	WATER	Magnesium	220 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21005112701	SB-1-MW-S	5/7/10	WATER	Manganese	3.12 mg/L	J	dissolved conc > total conc and difference > 2xRDL

TABLE 2
QUALIFIED SAMPLE RESULTS

LAB ID	FIELD ID	SAMPLE DATE	SAMPLE MATRIX	ANALYTE	LABORATORY RESULT	DVQ	QC OUTCOME
21005112701	SB-1-MW-S	5/7/10	WATER	Sodium	1840 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21005142602	MW-5D	5/12/10	WATER	Sodium	454 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21003085001	MW-1	3/5/10	WATER	Arsenic	0.01 U mg/L	UJ	low MS recovery (66%)
21003085002	MW-2R	3/5/10	WATER	Arsenic	0.019 mg/L	J	low MS recovery (66%)
21003085003	MW-3R	3/5/10	WATER	Arsenic	0.01 U mg/L	UJ	low MS recovery (66%)
21003085004	MW-50	3/5/10	WATER	Arsenic	0.01 U mg/L	UJ	low MS recovery (66%)
21003082621	SED-10 (2-4)	2/25/10	SOLID	Mercury	0.025 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082622	SED-11 (0-2)	2/25/10	SOLID	Mercury	0.029 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082623	SED-11 (2-4)	2/25/10	SOLID	Mercury	0.033 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082624	SED-12 (0-2)	2/25/10	SOLID	Mercury	0.023 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082625	SED-12 (2-4)	2/25/10	SOLID	Mercury	0.031 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082626	SED-12 (4-6)	2/25/10	SOLID	Mercury	0.028 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082627	SED-13 (0-2)	2/26/10	SOLID	Mercury	0.018 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082628	SED-13 (2-4)	2/26/10	SOLID	Mercury	0.015 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082629	SED-14 (0-2)	2/26/10	SOLID	Mercury	0.019 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082630	SED-14 (2-4)	2/26/10	SOLID	Mercury	0.025 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082631	SED-15 (0-2)	2/26/10	SOLID	Mercury	0.28 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082632	SED-15 (2-4)	2/26/10	SOLID	Mercury	0.15 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082633	SED-16 (0-2)	2/26/10	SOLID	Mercury	0.016 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082634	SED-17 (0-2)	2/26/10	SOLID	Mercury	0.02 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082635	SED-17 (2-4)	2/26/10	SOLID	Mercury	0.033 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082636	SED-18 (0-2)	2/26/10	SOLID	Mercury	0.03 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082637	SED-18 (2-4)	2/26/10	SOLID	Mercury	0.034 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082638	SED-19 (0-2)	2/26/10	SOLID	Mercury	0.074 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082639	SED-19 (2-4)	2/26/10	SOLID	Mercury	0.054 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082640	SS-08 (0-2)	2/26/10	SOLID	Mercury	0.59 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082621	SED-10 (2-4)	2/25/10	SOLID	>C10-C28	42.8 J mg/kg	J	high SU recovery (131%); result is between MDL and RDL
21003082621	SED-10 (2-4)	2/25/10	SOLID	>C28-C35	4.91 J mg/kg	J	high SU recovery (131%); result is between MDL and RDL
21003082623	SED-11 (2-4)	2/25/10	SOLID	>C10-C28	57.4 mg/kg	J	high SU recovery (147%)
21003082642	SS-10 (0-2)	2/26/10	SOLID	>C10-C28	140 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (57%)

TABLE 2
QUALIFIED SAMPLE RESULTS

LAB ID	FIELD ID	SAMPLE DATE	SAMPLE MATRIX	ANALYTE	LABORATORY RESULT	DVQ	QC OUTCOME
21003082642	SS-10 (0-2)	2/26/10	SOLID	>C28-C35	9.23 J mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (57%); result is between MDL and RDL
21003082653	SED-26 (2-4)	3/2/10	SOLID	>C10-C28	299 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (50%)
21003082653	SED-26 (2-4)	3/2/10	SOLID	>C28-C35	57.9 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (50%)
21003082658	SED-29 (0-2)	3/2/10	SOLID	>C10-C28	1030 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (58%)
21003082658	SED-29 (0-2)	3/2/10	SOLID	>C28-C35	287 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (58%)
21003082642	SS-10 (0-2)	2/26/10	SOLID	Aliphatic >C10-C12	15 U mg/kg	UJ	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (57%)
21003082642	SS-10 (0-2)	2/26/10	SOLID	Aliphatic >C12-C16	24.3 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (57%)
21003082642	SS-10 (0-2)	2/26/10	SOLID	Aliphatic >C16-C35	61.2 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (57%)
21003082642	SS-10 (0-2)	2/26/10	SOLID	Aromatic >C10-C12	10 U mg/kg	UJ	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (57%)
21003082642	SS-10 (0-2)	2/26/10	SOLID	Aromatic >C12-C16	15 U mg/kg	UJ	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (57%)
21003082642	SS-10 (0-2)	2/26/10	SOLID	Aromatic >C16-C21	15 U mg/kg	UJ	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (57%)
21003082642	SS-10 (0-2)	2/26/10	SOLID	Aromatic >C21-C35	15 U mg/kg	UJ	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (57%)
21003082653	SED-26 (2-4)	3/2/10	SOLID	Aliphatic >C10-C12	15 U mg/kg	UJ	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (50%)
21003082653	SED-26 (2-4)	3/2/10	SOLID	Aliphatic >C12-C16	34.5 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (50%)
21003082653	SED-26 (2-4)	3/2/10	SOLID	Aliphatic >C16-C35	111 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (50%)
21003082653	SED-26 (2-4)	3/2/10	SOLID	Aromatic >C10-C12	10 U mg/kg	UJ	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (50%)
21003082653	SED-26 (2-4)	3/2/10	SOLID	Aromatic >C12-C16	8.16 J mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (50%); result is between MDL and RDL
21003082653	SED-26 (2-4)	3/2/10	SOLID	Aromatic >C16-C21	15.5 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (50%)
04000000000	050 00 (0.4)	0/0/40	201.10	4	7.70 "		Total TPH by 1006 not within 60-140% of Total TPH by 1005 (50%); result
21003082653	SED-26 (2-4)	3/2/10	SOLID	Aromatic >C21-C35	7.72 J mg/kg	J	is between MDL and RDL
21003082658	SED-29 (0-2)	3/2/10	SOLID	Aliphatic >C10-C12	15 U mg/kg	UJ	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (58%)
21003082658	SED-29 (0-2)	3/2/10	SOLID	Aliphatic >C12-C16	53.6 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (58%)
21003082658	SED-29 (0-2)	3/2/10	SOLID	Aliphatic >C16-C35	469 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (58%)
21003082658	SED-29 (0-2)	3/2/10	SOLID	Aromatic >C10-C12	10 U mg/kg	UJ	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (58%)
21003082658	SED-29 (0-2)	3/2/10	SOLID	Aromatic >C12-C16	15 U mg/kg	UJ	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (58%)
21003082658	SED-29 (0-2)	3/2/10	SOLID	Aromatic >C16-C21	60.4 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (58%)
21003082658	SED-29 (0-2)	3/2/10	SOLID	Aromatic >C21-C35	183 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (58%)
21005112702	SB-1-MW-D	5/6/10	WATER	all Aliphatic and Aromatic C-ranges	0.15 U mg/L	UJ	low SU recovery (56%)

TABLE 3 DATA VALIDATION QUALIFIERS (DVQs)

The DVQ replaces all flags applied by the laboratory.

- U = Blank affected. The analyte was not detected substantially above the level reported in an associated laboratory and/or field blanks.
- UJ = Estimated. The analyte was not detected above the reporting limit; however, the reporting limit is approximate due to exceedance of one or more QC requirements.
- J = Estimated. The reported sample concentration is approximate due to exceedance of one or more QC requirements. Directional bias cannot be determined
- NS = Not selected. More than one result is reported for this analyte and another result is selected for use based on QC and the reported concentration.
- R = Rejected. The sample result is rejected due to serious QC deficiencies that make it impossible to verify the presence or absence of the analyte.

NOTE: For multiple deficiencies the validator applied the most severe flag. (R > U > UJ/J)

TABLE 4 METHOD SUMMARY

Test	Preparation	Analysis	Reporting
SOLIDS			
Arsenic	SW-846 3050B (acid digestion)	SW-846 7010 (Graphite furnace atomic absorption)	RDL of 0.12 mg/kg on wet-weight for 'Normal' samples and dry-weight (measured by drying sample and then digesting) for 'Dry' samples adjusted up to 5x for sample dilution; values between MDL and RDL reported with a J flag
Chloride	NA	EPA 9251 (Automated ferricyanide method)	RDL of 10 mg/kg on wet-weight adjusted up to 10x for sample dilution; values between MDL and RDL reported with a J flag
Fractionated Total Petroleum Hydrocarbons (Frac TPH)	TNRCC 1006/LA 1006 (solid phase silica column separation of TNRCC 1005 n-pentane extract)	TNRCC 1006/LA 1006 (GC-FID, quantitation with 6-point curve using gaoline/diesel fuel#2 standards and carbon markers, forced baseline projection)	3 Aliphatic/4 aromatic target C-ranges covering >C10-C35; RDL of 10-15 mg/kg on wet-weight adjusted up to 50x for sample dilution; values between MDL and RDL reported with a J flag
ICP Metals	SW-846 3050B (acid digestion)	SW-846 6010B (ICP-AES with background correction)	RDL of 0.2-1.6 mg/kg on wet-weight adjusted for sample aliquot size and up to 2-5x for dilution (barium only); values between MDL and RDL reported with a J flag
Mercury	SW-846 7471B (acid digestion and addition of potassium permanganate)	SW-846 7471B (Cold-vapor atomic absorption)	RDL of 0.01 mg/kg on wet-weight adjusted for sample aliquot size and up to 20x for dilution; values between MDL and RDL reported with a J flag
Polynuclear Aromatic Hydrocarbons (PAH)	SW-846 3550B (ultrasonic solvent extraction and concentration)	SW-846 8270C (GC-MS, quantitation with minimum 5-point curve, internal standardization)	16 Target analytes; RDL of 0.33 mg/kg on wetweight adjusted for sample aliquot size; values between MDL and RDL reported with a J flag
Polychlorinated Biphenyls (PCB)	SW-846 3550B (ultrasonic solvent extraction and concentration)	SW-846 8082 (GC-ECD with second column confirmation, quantitation with mininum 5-point curve)	7 Target analytes; RDL of 0.04 mg/kg on wetweight adjusted for sample aliquot size and up to 5x for dilution; values between MDL and RDL reported with a J flag
SPLP ICP Metals	SW-846 1312/3010A (Synthetic Precipitation Leaching Procedure, acid digestion)	SW-846 6010B (ICP-AES with background correction)	RDL of 0.003-0.01 mg/L; values between MDL and RDL reported with a J flag
SPLP Mercury	SW-846 1312/7470A (Synthetic Precipitation Leaching Procedure, acid digestion and addition of potassium permanganate)	SW-846 7470A (Cold-vapor atomic absorption)	RDL of 0.0002 mg/L; values between MDL and RDL reported with a J flag
Total Organic Carbon (TOC) Total Petroleum Hydrocarbons (TPH)	NA TNRCC 1005/LA 1005 (n-pentane extraction with no solvent concentration or cleanup)	EPA 9060 (Carbonaceous analyzer) TNRCC 1005/LA 1005 (GC-FID, quantitation with 6-point curve using gaoline/diesel fuel#2 standards and carbon markers, forced baseline projection)	RDL of 200 mg/kg; values between MDL and RDL reported with a J flag 2 Target C-ranges covering >C10-C35; RDL of 50 mg/kg on wet-weight adjusted up to 100x for sample dilution; values between MDL and RDL reported with a J flag

Test	Preparation	Analysis	Reporting
WATERS			
Arsenic (Total and Diss)	SW-846 3020A (field- filtration and preservation, acid digestion)	SW-846 7010 (Graphite furnace atomic absorption)	RDL of 0.01 mg/L; values between MDL and RDL reported with a J flag
Bicarbonate/ Carbonate Alkalinity	NA	SM 2320 B (Titration method)	2 Target analytes; RDL of 1 mg/L CaCO3; values between MDL and RDL reported with a J flag
Bromide	NA	SW-846 9056/EPA 300.0 (Ion chromatography)	RDL of 0.2 mg/L adjusted up to 100x for sample dilution; values between MDL and RDL reported with a J flag
Benzene, Toluene, Ethylbenzene, Xylene (BTEX)	SW-846 5030B (ambient purge and trap of preserved sample)	SW-846 8260B (GC-MS, quantitation with minimum 5-point curve, internal standardization)	4 Target analytes; RDL of 0.005-0.1 mg/L; values between MDL and RDL reported with a J flag
Chloride	NA	SM 4500 CL E (Automated ferricyanide method)	RDL of 1 mg/L adjusted up to 200x for sample dilution; values between MDL and RDL reported with a J flag
Fractionated Total Petroleum Hydrocarbons (Frac TPH)	TNRCC 1006/LA 1006 (solid phase silica column separation of TNRCC 1005 n-pentane extract)	TNRCC 1006/LA 1006 (GC-FID, quantitation with 6-point curve using gaoline/diesel fuel#2 standards and carbon markers, forced baseline projection)	5 Aliphatic/5 aromatic target C-ranges covering C6-C35; RDL of 0.15 mg/L; values between MDL and RDL reported with a J flag
Hardness	NA	SM 2340 B (Calculation from Ca and Mg)	3 Target analytes; RDL of 0.1-0.33 mg/L; values between MDL and RDL reported with a J flag
ICP Metals (Total and Diss)	SW-846 3010A (field-filtration and preservation, acid digestion)	SW-846 6010B (ICP-AES with background correction)	RDL of 0.0027-1 mg/L adjusted up to 5x for sample dilution (sodium and strontium only); values between MDL and RDL reported with a J flag
Mercury (Total and Diss)	SW-846 7470A (field- filtration and preservation, acid digestion and addition of potassium permanganate)	SW-846 7470A (Cold-vapor atomic absorption)	RDL of 0.0002 mg/L; values between MDL and RDL reported with a J flag
Polynuclear Aromatic Hydrocarbons (PAH)	SW-846 3510C (separatory funnel liquid- liquid solvent extraction and concentration)	SW-846 8270C SIM (GC-MS Single Ion Monitoring, quantitation with minimum 5-point curve, internal standardization)	16 Target analytes; RDL of 0.0001 mg/L adjusted for sample aliquot size; values between MDL and RDL reported with a J flag
Salinity	NA NA	SM 2520 B (Electroconductivity method)	RDL of 2 ppt
Sulfate	NA	EPA 375.4 (Turbidimetric)	RDL of 5 mg/L adjusted up to 10x for sample dilution; values between MDL and RDL reported with a J flag
Total Diss Solids (TDS)	NA	SM 2540 C (Dried at 180 C)	RDL of 10 mg/L

Test	Preparation	Analysis	Reporting
Total Petroleum	TNRCC 1005/LA 1005	TNRCC 1005/LA 1005 (GC-FID,	3 Target C-ranges covering C6-C35; RDL of
Hydrocarbons	(n-pentane extraction	quantitation with 6-point curve	0.15 mg/L; values between MDL and RDL
(TPH)	with no solvent	using gaoline/diesel fuel#2	reported with a J flag
	concentration or cleanup)	standards and carbon markers,	
		forced baseline projection)	

EPA (Methods for Chemical Analysis of Water and Wastes)

SM (Standards Methods for the Examination of Water and Wastewater)

SW-846 (Test Methods for Evaluating Solid Waste, Physical/Chemical Methods)

TNRCC (Texas Natural Resource Conservation Commission)

Note: The laboratory diluted samples due to target analyte concentrations or sample matrix. Non-detects are reported from an undiluted analysis for all samples except two PCB samples (SED-6 (0-2) and SED-8 (0-2)).

TABLE 5 QC CHECK RESULTS

FIELD ID	LAB ID	METHOD	ANALYTE	PREP BATCH	QC BATCH	PREP DATE	ANALY DATE	MATRIX	QC COMMENT	DVQ APPLIED
LCS/LCSD ACC	CURACY			БАТСП	DATOR	DATE	DATE			
LCS/LCSD		8270	2-Methylnaphthalene	432705	432841	5/26/10	5/27/10	WATER	low LCS recovery (51%), passing LCSD recovery (62%)	J/UJ to detects/NDs
LCS/LCSD		8270	Anthracene	432705	432841	5/26/10	5/27/10	WATER	passing LCS recovery (78%), low LCSD recovery (59%)	none (passing average LCS/LCSD recovery)
LCS/LCSD		8270	Naphthalene	432705	432841	5/26/10	5/27/10	WATER	low LCS recovery (54%), low LCSD recovery (48%)	J/UJ to NDs/detects
MS/MSD ACCU	JRACY									
SW-BK-10	MS/MSD	8270	2-Methylnaphthalene	432705	432841	5/26/10	5/27/10	WATER	passing MS recovery (63%), low MSD recovery (57%)	none (passing average MS/MSD recovery)
SW-BK-10	MS/MSD	8270	Acenaphthene	432705	432841	5/26/10	5/27/10	WATER	passing MS recovery (72%), low MSD recovery (55%)	none (passing average MS/MSD recovery)
SW-BK-10	MS/MSD	8270	Anthracene	432705	432841	5/26/10	5/27/10	WATER	low MS recovery (59%), low MSD recovery (56%)	J/UJ to NDs/detects
SW-BK-10	MS/MSD	8270	Benzo(k) fluoranthene	432705	432841	5/26/10	5/27/10	WATER	low MS recovery (58%), passing MSD recovery (60%)	J/UJ to NDs/detects
SW-BK-10	MS/MSD	8270	Naphthalene	432705	432841	5/26/10	5/27/10	WATER	low MS recovery (52%), low MSD recovery (54%)	J/UJ to NDs/detects
SED-2 (0-2)	MS	SW-846 6010B	Barium	427500	427548	3/8/10	3/9/10	SOLID	low MS recovery (66%)	J / UJ to detects/NDs
SED-BK-01	MS	SW-846 6010B	Barium	431644	432227	5/14/10	5/20/10	SOLID	high MS recovery (134%)	J to detects
SED-BK-10	MS	SW-846 6010B	Zinc	432560	433334	5/25/10	6/2/10	SOLID	low MS recovery (0%)	J/UJ to detects/NDs (DUP shows significant heterogeneity)
SW-06	MS	SW-846 6010B	Potassium	431357	431478	5/11/10	5/12/10	WATER	high MS recovery (133%)	J to detects
MW-1	MS	SW-846 7010	Arsenic	427514	427603	3/9/10	3/10/10	WATER	low MS recovery (66%)	J / UJ to detects/NDs

TABLE 5 QC CHECK RESULTS

FIELD ID	LAB ID	METHOD	ANALYTE	PREP BATCH	QC BATCH	PREP DATE	ANALY DATE	MATRIX	QC COMMENT	DVQ APPLIED
SURROGATE	RECOVERY			- U	I.	I.		I.		1
SED-19	21005112908	8270	Nitrobenzene-d5	431363	431544	5/12/10	5/13/10	SOLID	low base-neutral SU recovery (59%)	none (only one of multiple surrogates is outside limits)
SED-BK-03	21005140204	8270	2-Fluorobiphenyl	431973	432243	5/19/10	5/20/10	SOLID	low base-neutral SU recovery (58%)	none (only one of multiple surrogates is outside limits)
SW-05	21005112801	8270	Nitrobenzene-d5	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (59%)	J / UJ to detects/NDs for base-neutral analytes (all PAHs)
SW-05	21005112801	8270	2-Fluorobiphenyl	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (49%)	J / UJ to detects/NDs for base-neutral analytes (all PAHs)
SW-03	21005112802	8270	Nitrobenzene-d5	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (55%)	J / UJ to detects/NDs for base-neutral analytes (all PAHs)
SW-03	21005112802	8270	2-Fluorobiphenyl	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (42%)	J / UJ to detects/NDs for base-neutral analytes (all PAHs)
SW-02	21005112803	8270	Nitrobenzene-d5	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (57%)	none (only one of multiple surrogates is outside limits)
SW-04	21005112804	8270	Nitrobenzene-d5	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (55%)	J / UJ to detects/NDs for base-neutral analytes (all PAHs)
SW-04	21005112804	8270	2-Fluorobiphenyl	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (42%)	J / UJ to detects/NDs for base-neutral analytes (all PAHs)
SW-01	21005112805	8270	2-Fluorobiphenyl	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (41%)	none (only one of multiple surrogates is outside limits)
SW-06	21005112806	8270	2-Fluorobiphenyl	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (52%)	none (only one of multiple surrogates is outside limits)
SW-07	21005112807	8270	2-Fluorobiphenyl	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (51%)	none (only one of multiple surrogates is outside limits)
SW-10	21005112808	8270	Nitrobenzene-d5	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (59%)	J / UJ to detects/NDs for base-neutral analytes (all PAHs)
SW-10	21005112808	8270	2-Fluorobiphenyl	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (44%)	J / UJ to detects/NDs for base-neutral analytes (all PAHs)

TABLE 5 QC CHECK RESULTS

FIELD ID	LAB ID	METHOD	ANALYTE	PREP BATCH	QC BATCH	PREP DATE	ANALY DATE	MATRIX	QC COMMENT	DVQ APPLIED
SW-109	21005112810	8270	2-Fluorobiphenyl	431474	431542	5/13/10	5/13/10	WATER	low base-neutral SU recovery (59%)	none (only one of multiple surrogates is outside limits)
SW BK-02	21005140211	8270	Nitrobenzene-d5	431881	432140	5/17/10	5/19/10	WATER	low base-neutral SU recovery (53%)	none (only one of multiple surrogates is outside limits)
SW BK-04	21005140213	8270	Nitrobenzene-d5	431881	432140	5/17/10	5/19/10	WATER	low base-neutral SU recovery (54%)	none (only one of multiple surrogates is outside limits)
SW BK-09	21005140218	8270	2-Fluorobiphenyl	431881	432140	5/17/10	5/19/10	WATER	low base-neutral SU recovery (59%)	none (only one of multiple surrogates is outside limits)
SW-BK-10 MS	21005242805	8270	Terphenyl-d14	432705	432841	5/26/10	5/27/10	WATER	low base-neutral SU recovery (58%)	none (only one of multiple surrogates is outside limits)
SW-BK-10 MSD	21005242806	8270	2-Fluorobiphenyl	432705	432841	5/26/10	5/27/10	WATER	low base-neutral SU recovery (54%)	none (only one of multiple surrogates is outside limits)
SED-10 (2-4)	21003082621	TNRCC 1005/LA 1005	o-Terphenyl	427527	427781	3/10/10	3/11/10	SOLID	high SU recovery (131%)	J to detects
SED-11 (2-4)	21003082623	TNRCC 1005/LA 1005	o-Terphenyl	427527	427781	3/10/10	3/11/10	SOLID	high SU recovery (147%)	J to detects
SED-12 (0-2)	21003082624	TNRCC 1005/LA 1005	o-Terphenyl	427527	427781	3/10/10	3/11/10	SOLID	high SU recovery (140%)	J to detects (none)
SED-15 (0-2)	21003082631	TNRCC 1005/LA 1005	o-Terphenyl	427527	427848	3/10/10	3/12/10	SOLID	none	SU diluted out
SED-15 (2-4)	21003082632	TNRCC 1005/LA 1005	o-Terphenyl	427527	427848	3/10/10	3/12/10	SOLID	none	SU diluted out
SED-28 (0-2)	21003082656	TNRCC 1005/LA 1005	o-Terphenyl	427810	428093	3/15/10	3/17010	SOLID	none	SU diluted out
MW-2R	21003085002	TNRCC 1005/LA 1005	o-Terphenyl	427931	428005	3/16/10	3/16/10	WATER	high SU recovery (132%)	J to detects (none)
MW-50	21003085004	TNRCC 1005/LA 1005	o-Terphenyl	427931	428005	3/16/10	3/16/10	WATER	high SU recovery (131%)	J to RRs (none)
SED-15 (0-2)	21003082631	TNRCC 1006/LA 1006	o-Terphenyl	428320	428686	3/23/10	3/26/10	SOLID	none	SU diluted out
SED-15 (2-4)	21003082632	TNRCC 1006/LA 1006	o-Terphenyl	428320	428686	3/23/10	3/26/10	SOLID	none	SU diluted out
SB-1-MW-D	21005112702	TNRCC 1006/LA 1006	o-Terphenyl	431974	432653	5/17/10	5/22/10	WATER	low SU recovery (56%)	J / UJ to detects/NDs

TABLE 5 QC CHECK RESULTS

FIELD ID	LAB ID	METHOD	ANALYTE	PREP BATCH	QC BATCH	PREP DATE	ANALY DATE	MATRIX	QC COMMENT	DVQ APPLIED
LCSD PRECISI	ON	- L		2/11-011	2711011	27112	27112		L	L
LCSD		8270	Fluorene	431369	431542	5/12/10	5/13/10	WATER	LCS/LCSD precision of 34 RPD	J to detects (none)
LCSD		8270	2-Methylnaphthalene	432705	432841	5/26/10	5/27/10	WATER	LCS/LCSD precision of 21 RPD	J to detects (none)
LCSD		8270	Anthracene	432705	432841	5/26/10	5/27/10	WATER	LCS/LCSD precision of 27 RPD	J to detects (none)
LABORATORY	DUPLICATE PR	RECISION								
SED-BK-10	DUP	SW-846 6010B	Zinc	432560	433334	5/25/10	6/2/10	SOLID	lab DUP precision of 91 RPD	J to detects
SED-10 (2-4)	DUP	SW-846 7471B	Mercury	427504	427539	3/9/10	3/9/10	SOLID	laboratory DUP difference = 1.7xRDL	J / UJ to detects/NDs
LABORATORY	BLANKS									
Method Blank		EPA 9251	Chloride	428130	428132	3/17/10	3/19/10	SOLID	laboratory blank contamination (1.71 B mg/kg)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		EPA 9251	Chloride	432285	432286	5/19/10	5/20/10	SOLID	laboratory blank contamination (3.02 B mg/kg)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		EPA 9251	Chloride	432724	432725	5/24/10	5/25/10	SOLID	laboratory blank contamination (2.48 B mg/kg)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SM 2340 B	Magnesium	431357	431478	5/11/10	5/12/10	WATER	laboratory blank contamination (0.029 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SM 2340 B	Magnesium	431669	432180	5/14/10	5/23/10	WATER	laboratory blank contamination (0.026 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SM 4500 CL E Chloride	Chloride	NA	432456		5/22/10	WATER	laboratory blank contamination (0.33 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SM 4500 CL E Chloride	Chloride	NA	432688		5/25/10	WATER	laboratory blank contamination (0.26 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SM 4500 CL E Chloride	Chloride	NA	432689		5/25/10	WATER	laboratory blank contamination (0.31 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>

TABLE 5 QC CHECK RESULTS

FIELD ID	LAB ID	METHOD	ANALYTE	PREP BATCH	QC BATCH	PREP DATE	ANALY DATE	MATRIX	QC COMMENT	DVQ APPLIED
Method Blank		SM 4500 CL E Chloride	Chloride	NA	433005	DATE	5/28/10	WATER	laboratory blank contamination (0.31 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B	Barium	427501	427630	3/9/10	3/10/10	SOLID	laboratory blank contamination (0.053 B mg/kg)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B	Cadmium	427501	427630	3/9/10	3/10/10	SOLID	laboratory blank contamination (0.013 B mg/kg)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Chromium	427501	427630	3/9/10	3/10/10	SOLID	laboratory blank contamination (0.042 B mg/kg)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Barium	427512	427663	3/9/10	3/11/10	SOLID	laboratory blank contamination (0.025 B mg/kg)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Barium	431366	431454	5/11/10	5/12/10	SOLID	laboratory blank contamination (0.024 B mg/kg)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Cadmium	431366	431454	5/11/10	5/12/10	SOLID	laboratory blank contamination (0.019 B mg/kg)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Zinc	431366	431454	5/11/10	5/12/10	SOLID	laboratory blank contamination (0.16 B mg/kg)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Chromium	431644	432227	5/14/10	5/20/10	SOLID	laboratory blank contamination (0.029 B mg/kg)	none (blank concentration <rdi< td=""></rdi<>
Method Blank		SW-846 6010B	Magnesium	431357	431478	5/11/10	5/12/10	WATER	laboratory blank contamination (0.029 B mg/L)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Potassium	431357	432074	5/11/10	5/18/10	WATER	laboratory blank contamination (0.095 B mg/L)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Sodium	431357	431478	5/11/10	5/12/10	WATER	laboratory blank contamination (0.75 B mg/L)	none (blank concentration <rdi< td=""></rdi<>
Method Blank		SW-846 6010B	Potassium	431358	431478	5/11/10	5/12/10	WATER	laboratory blank contamination (0.068 B mg/L)	none (blank concentration <rdl< td=""></rdl<>

TABLE 5 QC CHECK RESULTS

FIELD ID	LAB ID	METHOD	ANALYTE	PREP BATCH	QC BATCH	PREP DATE	ANALY DATE	MATRIX	QC COMMENT	DVQ APPLIED
Method Blank		SW-846 6010B	Sodium	431358	431564	5/11/10	5/13/10	WATER	laboratory blank contamination (0.50 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B	Magnesium	431669	432180	5/14/10	5/23/10	WATER	laboratory blank contamination (0.026 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B	Potassium	431669	432623	5/14/10	5/24/10	WATER	laboratory blank contamination (0.35 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B	Sodium	431669	432180	5/14/10	5/23/10	WATER	laboratory blank contamination (0.44 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B	Potassium	431670	432911	5/14/10	5/27/10	WATER	laboratory blank contamination (0.11 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B	Sodium	431670	432911	5/14/10	5/27/10	WATER	laboratory blank contamination (1.04 mg/L)	U to detects < 10 x BlankEquivConc (none)
Method Blank		SW-846 6010B	Barium	431818	432290	5/16/10	5/19/10	WATER	laboratory blank contamination (0.00043 B mg/L)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Calcium	431818	432290	5/16/10	5/19/10	WATER	laboratory blank contamination (0.063 B mg/L)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Potassium	431818	432290	5/16/10	5/19/10	WATER	laboratory blank contamination (0.15 B mg/L)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Manganese	432866	433375	5/28/10	6/2/10	WATER	laboratory blank contamination (0.00064 B mg/L)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Sodium	432866	433375	5/28/10	6/2/10	WATER	laboratory blank contamination (0.45 B mg/L)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Cadmium	432614	433089	5/24/10	5/29/10	WATER	laboratory blank contamination (0.00046 B mg/L)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B Dissolved	Cadmium	431356	431478	5/11/10	5/12/10	WATER	laboratory blank contamination (0.00025 B mg/L)	none (blank concentration <rdl< td=""></rdl<>

TABLE 5 QC CHECK RESULTS

FIELD ID	LAB ID	METHOD	ANALYTE	PREP BATCH	QC BATCH	PREP DATE	ANALY DATE	MATRIX	QC COMMENT	DVQ APPLIED
Method Blank		SW-846 6010B Dissolved	Sodium	431356	431564	5/11/10	5/13/10	WATER	laboratory blank contamination (0.30 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B Dissolved	Magnesium	431819	432290	5/16/10	5/19/10	WATER	laboratory blank contamination (0.060 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B Dissolved	Manganese	431819	432290	5/16/10	5/19/10	WATER	laboratory blank contamination (0.00099 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B Dissolved	Barium	432575	433089	5/24/10	5/29/10	WATER	laboratory blank contamination (0.00031 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B Dissolved	Cadmium	432575	433089	5/24/10	5/29/10	WATER	laboratory blank contamination (0.00072 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 7470A	Mercury	427516	427538	3/9/10	3/10/10	WATER	laboratory blank contamination (0.00006 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 7470A	Mercury	431365	431459	5/11/10	5/12/10	WATER	laboratory blank contamination (0.00006 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 7471B	Mercury	427504	427539	3/9/10	3/9/10	SOLID	laboratory blank contamination (0.0059 B mg/kg)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 7471B	Mercury	431367	431453	5/11/10	5/12/10	SOLID	laboratory blank contamination (0.0077 B mg/kg)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 7471B	Mercury	431666	431732	5/14/10	5/15/10	SOLID	laboratory blank contamination (0.0067 B mg/kg)	none (blank concentration <rdl)< td=""></rdl)<>
RESULTS ASS	SESSMENT				•	•		•		
SB-1-MW-S	21005112701	SW-846 6010B	Barium		431478	5/11/10	5/12/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
SB-1-MW-S	21005112701	SW-846 6010B Dissolved	Barium		431478	5/11/10	5/12/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
SB-1-MW-S	21005112701	SW-846 6010B	Calcium		431478	5/11/10	5/12/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect

TABLE 5 QC CHECK RESULTS

FIELD ID	LAB ID	METHOD	ANALYTE	PREP	QC	PREP	ANALY	MATRI	QC COMMENT	DVQ APPLIED
				BATCH	BATCH	DATE	DATE	X		
SB-1-MW-S	21005112701	SW-846 6010B Dissolved	Calcium		431478	5/11/10	5/12/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
SB-1-MW-S	21005112701	SW-846 6010B	Magnesium		431478	5/11/10	5/12/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
SB-1-MW-S	21005112701	SW-846 6010B Dissolved	Magnesium		431478	5/11/10	5/12/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
SB-1-MW-S	21005112701	SW-846 6010B	Manganese		431478	5/11/10	5/12/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
SB-1-MW-S	21005112701	SW-846 6010B Dissolved	Manganese		431478	5/11/10	5/12/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
SB-1-MW-S	21005112701	SW-846 6010B	Sodium		431564	5/11/10	5/13/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
SB-1-MW-S	21005112701	SW-846 6010B Dissolved	Sodium		431564	5/11/10	5/13/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
MW-5D	21005142602	SW-846 6010B	Sodium		432290	5/16/10	5/19/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
MW-5D	21005142602	SW-846 6010B Dissolved	Sodium		432290	5/16/10	5/19/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
SS-10 (0-2)	21003082642	TNRCC 1006/LA 1006			428686	3/23/10	3/25/10	SOLID	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (57%)	J/UJ to NDs/detects (1005&1006)
SED-26 (2-4)	21003082653	TNRCC 1006/LA 1006			428763	3/23/10	3/30/10	SOLID	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (50%)	J/UJ to NDs/detects (1005&1006)
SED-29 (0-2)	21003082658	TNRCC 1006/LA 1006			428725	3/24/10	3/26/10	SOLID	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (58%)	J/UJ to NDs/detects (1005&1006)

TABLE 6
FIELD DUPLICATE SUMMARY

ORIGINAL FIELD ID	DUPLICATE FIELD ID	SAMPLE DATE	SAMPLE MATRIX	ANALYTE	ORIGINA	L RE	SULTS	DUPLICA ⁻	TE RE	SULTS	DIFFERENCE	RPD	2-3xRDL	PASS
SW-09	SW-109	5/6/10	WATER	2-Methylnaphthalene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Acenaphthene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Acenaphthylene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Anthracene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Benzo(a)anthracene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Benzo(a)pyrene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Benzo(b)fluoranthene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Benzo(k)fluoranthene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Chrysene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Dibenz(a,h)anthracene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Fluoranthene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Fluorene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Indeno(1,2,3-cd)pyrene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Naphthalene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Phenanthrene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Pyrene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Calcium	58.6		mg/L	59.4		mg/L	0.8	1.4	0.2	у
SW-09	SW-109	5/6/10	WATER	Hardness	591		mg/L	597		mg/L	6	1.0	0.66	у
SW-09	SW-109	5/6/10	WATER	Magnesium	140		mg/L	141		mg/L	1	0.7	0.2	у
SW-09	SW-109	5/6/10	WATER	Total Dissolved Solids	4220		mg/L	4150		mg/L	70	1.7	20	у
SW-09	SW-109	5/6/10	WATER	Chloride	1870		mg/L	1840		mg/L	30	1.6	100	у
SW-09	SW-109	5/6/10	WATER	Barium	0.42		mg/L	0.41		mg/L	0.01	2.4	0.02	у
SW-09	SW-109	5/6/10	WATER	Cadmium	0.0027	U	mg/L	0.0027	U	mg/L	0	NA	0.0054	у
SW-09	SW-109	5/6/10	WATER	Calcium	58.6		mg/L	59.4		mg/L	0.8	1.4	0.2	у
SW-09	SW-109	5/6/10	WATER	Chromium	0.0027	В	mg/L	0.0027	В	mg/L	0	NA	0.02	у

TABLE 6
FIELD DUPLICATE SUMMARY

ORIGINAL FIELD ID	DUPLICATE FIELD ID	SAMPLE DATE	SAMPLE MATRIX	ANALYTE	ORIGINA	AL RE	SULTS	DUPLICA [*]	TE R	ESULTS	DIFFERENCE	RPD	2-3xRDL	PASS
SW-09	SW-109	5/6/10	WATER	Iron	1.12		mg/L	1.11		mg/L	0.01	0.9	0.2	у
SW-09	SW-109	5/6/10	WATER	Lead	0.008	U	mg/L	0.008	U	mg/L	0	NA	0.016	у
SW-09	SW-109	5/6/10	WATER	Magnesium	140		mg/L	141		mg/L	1	0.7	0.2	у
SW-09	SW-109	5/6/10	WATER	Manganese	0.51		mg/L	0.5		mg/L	0.01	2.0	0.03	у
SW-09	SW-109	5/6/10	WATER	Potassium	42.6		mg/L	42.9		mg/L	0.3	0.7	1	у
SW-09	SW-109	5/6/10	WATER	Selenium	0.005	U	mg/L	0.005	U	mg/L	0	NA	0.01	у
SW-09	SW-109	5/6/10	WATER	Sodium	915		mg/L	1100		mg/L	185	18.4	10	у
SW-09	SW-109	5/6/10	WATER	Strontium	0.99		mg/L	1.01		mg/L	0.02	2.0	0.1	у
SW-09	SW-109	5/6/10	WATER	Zinc	0.02	U	mg/L	0.02	U	mg/L	0	NA	0.04	у
SW-09	SW-109	5/6/10	WATER	Barium	0.37		mg/L	0.38		mg/L	0.01	2.7	0.02	у
SW-09	SW-109	5/6/10	WATER	Cadmium	0.0027	U	mg/L	0.00027	В	mg/L	0.00243	NA	0.0054	у
SW-09	SW-109	5/6/10	WATER	Chromium	0.0024	В	mg/L	0.0022	В	mg/L	0.0002	NA	0.02	у
SW-09	SW-109	5/6/10	WATER	Lead	0.008	U	mg/L	0.008	U	mg/L	0	NA	0.016	у
SW-09	SW-109	5/6/10	WATER	Selenium	0.005	U	mg/L	0.005	U	mg/L	0	NA	0.01	у
SW-09	SW-109	5/6/10	WATER	Strontium	1		mg/L	1.03		mg/L	0.03	3.0	0.1	у
SW-09	SW-109	5/6/10	WATER	Zinc	0.0095	В	mg/L	0.02	U	mg/L	0.0105	NA	0.04	у
SW-09	SW-109	5/6/10	WATER	Arsenic	0.01	U	mg/L	0.01	U	mg/L	0	NA	0.02	у
SW-09	SW-109	5/6/10	WATER	Arsenic	0.01	U	mg/L	0.01	U	mg/L	0	NA	0.02	у
SW-09	SW-109	5/6/10	WATER	Mercury	0.00011	В	mg/L	0.00006	В	mg/L	0.00005	NA	0.0004	у
SW-09	SW-109	5/6/10	WATER	Mercury	0.0001	В	mg/L	0.00006	В	mg/L	0.00004	NA	0.0004	у
SED-15	SED-115	5/6/10	SOLID	2-Methylnaphthalene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Acenaphthene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Acenaphthylene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Anthracene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Benzo(a)anthracene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у

TABLE 6
FIELD DUPLICATE SUMMARY

ORIGINAL FIELD ID	DUPLICATE FIELD ID	SAMPLE DATE	SAMPLE MATRIX	ANALYTE	ORIGINA	AL RE	SULTS	DUPLICA	TE R	ESULTS	DIFFERENCE	RPD	2-3xRDL	PASS
SED-15	SED-115	5/6/10	SOLID	Benzo(a)pyrene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Benzo(b)fluoranthene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Benzo(k)fluoranthene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Chrysene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Dibenz(a,h)anthracene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Fluoranthene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Fluorene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Indeno(1,2,3-cd)pyrene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Naphthalene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Phenanthrene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Pyrene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Total Moisture	75.4		%	73		%	2.4	3.2	0.03	у
SED-15	SED-115	5/6/10	SOLID	Total Organic Carbon	67700		mg/kg	40800		mg/kg	26900	49.6	600	у
SED-15	SED-115	5/6/10	SOLID	Chloride	944		mg/kg	947		mg/kg	3	0.3	30	у
SED-15	SED-115	5/6/10	SOLID	Arsenic	1.66		mg/kg	1.3	В	mg/kg	0.36	NA	4.8	у
SED-15	SED-115	5/6/10	SOLID	Barium	232		mg/kg	211		mg/kg	21	9.5	1.2	У
SED-15	SED-115	5/6/10	SOLID	Cadmium	0.2	U	mg/kg	0.2	U	mg/kg	0	NA	0.6	У
SED-15	SED-115	5/6/10	SOLID	Chromium	4.42		mg/kg	4.62		mg/kg	0.2	4.4	1.2	У
SED-15	SED-115	5/6/10	SOLID	Lead	5.82		mg/kg	6.06		mg/kg	0.24	4.0	1.8	у
SED-15	SED-115	5/6/10	SOLID	Selenium	1.6	U	mg/kg	1.59	U	mg/kg	0.01	NA	4.8	у
SED-15	SED-115	5/6/10	SOLID	Strontium	16.1		mg/kg	14.3		mg/kg	1.8	11.8	1.2	у
SED-15	SED-115	5/6/10	SOLID	Zinc	18		mg/kg	17.8		mg/kg	0.2	1.1	2.4	у
SED-15	SED-115	5/6/10	SOLID	Mercury	0.041		mg/kg	0.04		mg/kg	0.001	NA	0.036	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Benzene	0.005	U	mg/L	0.005	U	mg/L	0	NA	0.01	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Ethylbenzene	0.005	U	mg/L	0.005	U	mg/L	0	NA	0.01	у

TABLE 6
FIELD DUPLICATE SUMMARY

ORIGINAL FIELD ID	DUPLICATE FIELD ID	SAMPLE DATE	SAMPLE MATRIX	ANALYTE	ORIGINA	AL RE	SULTS	DUPLICA	TE R	ESULTS	DIFFERENCE	RPD	2-3xRDL	PASS
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Toluene	0.005	U	mg/L	0.005	U	mg/L	0	NA	0.01	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Xylene (total)	0.01	U	mg/L	0.01	U	mg/L	0	NA	0.02	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Sulfate	2.4	В	mg/L	5	U	mg/L	2.6	NA	10	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Bicarbonate Alkalinity	395		mg/L CaCO3	385		mg/L CaCO3	10	2.6	2	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Carbonate Alkalinity	1	U	mg/L CaCO3	1	U	mg/L CaCO3	0	NA	2	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Total Dissolved Solids	12200		mg/L	12000		mg/L	200	1.7	20	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Chloride	7270		mg/L	7160		mg/L	110	1.5	200	У
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Barium	6.57		mg/L	6.51		mg/L	0.06	0.9	0.02	У
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Calcium	880		mg/L	860		mg/L	20	2.3	0.2	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Iron	17.2		mg/L	17.4		mg/L	0.2	1.2	0.2	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Magnesium	357		mg/L	356		mg/L	1	0.3	0.2	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Manganese	3.31		mg/L	3.28		mg/L	0.03	0.9	0.03	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Potassium	13.8		mg/L	13.7		mg/L	0.1	0.7	1	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Selenium	0.04	U	mg/L	0.04	U	mg/L	0	NA	0.08	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Sodium	2240		mg/L	2250		mg/L	10	0.4	10	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Barium	6.17		mg/L	6.06		mg/L	0.11	1.8	0.02	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Calcium	834		mg/L	831		mg/L	3	0.4	0.2	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Iron	14		mg/L	13.9		mg/L	0.1	0.7	0.2	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Magnesium	339		mg/L	333		mg/L	6	1.8	0.2	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Manganese	2.9		mg/L	2.85		mg/L	0.05	1.7	0.03	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Potassium	14.2		mg/L	13.8		mg/L	0.4	2.9	1	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Selenium	0.04	U	mg/L	0.04	U	mg/L	0	NA	0.08	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Sodium	2070		mg/L	2080		mg/L	10	0.5	10	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Arsenic	0.01	U	mg/L	0.01	U	mg/L	0	NA	0.02	у

TABLE 6
FIELD DUPLICATE SUMMARY

ORIGINAL FIELD ID	DUPLICATE FIELD ID	SAMPLE DATE	SAMPLE MATRIX	ANALYTE	ORIGINA	AL RE	SULTS	DUPLICA	TE RI	SULTS	DIFFERENCE	RPD	2-3xRDL	PASS
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Arsenic	0.01	U	mg/L	0.01	U	mg/L	0	NA	0.02	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Aliphatic >C10-C12	0.15	U	mg/L	0.15	U	mg/L	0	NA	0.3	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Aliphatic >C12-C16	0.15	U	mg/L	0.15	U	mg/L	0	NA	0.3	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Aliphatic >C16-C35	0.15	U	mg/L	0.15	U	mg/L	0	NA	0.3	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Aliphatic >C8-C10	0.15	U	mg/L	0.15	U	mg/L	0	NA	0.3	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Aliphatic C6-C8	0.15	U	mg/L	0.15	U	mg/L	0	NA	0.3	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Aromatic >C10-C12	0.15	U	mg/L	0.15	U	mg/L	0	NA	0.3	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Aromatic >C12-C16	0.15	U	mg/L	0.15	U	mg/L	0	NA	0.3	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Aromatic >C16-C21	0.15	U	mg/L	0.15	U	mg/L	0	NA	0.3	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Aromatic >C21-C35	0.15	U	mg/L	0.15	U	mg/L	0	NA	0.3	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Aromatic >C8-C10	0.15	U	mg/L	0.15	U	mg/L	0	NA	0.3	у

TABLE 1
SAMPLE SUMMARY
(SEDIMENTS)

LABORATORY ID	FIELD ID	SAMPLE DATE				TESTS PER	RFORMED			
21003082601	SED-1 (0-2)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082601MS	SED-1 (0-2)	2/25/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082601MSD	SED-1 (0-2)	2/25/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082602	SED-1 (2-4)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082603	SED-1 (4-6)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082604	SED-2 (0-2)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082604MS	SED-2 (0-2)	2/25/10	NA	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082604DUP	SED-2 (0-2)	2/25/10	NA	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082605	SED-2 (2-4)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082606	SED-2 (4-6)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082607	SED-3 (0-2)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082608	SED-3 (2-4)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082609	SED-3 (4-6)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082610	SED-4 (0-2)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	PCB	TPH (1005)*	NA	NA
21003082610MS	SED-4 (0-2)	2/25/10	NA	NA	NA	NA	NA	TPH (1005)*	NA	NA
21003082610MSD	SED-4 (0-2)	2/25/10	NA	NA	NA	NA	NA	TPH (1005)*	NA	NA
21003082611	SED-5 (0-2)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	PCB	TPH (1005)*	NA	NA
21003082612	SED-6 (0-2)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	PCB	TPH (1005)*	NA	NA
21003082613	SED-7 (0-2)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082614	SED-7 (2-4)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	PCB	TPH (1005)*	Frac TPH (1006)*	NA
21003082615	SED-7 (4-6)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	PCB	TPH (1005)*	Frac TPH (1006)*	NA
21003082616	SED-8 (0-2)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	PCB	TPH (1005)*	NA	NA
21003082617	SED-8 (2-4)	2/25/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082618	SED-9 (0-2)	2/25/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082618MS	SED-9 (0-2)	2/25/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082618MSD	SED-9 (0-2)	2/25/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082619	SED-9 (2-4)	2/25/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA

TABLE 1
SAMPLE SUMMARY
(SEDIMENTS)

LABORATORY ID	FIELD ID	SAMPLE DATE				TESTS PER	RFORMED			
21003082620	SED-10 (0-2)	2/25/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082621	SED-10 (2-4)	2/25/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082621MS	SED-10 (2-4)	2/25/10	Chloride	NA	3 ICP Metals	Mercury	NA	NA	NA	NA
21003082621MSD	SED-10 (2-4)	2/25/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082621DUP	SED-10 (2-4)	2/25/10	NA	NA	3 ICP Metals	Mercury	NA	NA	NA	NA
21003082622	SED-11 (0-2)	2/25/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082623	SED-11 (2-4)	2/25/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082624	SED-12 (0-2)	2/25/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082625	SED-12 (2-4)	2/25/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082626	SED-12 (4-6)	2/25/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082627	SED-13 (0-2)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	NA	NA	NA
21003082628	SED-13 (2-4)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	NA	NA	NA
21003082629	SED-14 (0-2)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	NA	NA	NA
21003082630	SED-14 (2-4)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	NA	NA	NA
21003082631	SED-15 (0-2)	2/26/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082632	SED-15 (2-4)	2/26/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082633	SED-16 (0-2)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082634	SED-17 (0-2)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082634MS	SED-17 (0-2)	2/26/10	NA	NA	NA	NA	NA	TPH (1005)*	NA	NA
21003082634MSD	SED-17 (0-2)	2/26/10	NA	NA	NA	NA	NA	TPH (1005)*	NA	NA
21003082635	SED-17 (2-4)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082636	SED-18 (0-2)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082637	SED-18 (2-4)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082638	SED-19 (0-2)	2/26/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082638MS	SED-19 (0-2)	2/26/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082638MSD	SED-19 (0-2)	2/26/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082639	SED-19 (2-4)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA

TABLE 1
SAMPLE SUMMARY
(SEDIMENTS)

LABORATORY ID	FIELD ID	SAMPLE DATE				TESTS PER	RFORMED			
21003082640	SS-08 (0-2)	2/26/10	NA	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082641	SS-08 (2-4)	2/26/10	NA	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082642	SS-10 (0-2)	2/26/10	NA	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082642MS	SS-10 (0-2)	2/26/10	NA	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082642DUP	SS-10 (0-2)	2/26/10	NA	NA	7 ICP Metals	Mercury	NA	NA	NA	NA
21003082643	SS-10 (2-4)	2/26/10	NA	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082644	SED-20 (0-2)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082645	SED-20 (2-4)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082645MS	SED-20 (2-4)	2/26/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082645MSD	SED-20 (2-4)	2/26/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082646	SED-21 (0-2)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082647	SED-21 (2-4)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082648	SED-21 (4-6)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082649	SED-21 (6-8)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082650	SED-22 (0-2)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082651	SED-22 (2-4)	2/26/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082652	SED-26 (0-2)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082653	SED-26 (2-4)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082654	SED-27 (0-2)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082655	SED-27 (2-4)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082656	SED-28 (0-2)	3/2/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082657	SED-28 (2-4)	3/2/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082658	SED-29 (0-2)	3/2/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082659	SED-29 (2-4)	3/2/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082660	SED-30 (0-2)	3/2/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082661	SED-30 (2-4)	3/2/10	Chloride	NA	7 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA

TABLE 1
SAMPLE SUMMARY
(SEDIMENTS)

LABORATORY ID	FIELD ID	SAMPLE DATE				TESTS PER	RFORMED			
21003082662	SED-31 (4-6)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082662MS	SED-31 (4-6)	3/2/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082662MSD	SED-31 (4-6)	3/2/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082663	SED-32 (4-6)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082663MS	SED-32 (4-6)	3/2/10	NA	NA	3 ICP Metals	Mercury	NA	NA	NA	NA
21003082663DUP	SED-32 (4-6)	3/2/10	NA	NA	3 ICP Metals	Mercury	NA	NA	NA	NA
21003082664	SED-33 (4-6)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082665	SED-23 (0-2)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082665MS	SED-23 (0-2)	3/2/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082665MSD	SED-23 (0-2)	3/2/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082666	SED-23 (2-4)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082667	SED-24 (0-2)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082668	SED-24 (2-4)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082669	SED-25 (0-2)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082670	SED-25 (2-4)	3/2/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082671	SED-31 (0-2)	3/1/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082672	SED-31 (2-4)	3/1/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082673	SED-32 (0-2)	3/1/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082674	SED-32 (2-4)	3/1/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21003082675	SED-33 (0-2)	3/1/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	Frac TPH (1006)*	NA
21003082675MS	SED-33 (0-2)	3/1/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082675MSD	SED-33 (0-2)	3/1/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21003082676	SED-33 (2-4)	3/1/10	Chloride	NA	3 ICP Metals	Mercury	NA	TPH (1005)*	NA	NA
21005112901	SED-9	5/5/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005112901MS	SED-9	5/5/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21005112901DUP	SED-9	5/5/10	NA	TOC	NA	NA	NA	NA	NA	NA
21005112901MSD	SED-9	5/5/10	Chloride	NA	NA	NA	NA	NA	NA	NA

TABLE 1
SAMPLE SUMMARY
(SEDIMENTS)

LABORATORY ID	FIELD ID	SAMPLE DATE				TESTS PER	RFORMED			
21005112902	SED-24	5/5/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005112903	SED-31	5/5/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005112904	SED-8	5/6/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005112905	SED-11	5/6/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005112906	SED-13	5/6/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005112906MS	SED-13	5/6/10	NA	NA	8 ICP Metals	Mercury	NA	NA	NA	NA
21005112906DUP	SED-13	5/6/10	NA	NA	8 ICP Metals	Mercury	NA	NA	NA	NA
21005112907	SED-15	5/6/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005112908	SED-19	5/6/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005112909	SED-115 ⁽¹⁾	5/6/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005112910	SED-120	5/7/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005112911	SED-26	5/5/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005140201	SED-BK-06	5/10/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005140201MS	SED-BK-06	5/10/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21005140201MSD	SED-BK-06	5/10/10	Chloride	NA	NA	NA	NA	NA	NA	NA
21005140202	SED-BK-01	5/10/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005140202MS	SED-BK-01	5/10/10	NA	NA	8 ICP Metals	Mercury	NA	NA	NA	NA
21005140202DUP	SED-BK-01	5/10/10	NA	NA	8 ICP Metals	Mercury	NA	NA	NA	NA
21005140203	SED-BK-02	5/10/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005140204	SED-BK-03	5/10/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005140205	SED-BK-04	5/10/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005140206	SED-BK-05	5/11/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005140207	SED-BK-09	5/11/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005140208	SED-BK-07	5/11/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005140208MS	SED-BK-07	5/11/10	NA	NA	NA	NA	NA	NA	NA	PAH
21005140208MSD	SED-BK-07	5/11/10	NA	NA	NA	NA	NA	NA	NA	PAH
21005140209	SED-BK-08	5/11/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005140209DUP	SED-BK-08	5/11/10	NA	TOC	NA	NA	NA	NA	NA	NA

TABLE 1
SAMPLE SUMMARY
(SEDIMENTS)

LABORATORY ID	FIELD ID	SAMPLE DATE				TESTS PER	RFORMED			
21005242807	SED-BK-11	5/19/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005242807MS	SED-BK-11	5/19/10	NA	NA	NA	Mercury	NA	NA	NA	PAH
21005242807MSD	SED-BK-11	5/19/10	NA	NA	NA	NA	NA	NA	NA	PAH
21005242807DUP	SED-BK-11	5/19/10	NA	NA	NA	Mercury	NA	NA	NA	NA
21005242808	SED-BK-10	5/19/10	Chloride	TOC	8 ICP Metals	Mercury	NA	NA	NA	PAH
21005242808MS	SED-BK-10	5/19/10	NA	NA	8 ICP Metals	NA	NA	NA	NA	NA
21005242808DUP	SED-BK-10	5/19/10	NA	NA	8 ICP Metals	NA	NA	NA	NA	NA
21006092101	SED 15 (8-10)	6/8/10	NA	NA	NA	NA	NA	NA	Frac TPH (1006)	NA
21006092102	SED 15 W (0-2)	6/8/10	NA	NA	NA	NA	NA	NA	Frac TPH (1006)	NA
21006092103	SED 15 W 2 (0-2)	6/8/10	NA	NA	NA	NA	NA	NA	Frac TPH (1006)	NA
21006092104	SED 15 E (0-2)	6/8/10	NA	NA	NA	NA	NA	NA	Frac TPH (1006)	NA
21006092105	SED 15 E 2 (0-2)	6/8/10	NA	NA	NA	NA	NA	NA	Frac TPH (1006)	NA
21006092106	SED 15 N (0-2)	6/8/10	NA	NA	NA	NA	NA	NA	Frac TPH (1006)	NA

^{*}Supporting raw data reviewed for this sample

3 ICP Metals - As,Ba,Se

7 ICP Metals - As,Ba,Cd,Cr,Pb,Se,Sr

8 ICP Metals - As,Ba,Cd,Cr,Pb,Se,Sr,Zn

(1) Field duplicate of SED-15 (21005112907)

TABLE 1 SAMPLE SUMMARY (SOILS/SPLP)

LABORATORY ID	FIELD ID	SAMPLE DATE		TESTS PE	RFORMED	
21005140101	SB-1 (74-76)	5/11/10	Chloride	NA	NA	NA
21005140101MS	SB-1 (74-76)	5/11/10	Chloride	NA	NA	NA
21005140101MSD	SB-1 (74-76)	5/11/10	Chloride	NA	NA	NA
21005140102	SB-1 (78-80)	5/11/10	Chloride	NA	NA	NA
21005140103	SB-1 (62-64)	5/11/10	Chloride	NA	NA	NA
21005140104	SB-1 (66-68)	5/11/10	Chloride	NA	NA	NA
21005140105	SB-1 (70-72)	5/11/10	Chloride	NA	NA	NA
21005140106	SB-1 (42-43)	5/5/10	Chloride	NA	NA	NA
21005140107	SB-1 (13-15)	5/5/10	Chloride	NA	NA	NA
21005140108	SB-1 (58-60)	5/5/10	Chloride	NA	NA	NA
21005140109	SB-1 (62-64)	5/5/10	Chloride	NA	NA	NA
21005140110	SB-1 (46.6-47)	5/5/10	Chloride	NA	NA	NA
21005140110MS	SB-1 (46.6-47)	5/5/10	Chloride	NA	NA	NA
21005140110MSD	SB-1 (46.6-47)	5/5/10	Chloride	NA	NA	NA
21005140111	SB-1 (33-35)	5/5/10	Chloride	NA	NA	NA
21005140112	SB-1 (17-19)	5/5/10	Chloride	NA	NA	NA
21005140113	SB-1 (21-22)	5/5/10	Chloride	NA	NA	NA
21005140114	SB-1 (25-27)	5/5/10	Chloride	NA	NA	NA
21005140115	SB-1 (9-11)	5/5/10	Chloride	NA	NA	NA
21005140116	SB-1 (37-39)	5/5/10	Chloride	NA	NA	NA
21005140117	SB-1 (45.5-46)	5/5/10	Chloride	NA	NA	NA
21005140118	SB-1 (29-31)	5/5/10	Chloride	NA	NA	NA
21005140119	SB-1 (0-7)	5/5/10	Chloride	NA	NA	NA
21005140120	SB-2 (58-60)	5/10/10	Chloride	NA	NA	NA
21005140121	SB-2 (54-56)	5/10/10	Chloride	NA	NA	NA
21005140122	SB-2 (74-76)	5/10/10	Chloride	NA	NA	NA
21005140123	SB-2 (66-68)	5/10/10	Chloride	NA	NA	NA

TABLE 1 SAMPLE SUMMARY (SOILS/SPLP)

LABORATORY ID	FIELD ID	SAMPLE DATE		TESTS PE	RFORMED	
21005140124	SB-2 (62-64)	5/10/10	Chloride	NA	NA	NA
21005140125	SB-2 (70-71.5)	5/10/10	Chloride	NA	NA	NA
21005140126	SB-2 (78-80)	5/10/10	Chloride	NA	NA	NA
21005140127	SB-2 (41-43)	5/7/10	Chloride	NA	NA	NA
21005140127MS	SB-2 (41-43)	5/7/10	Chloride	NA	NA	NA
21005140127MSD	SB-2 (41-43)	5/7/10	Chloride	NA	NA	NA
21005140128	SB-2 (33-35)	5/7/10	Chloride	NA	NA	NA
21005140129	SB-2 (35-36)	5/7/10	Chloride	NA	NA	NA
21005140130	SB-2 (21-23)	5/7/10	Chloride	NA	NA	NA
21005140130MS	SB-2 (21-23)	5/7/10	Chloride	NA	NA	NA
21005140130MSD	SB-2 (21-23)	5/7/10	Chloride	NA	NA	NA
21005140131	SB-2 (29-31)	5/7/10	Chloride	NA	NA	NA
21005140132	SB-2 (17-19)	5/7/10	Chloride	NA	NA	NA
21005140133	SB-2 (25-27)	5/7/10	Chloride	NA	NA	NA
21005140134	SB-2 (13-15)	5/7/10	Chloride	NA	NA	NA
21005140135	SB-2 (9-11)	5/7/10	Chloride	NA	NA	NA
21005140136	SB-2 (0-6)	5/7/10	Chloride	NA	NA	NA
21005140137	SB-3 (56-58)	5/11/10	Chloride	NA	NA	NA
21005140138	SB-3 (21-22)	5/10/10	Chloride	NA	NA	NA
21005140139	SB-3 (64-66)	5/11/10	Chloride	NA	NA	NA
21005140140	SB-3 (8-10)	5/10/10	Chloride	NA	NA	NA
21005140141	SB-3 (12-14)	5/10/10	Chloride	NA	NA	NA
21005140142	SB-3 (16-18)	5/10/10	Chloride	NA	NA	NA
21005140143	SB-3 (24-26)	5/10/10	Chloride	NA	NA	NA
21005140144	SB-3 (72-73)	5/11/10	Chloride	NA	NA	NA
21005140145	SB-3 (59-60)	5/11/10	Chloride	NA	NA	NA
21005140146	SB-3 (49-49.5)	5/10/10	Chloride	NA	NA	NA

TABLE 1 SAMPLE SUMMARY (SOILS/SPLP)

LABORATORY ID	FIELD ID	SAMPLE DATE		TESTS PE	RFORMED	
21005140146MS	SB-3 (49-49.5)	5/10/10	Chloride	NA	NA	NA
21005140146MSD	SB-3 (49-49.5)	5/10/10	Chloride	NA	NA	NA
21005140147	SB-3 (68-68.5)	5/11/10	Chloride	NA	NA	NA
21005140148	SB-3 (77-78)	5/11/10	Chloride	NA	NA	NA
21005140149	SB-3 (40-42)	5/10/10	Chloride	NA	NA	NA
21005140150	SB-3 (37-38)	5/10/10	Chloride	NA	NA	NA
21005140150MS	SB-3 (37-38)	5/10/10	Chloride	NA	NA	NA
21005140150MSD	SB-3 (37-38)	5/10/10	Chloride	NA	NA	NA
21005140151	SB-3 (28-30)	5/10/10	Chloride	NA	NA	NA
21005140152	SB-3 (33-34)	5/10/10	Chloride	NA	NA	NA
21005140153	SB-3 (48-48.5)	5/10/10	Chloride	NA	NA	NA
21005140154	SB-3 (81-82)	5/11/10	Chloride	NA	NA	NA
21005140155	SB-3 (53-54)	5/11/10	Chloride	NA	NA	NA
21005140156	SB-3 (44-46)	5/10/10	Chloride	NA	NA	NA
21005140157	SB-3 (0-6)	5/10/10	Chloride	NA	NA	NA
21005142606	SB-1C (46-48)	5/13/10	Chloride	NA	NA	NA
21005142606MS	SB-1C (46-48)	5/13/10	Chloride	NA	NA	NA
21005142606MSD	SB-1C (46-48)	5/13/10	Chloride	NA	NA	NA
21005142607	SB-1C (51-52)	5/13/10	Chloride	NA	NA	NA
21005142608	SB-1C (53.5-54)	5/13/10	Chloride	NA	NA	NA
21005142609	SB-1C (54-56)	5/13/10	Chloride	NA	NA	NA
21005142610	SB-1C (58-60)	5/13/10	Chloride	NA	NA	NA
21005266601	MPA-SPLP-4	5/25/10	NA	NA	SPLP Mercury	NA
21005266601MS	MPA-SPLP-4	5/25/10	NA	NA	SPLP Mercury	NA
21005266601DUP	MPA-SPLP-4	5/25/10	NA	NA	SPLP Mercury	NA
21005266602	MPA-SPLP-5	5/25/10	NA	NA	SPLP Cr	NA
21005266602MS	MPA-SPLP-5	5/25/10	NA	NA	SPLP Cr	NA
21005266602DUP	MPA-SPLP-5	5/25/10	NA	NA	SPLP Cr	NA

TABLE 1 SAMPLE SUMMARY (SOILS/SPLP)

LABORATORY ID	FIELD ID	SAMPLE DATE		TESTS PE	RFORMED	
21005242809	MPA-SPLP-1	5/20/10	NA	NA	SPLP Ba	NA
21005242809MS	MPA-SPLP-1	5/20/10	NA	NA	SPLP Ba,Pb	NA
21005242809DUP	MPA-SPLP-1	5/20/10	NA	NA	SPLP Ba,Pb	NA
21005242810	MPA-SPLP-2	5/20/10	NA	NA	SPLP Ba,Pb	NA
21005242811	MPA-SPLP-3	5/20/10	NA	NA	SPLP Ba,Pb	NA
21005242812	MPA-AB5(A) 4-6	5/19/10	NA	NA	NA	Frac TPH (1006)
21005242813	MPA-AB5(B) 4-6	5/19/10	NA	NA	NA	Frac TPH (1006)
21005242814	MPA-AB5(C) 4-6	5/19/10	NA	NA	NA	Frac TPH (1006)
21005242815	MPA-AB6 8-10 (DRY)	5/19/10	NA	Arsenic	NA	NA
21005242816	MPA-AB8 6-8 (DRY)	5/19/10	NA	Arsenic	NA	NA
21005242817	MPA-AB13 0-3 (DRY)	5/20/10	NA	Arsenic	NA	NA
21005242818	MPA-AB6 8-10 (NORMAL)	5/19/10	NA	Arsenic	NA	NA
21005242819	MPA-AB8 6-8 (NORMAL)	5/19/10	NA	Arsenic	NA	NA
21005242820	MPA-AB13 0-3 (NORMAL)	5/20/10	NA	Arsenic	NA	NA
21005242820MS	MPA-AB13 0-3 (NORMAL)	5/20/10	NA	Arsenic	NA	NA
21005242820DUP	MPA-AB13 0-3 (NORMAL)	5/20/10	NA	Arsenic	NA	NA

TABLE 1 SAMPLE SUMMARY (SURFACE WATERS)

LABORATORY ID	FIELD ID	SAMPLE DATE						TESTS	PERFORMED)				
21005112801	SW-05	5/5/10	NA	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005112801MS	SW-05	5/5/10	NA	NA	NA	NA	Chloride	NA	NA	Arsenic	NA	Mercury	Mercury- Dissolved	NA
21005112801MSD	SW-05	5/5/10	NA	NA	NA	NA	Chloride	NA	NA	NA	NA	NA	NA	NA
21005112801DUP	SW-05	5/5/10	NA	NA	NA	NA	NA	NA	NA	Arsenic	NA	Mercury	Mercury- Dissolved	NA
21005112802	SW-03	5/5/10	NA	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005112803	SW-02	5/5/10	NA	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005112804	SW-04	5/5/10	NA	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005112804MS	SW-04	5/5/10	NA	NA	NA	NA	NA	NA	7 ICP Metals- Dissolved	NA	NA	NA	NA	NA
21005112804DUP	SW-04	5/5/10	NA	NA	NA	NA	NA	NA	7 ICP Metals- Dissolved	NA	NA	NA	NA	NA
21005112805	SW-01	5/6/10	Sulfate	Hardness	Salinity	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005112805DUP	SW-01	5/6/10	NA	NA	Salinity	NA	NA	NA	NA	NA	NA	NA	NA	NA
21005112806	SW-06	5/6/10	Alkalinity	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005112806MS	SW-06	5/6/10	NA	Hardness	NA	NA	NA	13 ICP Metals	NA	NA	NA	NA	NA	NA
21005112806DUP	SW-06	5/6/10	Alkalinity	Hardness	NA	NA	NA	13 ICP Metals	NA	NA	NA	NA	NA	NA

TABLE 1 SAMPLE SUMMARY (SURFACE WATERS)

LABORATORY ID	FIELD ID	SAMPLE DATE						TESTS	PERFORMED)				
21005112807	SW-07	5/6/10	NA	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005112807MS	SW-07	5/6/10	NA	NA	NA	NA	NA	NA	NA	NA	Arsenic- Dissolved	NA	NA	NA
21005112807DUP	SW-07	5/6/10	NA	NA	NA	NA	NA	NA	NA	NA	Arsenic- Dissolved	NA	NA	NA
21005112808	SW-10	5/6/10	Sulfate	Hardness	Salinity	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005112809	SW-09	5/6/10	Sulfate	Hardness	Salinity	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005112810	SW-109 ⁽¹⁾	5/6/10	Alkalinity	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005112810MS	SW-109 ⁽¹⁾	5/6/10	NA	Hardness	NA	NA	NA	13 ICP Metals	NA	NA	NA	NA	NA	NA
21005112810DUP	SW-109 ⁽¹⁾	5/6/10	NA	Hardness	NA	NA	NA	13 ICP Metals	NA	NA	NA	NA	NA	NA
21005112811	SW-20	5/7/10	NA	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005140210	SW BK-01	5/10/10	Sulfate	Hardness	Salinity	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005140210MS	SW BK-01	5/10/10	NA	Hardness	NA	NA	NA	13 ICP Metals	7 ICP Metals- Dissolved	NA	NA	NA	NA	NA
21005140210DUP	SW BK-01	5/10/10	NA	Hardness	NA	TDS	NA	13 ICP Metals	7 ICP Metals- Dissolved	NA	NA	NA	NA	NA

TABLE 1 SAMPLE SUMMARY (SURFACE WATERS)

LABORATORY ID	FIELD ID	SAMPLE DATE						TESTS	PERFORMED)				
21005140211	SW BK-02	5/10/10	Alkalinity	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005140211MS	SW BK-02	5/10/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Mercury- Dissolved	NA
21005140211DUP	SW BK-02	5/10/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Mercury- Dissolved	NA
21005140212	SW BK-03	5/10/10	NA	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005140213	SW BK-04	5/10/10	Sulfate	Hardness	Salinity	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005140214	SW BK-05	5/11/10	Alkalinity	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	РАН
21005140214MS	SW BK-05	5/11/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	Mercury	NA	NA
21005140214DUP	SW BK-05	5/11/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	Mercury	NA	NA
21005140215	SW BK-06	5/11/10	Sulfate	Hardness	Salinity	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005140215MS	SW BK-06	5/11/10	NA	NA	NA	NA	NA	NA	NA	Arsenic	NA	NA	NA	NA
21005140215DUP	SW BK-06	5/11/10	NA	NA	NA	NA	NA	NA	NA	Arsenic	NA	NA	NA	NA
21005140216	SW BK-07	5/11/10	Alkalinity	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005140217	SW BK-08	5/11/10	NA	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005140218	SW BK-09	5/11/10	NA	Hardness	NA	TDS	Chloride	13 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005140218MS	SW BK-09	5/11/10	NA	NA	NA	NA	NA	NA	NA	NA	Arsenic- Dissolved	NA	NA	NA
21005140218DUP	SW BK-09	5/11/10	NA	NA	NA	NA	NA	NA	NA	NA	Arsenic- Dissolved	NA	NA	NA

TABLE 1 SAMPLE SUMMARY (SURFACE WATERS)

LABORATORY ID	FIELD ID	SAMPLE DATE		TESTS PERFORMED										
21005242801	SW-BK-11	5/19/10	NA	Hardness	NA	TDS	Chloride	7 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005242802	SW-BK-11 MS	5/19/10	NA	NA	NA	NA	Chloride	7 ICP Metals	NA	Arsenic	NA	Mercury	NA	NA
21005242803	SW-BK-11 MSD	5/19/10	NA	NA	NA	NA	Chloride	7 ICP Metals	NA	Arsenic	NA	Mercury	NA	NA
21005242804	SW-BK-10	5/19/10	NA	Hardness	NA	TDS	Chloride	7 ICP Metals	7 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	Mercury	Mercury- Dissolved	PAH
21005242805	SW-BK-10 MS	5/19/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	PAH
21005242806	SW-BK-10 MSD	5/19/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	PAH

7 ICP Metals - Ba,Cd,Cr,Pb,Se,Sr,Zn

13 ICP Metals - Ba,Cd,Ca,Cr,Fe,Pb,Mg,Mn,K,Se,Na,Sr,Zn

(1) Field duplicate of SW-09 (21005112809)

TABLE 1 SAMPLE SUMMARY (GROUNDWATER)

LABORATORY ID	FIELD ID	SAMPLE DATE						TESTS P	ERFORME	D				
21003085001	MW-1	3/5/10	NA	NA	TDS	Chloride	7 ICP Metals	NA	Arsenic	NA	Mercury	BTEX	Bromide	TPH (1005)*
21003085001MS	MW-1	3/5/10	NA	NA	NA	NA	NA	NA	Arsenic	NA	NA	NA	Bromide	NA
21003085001MSD	MW-1	3/5/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Bromide	NA
21003085001DUP	MW-1	3/5/10	NA	NA	NA	NA	NA	NA	Arsenic	NA	NA	NA	NA	NA
21003085002	MW-2R	3/5/10	NA	NA	TDS	Chloride	7 ICP Metals	NA	Arsenic	NA	Mercury	BTEX	Bromide	TPH (1005)*
21003085003	MW-3R	3/5/10	NA	NA	TDS	Chloride	7 ICP Metals	NA	Arsenic	NA	Mercury	BTEX	Bromide	TPH (1005)*
21003085004	MW-50	3/5/10	NA	NA	TDS	Chloride	7 ICP Metals	NA	Arsenic	NA	Mercury	BTEX	Bromide	TPH (1005)*
21003085004MS	MW-50	3/5/10	NA	NA	NA	NA	7 ICP Metals	NA	NA	NA	NA	NA	NA	NA
21003085004DUP	MW-50	3/5/10	NA	NA	NA	NA	7 ICP Metals	NA	NA	NA	NA	NA	NA	NA
21003085005	TRIP BLANK	3/5/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	BTEX	NA	NA
21005112701	SB-1-MW-S	5/7/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	8 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	NA	BTEX	NA	Frac TPH (1006)*
21005112701DUP	SB-1-MW-S	5/7/10	NA	Alkalinity	TDS	NA	NA	NA	NA	NA	NA	NA	NA	NA
21005112702	SB-1-MW-D	5/6/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	8 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	NA	BTEX	NA	Frac TPH (1006)*
21005140158	SB-2 MW-S	5/11/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	8 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	NA	BTEX	NA	Frac TPH (1006)*
21005140159	SB-3-MW-S	5/12/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	8 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	NA	BTEX	NA	Frac TPH (1006)*
21005140160	SB-3-MW- SD ⁽¹⁾	5/12/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	8 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	NA	BTEX	NA	Frac TPH (1006)*
21005142601	MW-4D	5/12/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	8 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	NA	BTEX	NA	Frac TPH (1006)*

TABLE 1
SAMPLE SUMMARY
(GROUNDWATER)

LABORATORY ID	FIELD ID	SAMPLE DATE						TESTS P	ERFORME	D				
21005142601MS	MW-4D	5/12/10	Sulfate	NA	NA	NA	8 ICP Metals	8 ICP Metals- Dissolved	NA	NA	NA	NA	NA	NA
21005142601DUP	MW-4D	5/12/10	NA	NA	TDS	NA	8 ICP Metals	8 ICP Metals- Dissolved	NA	NA	NA	NA	NA	NA
21005142602	MW-5D	5/12/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	8 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	NA	BTEX	NA	Frac TPH (1006)*
21005142603	MW-6D	5/12/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	8 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	NA	BTEX	NA	Frac TPH (1006)*
21005142604	MW-6S	5/12/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	8 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	NA	BTEX	NA	Frac TPH (1006)*
21005142604MS	MW-6S	5/12/10	NA	NA	NA	NA	NA	NA	Arsenic	Arsenic- Dissolved	NA	NA	NA	NA
21005142604DUP	MW-6S	5/12/10	NA	NA	NA	NA	NA	NA	Arsenic	Arsenic- Dissolved	NA	NA	NA	NA
21005142605	MW-1C (97-100)	5/13/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	8 ICP Metals- Dissolved	Arsenic	Arsenic- Dissolved	NA	NA	NA	NA
21005266603	MPA-WW-1	5/25/10	Sulfate	Alkalinity	TDS	Chloride	8 ICP Metals	NA	Arsenic	NA	NA	BTEX	NA	Frac TPH (1006)
21005266603MS	MPA-WW-1	5/25/10	NA	NA	NA	NA	8 ICP Metals	NA	NA	NA	NA	BTEX	NA	NA
21005266603DUP	MPA-WW-1	5/25/10	NA	Alkalinity	TDS	NA	8 ICP Metals	NA	NA	NA	NA	NA	NA	NA
21005266603MSD	MPA-WW-1	5/25/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	BTEX	NA	NA
21005266604	TRIP BLANK		NA	NA	NA	NA	NA	NA	NA	NA	NA	BTEX	NA	Frac TPH (1006)

^{*}Supporting raw data reviewed for this sample

7 ICP Metals - Ba,Cd,Cr,Pb,Se,Sr,Zn

8 ICP Metals - Ba,Ca,Fe,Mg,Mn,K,Na,Se

(1) Field duplicate of SB-3-MW-S (21005140159)

TABLE 2
QUALIFIED SAMPLE RESULTS

LAB ID	FIELD ID	SAMPLE DATE	SAMPLE MATRIX	ANALYTE(S)	LABORATORY RESULT	DVQ	QC OUTCOME
21005112801	SW-05	5/5/10	WATER	all PAHs	0.000101 U mg/L	UJ	low base-neutral SU recovery (59%); low base-neutral SU recovery (49%)
21005112802	SW-03	5/5/10	WATER	all PAHs	0.000104 U mg/L	UJ	low base-neutral SU recovery (55%); low base-neutral SU recovery (42%)
21005112804	SW-04	5/5/10	WATER	all PAHs	0.000103 U mg/L	UJ	low base-neutral SU recovery (55%); low base-neutral SU recovery (42%)
21005112808	SW-10	5/6/10	WATER	all PAHs	0.000102 U mg/L	UJ	low base-neutral SU recovery (59%); low base-neutral SU recovery (44%)
21005242801	SW-BK-11	5/19/10	WATER	2-Methylnaphthalene	0.000105 U mg/L	UJ	low LCS recovery (51%), passing LCSD recovery (62%)
21005242801	SW-BK-11	5/19/10	WATER	Anthracene	0.000105 U mg/L	UJ	low MS recovery (59%), low MSD recovery (56%)
21005242801	SW-BK-11	5/19/10	WATER	Benzo(k)fluoranthene	0.000105 U mg/L	UJ	low MS recovery (58%), passing MSD recovery (60%)
21005242801	SW-BK-11	5/19/10	WATER	Naphthalene	0.000105 U mg/L	UJ	low LCS recovery (54%), low LCSD recovery (48%); low MS recovery (52%), low MSD recovery (54%)
21005242804	SW-BK-10	5/19/10	WATER	2-Methylnaphthalene	0.000102 U mg/L	UJ	low LCS recovery (51%), passing LCSD recovery (62%)
21005242804	SW-BK-10	5/19/10	WATER	Anthracene	0.000102 U mg/L	UJ	low MS recovery (59%), low MSD recovery (56%)
21005242804	SW-BK-10	5/19/10	WATER	Benzo(k)fluoranthene	0.000102 U mg/L	UJ	low MS recovery (58%), passing MSD recovery (60%)
21005242804	SW-BK-10	5/19/10	WATER	Naphthalene	0.000102 U mg/L	UJ	low LCS recovery (54%), low LCSD recovery (48%); low MS recovery (52%), low MSD recovery (54%)
21003082601	SED-1 (0-2)	2/25/10	SOLID	Barium	81.2 mg/kg	J	low MS recovery (66%)
21003082602	SED-1 (2-4)	2/25/10	SOLID	Barium	24.1 mg/kg	J	low MS recovery (66%)
21003082603	SED-1 (4-6)	2/25/10	SOLID	Barium	31.1 mg/kg	J	low MS recovery (66%)
21003082604	SED-2 (0-2)	2/25/10	SOLID	Barium	76.8 mg/kg	J	low MS recovery (66%)
21003082605	SED-2 (2-4)	2/25/10	SOLID	Barium	27.9 mg/kg	J	low MS recovery (66%)
21003082606	SED-2 (4-6)	2/25/10	SOLID	Barium	40.9 mg/kg	J	low MS recovery (66%)
21003082607	SED-3 (0-2)	2/25/10	SOLID	Barium	48.2 mg/kg	J	low MS recovery (66%)
21003082608	SED-3 (2-4)	2/25/10	SOLID	Barium	23.1 mg/kg	J	low MS recovery (66%)
21003082609	SED-3 (4-6)	2/25/10	SOLID	Barium	41.2 mg/kg	J	low MS recovery (66%)
21003082610	SED-4 (0-2)	2/25/10	SOLID	Barium	203 mg/kg	J	low MS recovery (66%)
21003082611	SED-5 (0-2)	2/25/10	SOLID	Barium	61.4 mg/kg	J	low MS recovery (66%)
21003082612	SED-6 (0-2)	2/25/10	SOLID	Barium	111 mg/kg	J	low MS recovery (66%)
21003082613	SED-7 (0-2)	2/25/10	SOLID	Barium	228 mg/kg	J	low MS recovery (66%)
21003082614	SED-7 (2-4)	2/25/10	SOLID	Barium	497 mg/kg	J	low MS recovery (66%)
21003082615	SED-7 (4-6)	2/25/10	SOLID	Barium	250 mg/kg	J	low MS recovery (66%)
21003082616	SED-8 (0-2)	2/25/10	SOLID	Barium	238 mg/kg	J	low MS recovery (66%)
21003082617	SED-8 (2-4)	2/25/10	SOLID	Barium	267 mg/kg	J	low MS recovery (66%)

TABLE 2
QUALIFIED SAMPLE RESULTS

LAB ID	FIELD ID	SAMPLE DATE	SAMPLE MATRIX	ANALYTE	LABORATORY RESULT	DVQ	QC OUTCOME
21003082618	SED-9 (0-2)	2/25/10	SOLID	Barium	161 mg/kg	J	low MS recovery (66%)
21003082619	SED-9 (2-4)	2/25/10	SOLID	Barium	224 mg/kg	J	low MS recovery (66%)
21003082620	SED-10 (0-2)	2/25/10	SOLID	Barium	264 mg/kg	J	low MS recovery (66%)
21005112701	SB-1-MW-S	5/7/10	WATER	Barium	5.02 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21005112701	SB-1-MW-S	5/7/10	WATER	Calcium	520 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21005112701	SB-1-MW-S	5/7/10	WATER	Magnesium	201 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21005112701	SB-1-MW-S	5/7/10	WATER	Manganese	2.96 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21005112701	SB-1-MW-S	5/7/10	WATER	Sodium	1710 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21005112801	SW-05	5/5/10	WATER	Potassium	33.1 mg/L	J	high MS recovery (133%)
21005112802	SW-03	5/5/10	WATER	Potassium	32.7 mg/L	J	high MS recovery (133%)
21005112803	SW-02	5/5/10	WATER	Potassium	33.3 mg/L	J	high MS recovery (133%)
21005112804	SW-04	5/5/10	WATER	Potassium	34.4 mg/L	J	high MS recovery (133%)
21005112805	SW-01	5/6/10	WATER	Potassium	29.2 mg/L	J	high MS recovery (133%)
21005112806	SW-06	5/6/10	WATER	Potassium	38.6 mg/L	J	high MS recovery (133%)
21005112807	SW-07	5/6/10	WATER	Potassium	40.7 mg/L	J	high MS recovery (133%)
21005140201	SED-BK-06	5/10/10	SOLID	Barium	229 mg/kg	J	high MS recovery (134%)
21005140202	SED-BK-01	5/10/10	SOLID	Barium	49 mg/kg	J	high MS recovery (134%)
21005140203	SED-BK-02	5/10/10	SOLID	Barium	96.8 mg/kg	J	high MS recovery (134%)
21005140204	SED-BK-03	5/10/10	SOLID	Barium	100 mg/kg	J	high MS recovery (134%)
21005140205	SED-BK-04	5/10/10	SOLID	Barium	212 mg/kg	J	high MS recovery (134%)
21005140206	SED-BK-05	5/11/10	SOLID	Barium	126 mg/kg	J	high MS recovery (134%)
21005140207	SED-BK-09	5/11/10	SOLID	Barium	63.8 mg/kg	J	high MS recovery (134%)
21005140208	SED-BK-07	5/11/10	SOLID	Barium	106 mg/kg	J	high MS recovery (134%)
21005140209	SED-BK-08	5/11/10	SOLID	Barium	92.6 mg/kg	J	high MS recovery (134%)
21005142602	MW-5D	5/12/10	WATER	Sodium	442 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21005242807	SED-BK-11	5/19/10	SOLID	Zinc	18 mg/kg	J	low MS recovery (0%); lab DUP precision of 91 RPD
21005242808	SED-BK-10	5/19/10	SOLID	Zinc	51.4 mg/kg	J	low MS recovery (0%); lab DUP precision of 91 RPD
21005112701	SB-1-MW-S	5/7/10	WATER	Barium	5.61 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21005112701	SB-1-MW-S	5/7/10	WATER	Calcium	568 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21005112701	SB-1-MW-S	5/7/10	WATER	Magnesium	220 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21005112701	SB-1-MW-S	5/7/10	WATER	Manganese	3.12 mg/L	J	dissolved conc > total conc and difference > 2xRDL

TABLE 2
QUALIFIED SAMPLE RESULTS

LAB ID	FIELD ID	SAMPLE DATE	SAMPLE MATRIX	ANALYTE	LABORATORY RESULT	DVQ	QC OUTCOME
21005112701	SB-1-MW-S	5/7/10	WATER	Sodium	1840 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21005142602	MW-5D	5/12/10	WATER	Sodium	454 mg/L	J	dissolved conc > total conc and difference > 2xRDL
21003085001	MW-1	3/5/10	WATER	Arsenic	0.01 U mg/L	UJ	low MS recovery (66%)
21003085002	MW-2R	3/5/10	WATER	Arsenic	0.019 mg/L	J	low MS recovery (66%)
21003085003	MW-3R	3/5/10	WATER	Arsenic	0.01 U mg/L	UJ	low MS recovery (66%)
21003085004	MW-50	3/5/10	WATER	Arsenic	0.01 U mg/L	UJ	low MS recovery (66%)
21003082621	SED-10 (2-4)	2/25/10	SOLID	Mercury	0.025 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082622	SED-11 (0-2)	2/25/10	SOLID	Mercury	0.029 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082623	SED-11 (2-4)	2/25/10	SOLID	Mercury	0.033 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082624	SED-12 (0-2)	2/25/10	SOLID	Mercury	0.023 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082625	SED-12 (2-4)	2/25/10	SOLID	Mercury	0.031 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082626	SED-12 (4-6)	2/25/10	SOLID	Mercury	0.028 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082627	SED-13 (0-2)	2/26/10	SOLID	Mercury	0.018 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082628	SED-13 (2-4)	2/26/10	SOLID	Mercury	0.015 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082629	SED-14 (0-2)	2/26/10	SOLID	Mercury	0.019 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082630	SED-14 (2-4)	2/26/10	SOLID	Mercury	0.025 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082631	SED-15 (0-2)	2/26/10	SOLID	Mercury	0.28 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082632	SED-15 (2-4)	2/26/10	SOLID	Mercury	0.15 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082633	SED-16 (0-2)	2/26/10	SOLID	Mercury	0.016 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082634	SED-17 (0-2)	2/26/10	SOLID	Mercury	0.02 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082635	SED-17 (2-4)	2/26/10	SOLID	Mercury	0.033 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082636	SED-18 (0-2)	2/26/10	SOLID	Mercury	0.03 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082637	SED-18 (2-4)	2/26/10	SOLID	Mercury	0.034 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082638	SED-19 (0-2)	2/26/10	SOLID	Mercury	0.074 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082639	SED-19 (2-4)	2/26/10	SOLID	Mercury	0.054 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082640	SS-08 (0-2)	2/26/10	SOLID	Mercury	0.59 mg/kg	J	laboratory DUP difference = 1.7xRDL
21003082621	SED-10 (2-4)	2/25/10	SOLID	>C10-C28	42.8 J mg/kg	J	high SU recovery (131%); result is between MDL and RDL
21003082621	SED-10 (2-4)	2/25/10	SOLID	>C28-C35	4.91 J mg/kg	J	high SU recovery (131%); result is between MDL and RDL
21003082623	SED-11 (2-4)	2/25/10	SOLID	>C10-C28	57.4 mg/kg	J	high SU recovery (147%)
21003082642	SS-10 (0-2)	2/26/10	SOLID	>C10-C28	140 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (57%)

TABLE 2
QUALIFIED SAMPLE RESULTS

LAB ID	FIELD ID	SAMPLE DATE	SAMPLE MATRIX	ANALYTE	LABORATORY RESULT	DVQ	QC OUTCOME
21003082642	SS-10 (0-2)	2/26/10	SOLID	>C28-C35	9.23 J mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (57%); result is between MDL and RDL
21003082653	SED-26 (2-4)	3/2/10	SOLID	>C10-C28	299 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (50%)
21003082653	SED-26 (2-4)	3/2/10	SOLID	>C28-C35	57.9 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (50%)
21003082658	SED-29 (0-2)	3/2/10	SOLID	>C10-C28	1030 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (58%)
21003082658	SED-29 (0-2)	3/2/10	SOLID	>C28-C35	287 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (58%)
21003082642	SS-10 (0-2)	2/26/10	SOLID	Aliphatic >C10-C12	15 U mg/kg	UJ	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (57%)
21003082642	SS-10 (0-2)	2/26/10	SOLID	Aliphatic >C12-C16	24.3 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (57%)
21003082642	SS-10 (0-2)	2/26/10	SOLID	Aliphatic >C16-C35	61.2 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (57%)
21003082642	SS-10 (0-2)	2/26/10	SOLID	Aromatic >C10-C12	10 U mg/kg	UJ	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (57%)
21003082642	SS-10 (0-2)	2/26/10	SOLID	Aromatic >C12-C16	15 U mg/kg	UJ	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (57%)
21003082642	SS-10 (0-2)	2/26/10	SOLID	Aromatic >C16-C21	15 U mg/kg	UJ	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (57%)
21003082642	SS-10 (0-2)	2/26/10	SOLID	Aromatic >C21-C35	15 U mg/kg	UJ	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (57%)
21003082653	SED-26 (2-4)	3/2/10	SOLID	Aliphatic >C10-C12	15 U mg/kg	UJ	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (50%)
21003082653	SED-26 (2-4)	3/2/10	SOLID	Aliphatic >C12-C16	34.5 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (50%)
21003082653	SED-26 (2-4)	3/2/10	SOLID	Aliphatic >C16-C35	111 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (50%)
21003082653	SED-26 (2-4)	3/2/10	SOLID	Aromatic >C10-C12	10 U mg/kg	UJ	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (50%)
21003082653	SED-26 (2-4)	3/2/10	SOLID	Aromatic >C12-C16	8.16 J mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (50%); result is between MDL and RDL
21003082653	SED-26 (2-4)	3/2/10	SOLID	Aromatic >C16-C21	15.5 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (50%)
04000000000	050 00 (0.4)	0/0/40	201.10	4	7.70 "		Total TPH by 1006 not within 60-140% of Total TPH by 1005 (50%); result
21003082653	SED-26 (2-4)	3/2/10	SOLID	Aromatic >C21-C35	7.72 J mg/kg	J	is between MDL and RDL
21003082658	SED-29 (0-2)	3/2/10	SOLID	Aliphatic >C10-C12	15 U mg/kg	UJ	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (58%)
21003082658	SED-29 (0-2)	3/2/10	SOLID	Aliphatic >C12-C16	53.6 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (58%)
21003082658	SED-29 (0-2)	3/2/10	SOLID	Aliphatic >C16-C35	469 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (58%)
21003082658	SED-29 (0-2)	3/2/10	SOLID	Aromatic >C10-C12	10 U mg/kg	UJ	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (58%)
21003082658	SED-29 (0-2)	3/2/10	SOLID	Aromatic >C12-C16	15 U mg/kg	UJ	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (58%)
21003082658	SED-29 (0-2)	3/2/10	SOLID	Aromatic >C16-C21	60.4 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (58%)
21003082658	SED-29 (0-2)	3/2/10	SOLID	Aromatic >C21-C35	183 mg/kg	J	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (58%)
21005112702	SB-1-MW-D	5/6/10	WATER	all Aliphatic and Aromatic C-ranges	0.15 U mg/L	UJ	low SU recovery (56%)

TABLE 3 DATA VALIDATION QUALIFIERS (DVQs)

The DVQ replaces all flags applied by the laboratory.

- U = Blank affected. The analyte was not detected substantially above the level reported in an associated laboratory and/or field blanks.
- UJ = Estimated. The analyte was not detected above the reporting limit; however, the reporting limit is approximate due to exceedance of one or more QC requirements.
- J = Estimated. The reported sample concentration is approximate due to exceedance of one or more QC requirements. Directional bias cannot be determined
- NS = Not selected. More than one result is reported for this analyte and another result is selected for use based on QC and the reported concentration.
- R = Rejected. The sample result is rejected due to serious QC deficiencies that make it impossible to verify the presence or absence of the analyte.

NOTE: For multiple deficiencies the validator applied the most severe flag. (R > U > UJ/J)

TABLE 4 METHOD SUMMARY

Test	Preparation	Analysis	Reporting
SOLIDS			
Arsenic	SW-846 3050B (acid digestion)	SW-846 7010 (Graphite furnace atomic absorption)	RDL of 0.12 mg/kg on wet-weight for 'Normal' samples and dry-weight (measured by drying sample and then digesting) for 'Dry' samples adjusted up to 5x for sample dilution; values between MDL and RDL reported with a J flag
Chloride	NA	EPA 9251 (Automated ferricyanide method)	RDL of 10 mg/kg on wet-weight adjusted up to 10x for sample dilution; values between MDL and RDL reported with a J flag
Fractionated Total Petroleum Hydrocarbons (Frac TPH)	TNRCC 1006/LA 1006 (solid phase silica column separation of TNRCC 1005 n-pentane extract)	TNRCC 1006/LA 1006 (GC-FID, quantitation with 6-point curve using gaoline/diesel fuel#2 standards and carbon markers, forced baseline projection)	3 Aliphatic/4 aromatic target C-ranges covering >C10-C35; RDL of 10-15 mg/kg on wet-weight adjusted up to 50x for sample dilution; values between MDL and RDL reported with a J flag
ICP Metals	SW-846 3050B (acid digestion)	SW-846 6010B (ICP-AES with background correction)	RDL of 0.2-1.6 mg/kg on wet-weight adjusted for sample aliquot size and up to 2-5x for dilution (barium only); values between MDL and RDL reported with a J flag
Mercury	SW-846 7471B (acid digestion and addition of potassium permanganate)	SW-846 7471B (Cold-vapor atomic absorption)	RDL of 0.01 mg/kg on wet-weight adjusted for sample aliquot size and up to 20x for dilution; values between MDL and RDL reported with a J flag
Polynuclear Aromatic Hydrocarbons (PAH)	SW-846 3550B (ultrasonic solvent extraction and concentration)	SW-846 8270C (GC-MS, quantitation with minimum 5-point curve, internal standardization)	16 Target analytes; RDL of 0.33 mg/kg on wetweight adjusted for sample aliquot size; values between MDL and RDL reported with a J flag
Polychlorinated Biphenyls (PCB)	SW-846 3550B (ultrasonic solvent extraction and concentration)	SW-846 8082 (GC-ECD with second column confirmation, quantitation with mininum 5-point curve)	7 Target analytes; RDL of 0.04 mg/kg on wetweight adjusted for sample aliquot size and up to 5x for dilution; values between MDL and RDL reported with a J flag
SPLP ICP Metals	SW-846 1312/3010A (Synthetic Precipitation Leaching Procedure, acid digestion)	SW-846 6010B (ICP-AES with background correction)	RDL of 0.003-0.01 mg/L; values between MDL and RDL reported with a J flag
SPLP Mercury	SW-846 1312/7470A (Synthetic Precipitation Leaching Procedure, acid digestion and addition of potassium permanganate)	SW-846 7470A (Cold-vapor atomic absorption)	RDL of 0.0002 mg/L; values between MDL and RDL reported with a J flag
Total Organic Carbon (TOC) Total Petroleum Hydrocarbons (TPH)	NA TNRCC 1005/LA 1005 (n-pentane extraction with no solvent concentration or cleanup)	EPA 9060 (Carbonaceous analyzer) TNRCC 1005/LA 1005 (GC-FID, quantitation with 6-point curve using gaoline/diesel fuel#2 standards and carbon markers, forced baseline projection)	RDL of 200 mg/kg; values between MDL and RDL reported with a J flag 2 Target C-ranges covering >C10-C35; RDL of 50 mg/kg on wet-weight adjusted up to 100x for sample dilution; values between MDL and RDL reported with a J flag

Test	Preparation	Analysis	Reporting
WATERS			
Arsenic (Total and Diss)	SW-846 3020A (field- filtration and preservation, acid digestion)	SW-846 7010 (Graphite furnace atomic absorption)	RDL of 0.01 mg/L; values between MDL and RDL reported with a J flag
Bicarbonate/ Carbonate Alkalinity	NA NA	SM 2320 B (Titration method)	2 Target analytes; RDL of 1 mg/L CaCO3; values between MDL and RDL reported with a J flag
Bromide	NA	SW-846 9056/EPA 300.0 (Ion chromatography)	RDL of 0.2 mg/L adjusted up to 100x for sample dilution; values between MDL and RDL reported with a J flag
Benzene, Toluene, Ethylbenzene, Xylene (BTEX)	SW-846 5030B (ambient purge and trap of preserved sample)	SW-846 8260B (GC-MS, quantitation with minimum 5-point curve, internal standardization)	4 Target analytes; RDL of 0.005-0.1 mg/L; values between MDL and RDL reported with a J flag
Chloride	NA	SM 4500 CL E (Automated ferricyanide method)	RDL of 1 mg/L adjusted up to 200x for sample dilution; values between MDL and RDL reported with a J flag
Fractionated Total Petroleum Hydrocarbons (Frac TPH)	TNRCC 1006/LA 1006 (solid phase silica column separation of TNRCC 1005 n-pentane extract)	TNRCC 1006/LA 1006 (GC-FID, quantitation with 6-point curve using gaoline/diesel fuel#2 standards and carbon markers, forced baseline projection)	5 Aliphatic/5 aromatic target C-ranges covering C6-C35; RDL of 0.15 mg/L; values between MDL and RDL reported with a J flag
Hardness	NA	SM 2340 B (Calculation from Ca and Mg)	3 Target analytes; RDL of 0.1-0.33 mg/L; values between MDL and RDL reported with a J flag
ICP Metals (Total and Diss)	SW-846 3010A (field- filtration and preservation, acid digestion)	SW-846 6010B (ICP-AES with background correction)	RDL of 0.0027-1 mg/L adjusted up to 5x for sample dilution (sodium and strontium only); values between MDL and RDL reported with a J flag
Mercury (Total and Diss)	SW-846 7470A (field-filtration and preservation, acid digestion and addition of potassium permanganate)	SW-846 7470A (Cold-vapor atomic absorption)	RDL of 0.0002 mg/L; values between MDL and RDL reported with a J flag
Polynuclear Aromatic Hydrocarbons (PAH)	SW-846 3510C (separatory funnel liquid- liquid solvent extraction and concentration)	SW-846 8270C SIM (GC-MS Single Ion Monitoring, quantitation with minimum 5-point curve, internal standardization)	16 Target analytes; RDL of 0.0001 mg/L adjusted for sample aliquot size; values between MDL and RDL reported with a J flag
Salinity	NA	SM 2520 B (Electroconductivity method)	RDL of 2 ppt
Sulfate	NA	EPA 375.4 (Turbidimetric)	RDL of 5 mg/L adjusted up to 10x for sample dilution; values between MDL and RDL reported with a J flag
Total Diss Solids (TDS)	NA	SM 2540 C (Dried at 180 C)	RDL of 10 mg/L

Test	Preparation	Analysis	Reporting
Total Petroleum	TNRCC 1005/LA 1005	TNRCC 1005/LA 1005 (GC-FID,	3 Target C-ranges covering C6-C35; RDL of
Hydrocarbons	(n-pentane extraction	quantitation with 6-point curve	0.15 mg/L; values between MDL and RDL
(TPH)	with no solvent	using gaoline/diesel fuel#2	reported with a J flag
	concentration or cleanup)	standards and carbon markers,	
		forced baseline projection)	

EPA (Methods for Chemical Analysis of Water and Wastes)

SM (Standards Methods for the Examination of Water and Wastewater)

SW-846 (Test Methods for Evaluating Solid Waste, Physical/Chemical Methods)

TNRCC (Texas Natural Resource Conservation Commission)

Note: The laboratory diluted samples due to target analyte concentrations or sample matrix. Non-detects are reported from an undiluted analysis for all samples except two PCB samples (SED-6 (0-2) and SED-8 (0-2)).

TABLE 5 QC CHECK RESULTS

FIELD ID	LAB ID	METHOD	ANALYTE	PREP BATCH	QC BATCH	PREP DATE	ANALY DATE	MATRIX	QC COMMENT	DVQ APPLIED
LCS/LCSD ACC	CURACY			БАТСП	DATOR	DATE	DATE			
LCS/LCSD		8270	2-Methylnaphthalene	432705	432841	5/26/10	5/27/10	WATER	low LCS recovery (51%), passing LCSD recovery (62%)	J/UJ to detects/NDs
LCS/LCSD		8270	Anthracene	432705	432841	5/26/10	5/27/10	WATER	passing LCS recovery (78%), low LCSD recovery (59%)	none (passing average LCS/LCSD recovery)
LCS/LCSD		8270	Naphthalene	432705	432841	5/26/10	5/27/10	WATER	low LCS recovery (54%), low LCSD recovery (48%)	J/UJ to NDs/detects
MS/MSD ACCU	JRACY									
SW-BK-10	MS/MSD	8270	2-Methylnaphthalene	432705	432841	5/26/10	5/27/10	WATER	passing MS recovery (63%), low MSD recovery (57%)	none (passing average MS/MSD recovery)
SW-BK-10	MS/MSD	8270	Acenaphthene	432705	432841	5/26/10	5/27/10	WATER	passing MS recovery (72%), low MSD recovery (55%)	none (passing average MS/MSD recovery)
SW-BK-10	MS/MSD	8270	Anthracene	432705	432841	5/26/10	5/27/10	WATER	low MS recovery (59%), low MSD recovery (56%)	J/UJ to NDs/detects
SW-BK-10	MS/MSD	8270	Benzo(k) fluoranthene	432705	432841	5/26/10	5/27/10	WATER	low MS recovery (58%), passing MSD recovery (60%)	J/UJ to NDs/detects
SW-BK-10	MS/MSD	8270	Naphthalene	432705	432841	5/26/10	5/27/10	WATER	low MS recovery (52%), low MSD recovery (54%)	J/UJ to NDs/detects
SED-2 (0-2)	MS	SW-846 6010B	Barium	427500	427548	3/8/10	3/9/10	SOLID	low MS recovery (66%)	J / UJ to detects/NDs
SED-BK-01	MS	SW-846 6010B	Barium	431644	432227	5/14/10	5/20/10	SOLID	high MS recovery (134%)	J to detects
SED-BK-10	MS	SW-846 6010B	Zinc	432560	433334	5/25/10	6/2/10	SOLID	low MS recovery (0%)	J/UJ to detects/NDs (DUP shows significant heterogeneity)
SW-06	MS	SW-846 6010B	Potassium	431357	431478	5/11/10	5/12/10	WATER	high MS recovery (133%)	J to detects
MW-1	MS	SW-846 7010	Arsenic	427514	427603	3/9/10	3/10/10	WATER	low MS recovery (66%)	J / UJ to detects/NDs

TABLE 5 QC CHECK RESULTS

FIELD ID	LAB ID	METHOD	ANALYTE	PREP BATCH	QC BATCH	PREP DATE	ANALY DATE	MATRIX	QC COMMENT	DVQ APPLIED
SURROGATE	RECOVERY			1	ı	ı	L	ı		•
SED-19	21005112908	8270	Nitrobenzene-d5	431363	431544	5/12/10	5/13/10	SOLID	low base-neutral SU recovery (59%)	none (only one of multiple surrogates is outside limits)
SED-BK-03	21005140204	8270	2-Fluorobiphenyl	431973	432243	5/19/10	5/20/10	SOLID	low base-neutral SU recovery (58%)	none (only one of multiple surrogates is outside limits)
SW-05	21005112801	8270	Nitrobenzene-d5	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (59%)	J / UJ to detects/NDs for base-neutral analytes (all PAHs)
SW-05	21005112801	8270	2-Fluorobiphenyl	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (49%)	J / UJ to detects/NDs for base-neutral analytes (all PAHs)
SW-03	21005112802	8270	Nitrobenzene-d5	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (55%)	J / UJ to detects/NDs for base-neutral analytes (all PAHs)
SW-03	21005112802	8270	2-Fluorobiphenyl	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (42%)	J / UJ to detects/NDs for base-neutral analytes (all PAHs)
SW-02	21005112803	8270	Nitrobenzene-d5	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (57%)	none (only one of multiple surrogates is outside limits)
SW-04	21005112804	8270	Nitrobenzene-d5	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (55%)	J / UJ to detects/NDs for base-neutral analytes (all PAHs)
SW-04	21005112804	8270	2-Fluorobiphenyl	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (42%)	J / UJ to detects/NDs for base-neutral analytes (all PAHs)
SW-01	21005112805	8270	2-Fluorobiphenyl	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (41%)	none (only one of multiple surrogates is outside limits)
SW-06	21005112806	8270	2-Fluorobiphenyl	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (52%)	none (only one of multiple surrogates is outside limits)
SW-07	21005112807	8270	2-Fluorobiphenyl	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (51%)	none (only one of multiple surrogates is outside limits)
SW-10	21005112808	8270	Nitrobenzene-d5	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (59%)	J / UJ to detects/NDs for base-neutral analytes (all PAHs)
SW-10	21005112808	8270	2-Fluorobiphenyl	431369	431542	5/12/10	5/13/10	WATER	low base-neutral SU recovery (44%)	J / UJ to detects/NDs for base-neutral analytes (all PAHs)

TABLE 5 QC CHECK RESULTS

FIELD ID	LAB ID	METHOD	ANALYTE	PREP BATCH	QC BATCH	PREP DATE	ANALY DATE	MATRIX	QC COMMENT	DVQ APPLIED
SW-109	21005112810	8270	2-Fluorobiphenyl	431474	431542	5/13/10	5/13/10	WATER	low base-neutral SU recovery (59%)	none (only one of multiple surrogates is outside limits)
SW BK-02	21005140211	8270	Nitrobenzene-d5	431881	432140	5/17/10	5/19/10	WATER	low base-neutral SU recovery (53%)	none (only one of multiple surrogates is outside limits)
SW BK-04	21005140213	8270	Nitrobenzene-d5	431881	432140	5/17/10	5/19/10	WATER	low base-neutral SU recovery (54%)	none (only one of multiple surrogates is outside limits)
SW BK-09	21005140218	8270	2-Fluorobiphenyl	431881	432140	5/17/10	5/19/10	WATER	low base-neutral SU recovery (59%)	none (only one of multiple surrogates is outside limits)
SW-BK-10 MS	21005242805	8270	Terphenyl-d14	432705	432841	5/26/10	5/27/10	WATER	low base-neutral SU recovery (58%)	none (only one of multiple surrogates is outside limits)
SW-BK-10 MSD	21005242806	8270	2-Fluorobiphenyl	432705	432841	5/26/10	5/27/10	WATER	low base-neutral SU recovery (54%)	none (only one of multiple surrogates is outside limits)
SED-10 (2-4)	21003082621	TNRCC 1005/LA 1005	o-Terphenyl	427527	427781	3/10/10	3/11/10	SOLID	high SU recovery (131%)	J to detects
SED-11 (2-4)	21003082623	TNRCC 1005/LA 1005	o-Terphenyl	427527	427781	3/10/10	3/11/10	SOLID	high SU recovery (147%)	J to detects
SED-12 (0-2)	21003082624	TNRCC 1005/LA 1005	o-Terphenyl	427527	427781	3/10/10	3/11/10	SOLID	high SU recovery (140%)	J to detects (none)
SED-15 (0-2)	21003082631	TNRCC 1005/LA 1005	o-Terphenyl	427527	427848	3/10/10	3/12/10	SOLID	none	SU diluted out
SED-15 (2-4)	21003082632	TNRCC 1005/LA 1005	o-Terphenyl	427527	427848	3/10/10	3/12/10	SOLID	none	SU diluted out
SED-28 (0-2)	21003082656	TNRCC 1005/LA 1005	o-Terphenyl	427810	428093	3/15/10	3/17010	SOLID	none	SU diluted out
MW-2R	21003085002	TNRCC 1005/LA 1005	o-Terphenyl	427931	428005	3/16/10	3/16/10	WATER	high SU recovery (132%)	J to detects (none)
MW-50	21003085004	TNRCC 1005/LA 1005	o-Terphenyl	427931	428005	3/16/10	3/16/10	WATER	high SU recovery (131%)	J to RRs (none)
SED-15 (0-2)	21003082631	TNRCC 1006/LA 1006	o-Terphenyl	428320	428686	3/23/10	3/26/10	SOLID	none	SU diluted out
SED-15 (2-4)	21003082632	TNRCC 1006/LA 1006	o-Terphenyl	428320	428686	3/23/10	3/26/10	SOLID	none	SU diluted out
SB-1-MW-D	21005112702	TNRCC 1006/LA 1006	o-Terphenyl	431974	432653	5/17/10	5/22/10	WATER	low SU recovery (56%)	J / UJ to detects/NDs

TABLE 5 QC CHECK RESULTS

FIELD ID	LAB ID	METHOD	ANALYTE	PREP BATCH	QC BATCH	PREP DATE	ANALY DATE	MATRIX	QC COMMENT	DVQ APPLIED
LCSD PRECISI	ON	- L		2711 011	2711011	27112	27112		L	L
LCSD		8270	Fluorene	431369	431542	5/12/10	5/13/10	WATER	LCS/LCSD precision of 34 RPD	J to detects (none)
LCSD		8270	2-Methylnaphthalene	432705	432841	5/26/10	5/27/10	WATER	LCS/LCSD precision of 21 RPD	J to detects (none)
LCSD		8270	Anthracene	432705	432841	5/26/10	5/27/10	WATER	LCS/LCSD precision of 27 RPD	J to detects (none)
LABORATORY	DUPLICATE PR	RECISION								
SED-BK-10	DUP	SW-846 6010B	Zinc	432560	433334	5/25/10	6/2/10	SOLID	lab DUP precision of 91 RPD	J to detects
SED-10 (2-4)	DUP	SW-846 7471B	Mercury	427504	427539	3/9/10	3/9/10	SOLID	laboratory DUP difference = 1.7xRDL	J / UJ to detects/NDs
LABORATORY	BLANKS									
Method Blank		EPA 9251	Chloride	428130	428132	3/17/10	3/19/10	SOLID	laboratory blank contamination (1.71 B mg/kg)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		EPA 9251	Chloride	432285	432286	5/19/10	5/20/10	SOLID	laboratory blank contamination (3.02 B mg/kg)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		EPA 9251	Chloride	432724	432725	5/24/10	5/25/10	SOLID	laboratory blank contamination (2.48 B mg/kg)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SM 2340 B	Magnesium	431357	431478	5/11/10	5/12/10	WATER	laboratory blank contamination (0.029 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SM 2340 B	Magnesium	431669	432180	5/14/10	5/23/10	WATER	laboratory blank contamination (0.026 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SM 4500 CL E Chloride	Chloride	NA	432456		5/22/10	WATER	laboratory blank contamination (0.33 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SM 4500 CL E Chloride	Chloride	NA	432688		5/25/10	WATER	laboratory blank contamination (0.26 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SM 4500 CL E Chloride	Chloride	NA	432689		5/25/10	WATER	laboratory blank contamination (0.31 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>

TABLE 5 QC CHECK RESULTS

FIELD ID	LAB ID	METHOD	ANALYTE	PREP BATCH	QC BATCH	PREP DATE	ANALY DATE	MATRIX	QC COMMENT	DVQ APPLIED
Method Blank		SM 4500 CL E Chloride	Chloride	NA	433005	DATE	5/28/10	WATER	laboratory blank contamination (0.31 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B	Barium	427501	427630	3/9/10	3/10/10	SOLID	laboratory blank contamination (0.053 B mg/kg)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B	Cadmium	427501	427630	3/9/10	3/10/10	SOLID	laboratory blank contamination (0.013 B mg/kg)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Chromium	427501	427630	3/9/10	3/10/10	SOLID	laboratory blank contamination (0.042 B mg/kg)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Barium	427512	427663	3/9/10	3/11/10	SOLID	laboratory blank contamination (0.025 B mg/kg)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Barium	431366	431454	5/11/10	5/12/10	SOLID	laboratory blank contamination (0.024 B mg/kg)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Cadmium	431366	431454	5/11/10	5/12/10	SOLID	laboratory blank contamination (0.019 B mg/kg)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Zinc	431366	431454	5/11/10	5/12/10	SOLID	laboratory blank contamination (0.16 B mg/kg)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Chromium	431644	432227	5/14/10	5/20/10	SOLID	laboratory blank contamination (0.029 B mg/kg)	none (blank concentration <rdi< td=""></rdi<>
Method Blank		SW-846 6010B	Magnesium	431357	431478	5/11/10	5/12/10	WATER	laboratory blank contamination (0.029 B mg/L)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Potassium	431357	432074	5/11/10	5/18/10	WATER	laboratory blank contamination (0.095 B mg/L)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Sodium	431357	431478	5/11/10	5/12/10	WATER	laboratory blank contamination (0.75 B mg/L)	none (blank concentration <rdi< td=""></rdi<>
Method Blank		SW-846 6010B	Potassium	431358	431478	5/11/10	5/12/10	WATER	laboratory blank contamination (0.068 B mg/L)	none (blank concentration <rdl< td=""></rdl<>

TABLE 5 QC CHECK RESULTS

FIELD ID	LAB ID	METHOD	ANALYTE	PREP BATCH	QC BATCH	PREP DATE	ANALY DATE	MATRIX	QC COMMENT	DVQ APPLIED
Method Blank		SW-846 6010B	Sodium	431358	431564	5/11/10	5/13/10	WATER	laboratory blank contamination (0.50 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B	Magnesium	431669	432180	5/14/10	5/23/10	WATER	laboratory blank contamination (0.026 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B	Potassium	431669	432623	5/14/10	5/24/10	WATER	laboratory blank contamination (0.35 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B	Sodium	431669	432180	5/14/10	5/23/10	WATER	laboratory blank contamination (0.44 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B	Potassium	431670	432911	5/14/10	5/27/10	WATER	laboratory blank contamination (0.11 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B	Sodium	431670	432911	5/14/10	5/27/10	WATER	laboratory blank contamination (1.04 mg/L)	U to detects < 10 x BlankEquivConc (none)
Method Blank		SW-846 6010B	Barium	431818	432290	5/16/10	5/19/10	WATER	laboratory blank contamination (0.00043 B mg/L)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Calcium	431818	432290	5/16/10	5/19/10	WATER	laboratory blank contamination (0.063 B mg/L)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Potassium	431818	432290	5/16/10	5/19/10	WATER	laboratory blank contamination (0.15 B mg/L)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Manganese	432866	433375	5/28/10	6/2/10	WATER	laboratory blank contamination (0.00064 B mg/L)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Sodium	432866	433375	5/28/10	6/2/10	WATER	laboratory blank contamination (0.45 B mg/L)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B	Cadmium	432614	433089	5/24/10	5/29/10	WATER	laboratory blank contamination (0.00046 B mg/L)	none (blank concentration <rdl< td=""></rdl<>
Method Blank		SW-846 6010B Dissolved	Cadmium	431356	431478	5/11/10	5/12/10	WATER	laboratory blank contamination (0.00025 B mg/L)	none (blank concentration <rdl< td=""></rdl<>

TABLE 5 QC CHECK RESULTS

FIELD ID	LAB ID	METHOD	ANALYTE	PREP BATCH	QC BATCH	PREP DATE	ANALY DATE	MATRIX	QC COMMENT	DVQ APPLIED
Method Blank		SW-846 6010B Dissolved	Sodium	431356	431564	5/11/10	5/13/10	WATER	laboratory blank contamination (0.30 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B Dissolved	Magnesium	431819	432290	5/16/10	5/19/10	WATER	laboratory blank contamination (0.060 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B Dissolved	Manganese	431819	432290	5/16/10	5/19/10	WATER	laboratory blank contamination (0.00099 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B Dissolved	Barium	432575	433089	5/24/10	5/29/10	WATER	laboratory blank contamination (0.00031 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 6010B Dissolved	Cadmium	432575	433089	5/24/10	5/29/10	WATER	laboratory blank contamination (0.00072 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 7470A	Mercury	427516	427538	3/9/10	3/10/10	WATER	laboratory blank contamination (0.00006 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 7470A	Mercury	431365	431459	5/11/10	5/12/10	WATER	laboratory blank contamination (0.00006 B mg/L)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 7471B	Mercury	427504	427539	3/9/10	3/9/10	SOLID	laboratory blank contamination (0.0059 B mg/kg)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 7471B	Mercury	431367	431453	5/11/10	5/12/10	SOLID	laboratory blank contamination (0.0077 B mg/kg)	none (blank concentration <rdl)< td=""></rdl)<>
Method Blank		SW-846 7471B	Mercury	431666	431732	5/14/10	5/15/10	SOLID	laboratory blank contamination (0.0067 B mg/kg)	none (blank concentration <rdl)< td=""></rdl)<>
RESULTS ASS	SESSMENT									
SB-1-MW-S	21005112701	SW-846 6010B	Barium		431478	5/11/10	5/12/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
SB-1-MW-S	21005112701	SW-846 6010B Dissolved	Barium		431478	5/11/10	5/12/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
SB-1-MW-S	21005112701	SW-846 6010B	Calcium		431478	5/11/10	5/12/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect

TABLE 5 QC CHECK RESULTS

FIELD ID	LAB ID	METHOD	ANALYTE	PREP	QC	PREP	ANALY	MATRI	QC COMMENT	DVQ APPLIED
				BATCH	BATCH	DATE	DATE	Х		
SB-1-MW-S	21005112701	SW-846 6010B Dissolved	Calcium		431478	5/11/10	5/12/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
SB-1-MW-S	21005112701	SW-846 6010B	Magnesium		431478	5/11/10	5/12/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
SB-1-MW-S	21005112701	SW-846 6010B Dissolved	Magnesium		431478	5/11/10	5/12/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
SB-1-MW-S	21005112701	SW-846 6010B	Manganese		431478	5/11/10	5/12/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
SB-1-MW-S	21005112701	SW-846 6010B Dissolved	Manganese		431478	5/11/10	5/12/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
SB-1-MW-S	21005112701	SW-846 6010B	Sodium		431564	5/11/10	5/13/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
SB-1-MW-S	21005112701	SW-846 6010B Dissolved	Sodium		431564	5/11/10	5/13/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
MW-5D	21005142602	SW-846 6010B	Sodium		432290	5/16/10	5/19/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
MW-5D	21005142602	SW-846 6010B Dissolved	Sodium		432290	5/16/10	5/19/10	WATER	dissolved conc > total conc and difference > 2xRDL	J to this detect
SS-10 (0-2)	21003082642	TNRCC 1006/LA 1006			428686	3/23/10	3/25/10	SOLID	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (57%)	J/UJ to NDs/detects (1005&1006)
SED-26 (2-4)	21003082653	TNRCC 1006/LA 1006			428763	3/23/10	3/30/10	SOLID	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (50%)	J/UJ to NDs/detects (1005&1006)
SED-29 (0-2)	21003082658	TNRCC 1006/LA 1006			428725	3/24/10	3/26/10	SOLID	Total TPH by 1006 not within 60-140% of Total TPH by 1005 (58%)	J/UJ to NDs/detects (1005&1006)

TABLE 6
FIELD DUPLICATE SUMMARY

ORIGINAL FIELD ID	DUPLICATE FIELD ID	SAMPLE DATE	SAMPLE MATRIX	ANALYTE	ORIGINA	L RE	SULTS	DUPLICA ⁻	TE RE	ESULTS	DIFFERENCE	RPD	2-3xRDL	PASS
SW-09	SW-109	5/6/10	WATER	2-Methylnaphthalene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Acenaphthene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Acenaphthylene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Anthracene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Benzo(a)anthracene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Benzo(a)pyrene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Benzo(b)fluoranthene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Benzo(k)fluoranthene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Chrysene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Dibenz(a,h)anthracene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Fluoranthene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Fluorene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Indeno(1,2,3-cd)pyrene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Naphthalene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Phenanthrene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Pyrene	0.000102	U	mg/L	0.000102	U	mg/L	0	NA	0.000204	у
SW-09	SW-109	5/6/10	WATER	Calcium	58.6		mg/L	59.4		mg/L	0.8	1.4	0.2	у
SW-09	SW-109	5/6/10	WATER	Hardness	591		mg/L	597		mg/L	6	1.0	0.66	у
SW-09	SW-109	5/6/10	WATER	Magnesium	140		mg/L	141		mg/L	1	0.7	0.2	у
SW-09	SW-109	5/6/10	WATER	Total Dissolved Solids	4220		mg/L	4150		mg/L	70	1.7	20	У
SW-09	SW-109	5/6/10	WATER	Chloride	1870		mg/L	1840		mg/L	30	1.6	100	у
SW-09	SW-109	5/6/10	WATER	Barium	0.42		mg/L	0.41		mg/L	0.01	2.4	0.02	у
SW-09	SW-109	5/6/10	WATER	Cadmium	0.0027	U	mg/L	0.0027	U	mg/L	0	NA	0.0054	у
SW-09	SW-109	5/6/10	WATER	Calcium	58.6		mg/L	59.4		mg/L	0.8	1.4	0.2	у
SW-09	SW-109	5/6/10	WATER	Chromium	0.0027	В	mg/L	0.0027	В	mg/L	0	NA	0.02	у

TABLE 6
FIELD DUPLICATE SUMMARY

ORIGINAL FIELD ID	DUPLICATE FIELD ID	SAMPLE DATE	SAMPLE MATRIX	ANALYTE	ORIGINA	AL RE	SULTS	DUPLICA [*]	TE R	ESULTS	DIFFERENCE	RPD	2-3xRDL	PASS
SW-09	SW-109	5/6/10	WATER	Iron	1.12		mg/L	1.11		mg/L	0.01	0.9	0.2	у
SW-09	SW-109	5/6/10	WATER	Lead	0.008	U	mg/L	0.008	U	mg/L	0	NA	0.016	у
SW-09	SW-109	5/6/10	WATER	Magnesium	140		mg/L	141		mg/L	1	0.7	0.2	у
SW-09	SW-109	5/6/10	WATER	Manganese	0.51		mg/L	0.5		mg/L	0.01	2.0	0.03	у
SW-09	SW-109	5/6/10	WATER	Potassium	42.6		mg/L	42.9		mg/L	0.3	0.7	1	у
SW-09	SW-109	5/6/10	WATER	Selenium	0.005	U	mg/L	0.005	U	mg/L	0	NA	0.01	у
SW-09	SW-109	5/6/10	WATER	Sodium	915		mg/L	1100		mg/L	185	18.4	10	у
SW-09	SW-109	5/6/10	WATER	Strontium	0.99		mg/L	1.01		mg/L	0.02	2.0	0.1	у
SW-09	SW-109	5/6/10	WATER	Zinc	0.02	U	mg/L	0.02	U	mg/L	0	NA	0.04	у
SW-09	SW-109	5/6/10	WATER	Barium	0.37		mg/L	0.38		mg/L	0.01	2.7	0.02	у
SW-09	SW-109	5/6/10	WATER	Cadmium	0.0027	U	mg/L	0.00027	В	mg/L	0.00243	NA	0.0054	у
SW-09	SW-109	5/6/10	WATER	Chromium	0.0024	В	mg/L	0.0022	В	mg/L	0.0002	NA	0.02	у
SW-09	SW-109	5/6/10	WATER	Lead	0.008	U	mg/L	0.008	U	mg/L	0	NA	0.016	у
SW-09	SW-109	5/6/10	WATER	Selenium	0.005	U	mg/L	0.005	U	mg/L	0	NA	0.01	у
SW-09	SW-109	5/6/10	WATER	Strontium	1		mg/L	1.03		mg/L	0.03	3.0	0.1	у
SW-09	SW-109	5/6/10	WATER	Zinc	0.0095	В	mg/L	0.02	U	mg/L	0.0105	NA	0.04	у
SW-09	SW-109	5/6/10	WATER	Arsenic	0.01	U	mg/L	0.01	U	mg/L	0	NA	0.02	у
SW-09	SW-109	5/6/10	WATER	Arsenic	0.01	U	mg/L	0.01	U	mg/L	0	NA	0.02	у
SW-09	SW-109	5/6/10	WATER	Mercury	0.00011	В	mg/L	0.00006	В	mg/L	0.00005	NA	0.0004	у
SW-09	SW-109	5/6/10	WATER	Mercury	0.0001	В	mg/L	0.00006	В	mg/L	0.00004	NA	0.0004	у
SED-15	SED-115	5/6/10	SOLID	2-Methylnaphthalene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Acenaphthene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Acenaphthylene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Anthracene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Benzo(a)anthracene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у

TABLE 6
FIELD DUPLICATE SUMMARY

ORIGINAL FIELD ID	DUPLICATE FIELD ID	SAMPLE DATE	SAMPLE MATRIX	ANALYTE	ORIGINA	AL RE	SULTS	DUPLICA	TE R	ESULTS	DIFFERENCE	RPD	2-3xRDL	PASS
SED-15	SED-115	5/6/10	SOLID	Benzo(a)pyrene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Benzo(b)fluoranthene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Benzo(k)fluoranthene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Chrysene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Dibenz(a,h)anthracene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Fluoranthene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Fluorene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Indeno(1,2,3-cd)pyrene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Naphthalene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Phenanthrene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Pyrene	0.325	U	mg/kg	0.328	U	mg/kg	0.003	NA	0.984	у
SED-15	SED-115	5/6/10	SOLID	Total Moisture	75.4		%	73		%	2.4	3.2	0.03	у
SED-15	SED-115	5/6/10	SOLID	Total Organic Carbon	67700		mg/kg	40800		mg/kg	26900	49.6	600	у
SED-15	SED-115	5/6/10	SOLID	Chloride	944		mg/kg	947		mg/kg	3	0.3	30	у
SED-15	SED-115	5/6/10	SOLID	Arsenic	1.66		mg/kg	1.3	В	mg/kg	0.36	NA	4.8	у
SED-15	SED-115	5/6/10	SOLID	Barium	232		mg/kg	211		mg/kg	21	9.5	1.2	У
SED-15	SED-115	5/6/10	SOLID	Cadmium	0.2	U	mg/kg	0.2	U	mg/kg	0	NA	0.6	У
SED-15	SED-115	5/6/10	SOLID	Chromium	4.42		mg/kg	4.62		mg/kg	0.2	4.4	1.2	У
SED-15	SED-115	5/6/10	SOLID	Lead	5.82		mg/kg	6.06		mg/kg	0.24	4.0	1.8	у
SED-15	SED-115	5/6/10	SOLID	Selenium	1.6	U	mg/kg	1.59	U	mg/kg	0.01	NA	4.8	у
SED-15	SED-115	5/6/10	SOLID	Strontium	16.1		mg/kg	14.3		mg/kg	1.8	11.8	1.2	у
SED-15	SED-115	5/6/10	SOLID	Zinc	18		mg/kg	17.8		mg/kg	0.2	1.1	2.4	у
SED-15	SED-115	5/6/10	SOLID	Mercury	0.041		mg/kg	0.04		mg/kg	0.001	NA	0.036	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Benzene	0.005	U	mg/L	0.005	U	mg/L	0	NA	0.01	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Ethylbenzene	0.005	U	mg/L	0.005	U	mg/L	0	NA	0.01	у

TABLE 6
FIELD DUPLICATE SUMMARY

ORIGINAL FIELD ID	DUPLICATE FIELD ID	SAMPLE DATE	SAMPLE MATRIX	ANALYTE	ORIGINA	AL RE	SULTS	DUPLICA	TE R	ESULTS	DIFFERENCE	RPD	2-3xRDL	PASS
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Toluene	0.005	U	mg/L	0.005	U	mg/L	0	NA	0.01	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Xylene (total)	0.01	U	mg/L	0.01	U	mg/L	0	NA	0.02	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Sulfate	2.4	В	mg/L	5	U	mg/L	2.6	NA	10	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Bicarbonate Alkalinity	395		mg/L CaCO3	385		mg/L CaCO3	10	2.6	2	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Carbonate Alkalinity	1	U	mg/L CaCO3	1	U	mg/L CaCO3	0	NA	2	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Total Dissolved Solids	12200		mg/L	12000		mg/L	200	1.7	20	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Chloride	7270		mg/L	7160		mg/L	110	1.5	200	У
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Barium	6.57		mg/L	6.51		mg/L	0.06	0.9	0.02	У
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Calcium	880		mg/L	860		mg/L	20	2.3	0.2	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Iron	17.2		mg/L	17.4		mg/L	0.2	1.2	0.2	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Magnesium	357		mg/L	356		mg/L	1	0.3	0.2	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Manganese	3.31		mg/L	3.28		mg/L	0.03	0.9	0.03	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Potassium	13.8		mg/L	13.7		mg/L	0.1	0.7	1	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Selenium	0.04	U	mg/L	0.04	U	mg/L	0	NA	0.08	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Sodium	2240		mg/L	2250		mg/L	10	0.4	10	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Barium	6.17		mg/L	6.06		mg/L	0.11	1.8	0.02	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Calcium	834		mg/L	831		mg/L	3	0.4	0.2	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Iron	14		mg/L	13.9		mg/L	0.1	0.7	0.2	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Magnesium	339		mg/L	333		mg/L	6	1.8	0.2	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Manganese	2.9		mg/L	2.85		mg/L	0.05	1.7	0.03	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Potassium	14.2		mg/L	13.8		mg/L	0.4	2.9	1	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Selenium	0.04	U	mg/L	0.04	U	mg/L	0	NA	0.08	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Sodium	2070		mg/L	2080		mg/L	10	0.5	10	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Arsenic	0.01	U	mg/L	0.01	U	mg/L	0	NA	0.02	у

TABLE 6
FIELD DUPLICATE SUMMARY

ORIGINAL FIELD ID	DUPLICATE FIELD ID	SAMPLE DATE	SAMPLE MATRIX	ANALYTE	ORIGINA	AL RE	SULTS	DUPLICA	TE RI	ESULTS	DIFFERENCE	RPD	2-3xRDL	PASS
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Arsenic	0.01	U	mg/L	0.01	U	mg/L	0	NA	0.02	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Aliphatic >C10-C12	0.15	U	mg/L	0.15	U	mg/L	0	NA	0.3	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Aliphatic >C12-C16	0.15	U	mg/L	0.15	U	mg/L	0	NA	0.3	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Aliphatic >C16-C35	0.15	U	mg/L	0.15	U	mg/L	0	NA	0.3	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Aliphatic >C8-C10	0.15	U	mg/L	0.15	U	mg/L	0	NA	0.3	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Aliphatic C6-C8	0.15	U	mg/L	0.15	U	mg/L	0	NA	0.3	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Aromatic >C10-C12	0.15	U	mg/L	0.15	U	mg/L	0	NA	0.3	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Aromatic >C12-C16	0.15	U	mg/L	0.15	U	mg/L	0	NA	0.3	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Aromatic >C16-C21	0.15	U	mg/L	0.15	U	mg/L	0	NA	0.3	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Aromatic >C21-C35	0.15	U	mg/L	0.15	U	mg/L	0	NA	0.3	у
SB-3-MW-S	SB-3-MW-SD	5/12/10	WATER	Aromatic >C8-C10	0.15	U	mg/L	0.15	U	mg/L	0	NA	0.3	у

Data Quality and Usability Review of ICON Data, July 2010 Appendix F-2

Review of ICON-Reported Laboratory Analytical Results (Summary)

Laboratory Report	L10030383	L10030003	L10030032	L10030188
SW846 Methods	yes	yes	yes	yes
Media	GW	sediment	sediment	sediment
SQL < SS	yes	for all NDs, yes (DRO/ORO	for all NDs, yes (DRO/ORO	for all NDs, yes (DRO/ORO
		elevated, but reported conc.)	elevated, but reported conc.)	elevated, but reported conc.)
Sample Qualifiers	J/UJ, R	J/UJ	J/UJ	J/UJ
Surrogate Recovery	all good	DRO/ORO - diluted out due to	all good	DRO/ORO - diluted out due to
		dilution		dilution
Field Blank	none	none	none	none
Trip Blank	all ND & surr recov good	NA	NA	NA
Method Blank	all ND & surr recov good	all ND & surr recov good	all ND & surr recov good	all ND & surr recov good
LCS/LCSD	all good	all good	all good	all good
MS/MSD	some recov outside acceptable	Ba (S+,S-), Cr (S+), Pb (S+,R), St	Ba (S-,S+), Hg (S-,R)	Ba (S-,S+), DRO (S+,S-)
	limits (S) & some RPD outside	(S+), Hg (S-,R), DRO (S+,S-),		
	acceptable limits	ORO (S+)		
Chain-of-Custody	yes	errors/deviations with signatures &	yes	bottles mislabeled and corrected
		times & bottle labels		
Holding Time	yes	yes	yes	yes
Temperature	yes	yes	yes	yes

Lab Order L10030032 L10030003 L10030003	Lab Sample ID L10030003- 41AMS L10030003- 41AMS	Analysis Date 3/5/2010 15:52 3/5/2010 16:01		QC sample type MS	Spike Sample Result 1037	Spike added 49.61	Original Sample Result 1008	% R 59.7	Method %R - Low limit (a) 75	%R -	%R Flag (b) S	RPD 9.72	Method RPD Limit (a)	RPD Flag (b)	Avg %R	Avg %R within limits?	Is sample >4x spike Yes	Yes, SS08 (2-4)	Conclusion Inconclusive; unspiked sample conc is > 4x amt of spike added	Qualifier(s) added to data during Data Usability Evaluation (c)	batch numbers not provided for
L10030032 L10030003 L10030032 L10030003	L10030003- 51AMS L10030003- 51AMS	3/4/2010 20:35 3/4/2010 20:35		MS MSD	2.346	2.013	0.2998	67.4 101	75 75	125	S	34.5	20	R	84.2	Yes	No	Yes, SED22(2-4) Yes, SED22(2-4)	low %R on MS (67.4); Avg % Recov passes; MS/MSD precision of 34.5 RPD	J to detects	SED31(0-2), SED31(2-4), SED32(0-2), SED32(2-4), SED33(0-2), SED33(2-4),
L10030003 L10030003	L10030003- 01AMS L10030003-	3/5/2010 12:33 3/5/2010 12:42		MS MSD	494.2	49.56	428.1	133	75 75	125	S	1.38	20		126.5	No	Yes	Yes, SED1(0-2)	Inconclusive; unspiked sample conc is > 4x amt of spike added	NA	NA NA
L10030003	01AMS L10030003- 41AMS L10030003- 41AMS	3/5/2010 15:52 3/5/2010 16:01		MS MSD	80.74	49.61	17.09 17.09	128 105	75 75	125 125	S	15.4	20		116.5	Yes	No No	Yes, SS08 (2 4) Yes, SS08 (2 4)	-high %R on MS (128); Avg %R passes	NA	NA
L10030003	L10030003- 41AMS L10030003- 41AMS	3/5/2010 15:52 3/5/2010 16:01		MS MSD	86.03	49.61	40.96	90.8	75 75	125	S	58	20	R	161.9	No	No	· /	high %R on MSD (233); MS/MSD precision of 58 -RPD	J to detects	SS-10(0-2), SS-10(2- 4)
L10030003	L10030003- 01AMS L10030003- 01AMS	3/5/2010 17:23	Strontium	MS MSD	116	49.56	59.32 59.32	114	75 75	125	S	8.28	20		124.5	Yes	No No	Yes, SED1(0-2)	high %R on MSD (135); Avg %R passes		NA
L10030003 L10030003	L10030003- 01AMS L10030003- 01AMS L10030003-	3/3/2010 17:05 3/3/2010 17:05 3/5/2010 2:49	Mercury	MSD MSD	1.846	2.013	0.1392	84.8 84.7	75 75 70	125 125 130	S	0.294	20		84.75	Yes	No No	Yes, SED1(0-2) Yes, SED1(0-2) Yes,	using 75-125 range, no qualifiers necessary	NA I to detects	NA SED-17(0-2), SED-
L10030003	34AMS L10030003- 34AMS	3/5/2010 3:06		MSD	576.9	100	314.2	263	70	130	S	17.9	40		215.5	No			(168); high %R on MSD (263); avg %R > 200	,	17(2-4), SED-18(0- 2), SED-18(2-4), SED-19(0-2), SED- 19(2-4), SS08(0-2), SS10(0-2), SS10(2-4), SED-20(0-2), SED- 20(2-4), SED-21(0-2)
L10030003	L10030003- 13AMS L10030003- 13AMS	3/6/2010 12:14 3/6/2010 12:32		MS MSD	234.2	100	163.3 163.3	71 46.8	70	130	S	10.9	40		58.9	No	No No	Yes, SED 7 (0-2) Yes, SED 7 (0-2)	low %R on MSD (46.8)	J/UJ to detects/NDs	SED-4(0-2), SED-6(0- 2), SED-7(0-2), SED- 7(2-4), SED-7(4-6), SED-8(2-4)
L10030003 L10030003	L10030003- 17AMS L10030003- 17AMS	3/6/2010 12:50		MS MSD	360.3	100	198.9	161 156	70	130	S	1.66	40		158.5	No	No	Yes, SED 8 (2-4) Yes, SED 8 (2-4)	high %R on MS (161); high %R on MSD (156)	J to detects	SED-4(0-2), SED-6(0-2), SED-7(0-2), SED-7(2-4), SED-7(4-6), SED-8(2-4)
L10030188	L10030181- 01AMS L10030181- 01AMS	3/10/2010 14:14		MSD	379.6	49.74	304.8	157	75 75	125	S	0.915	20		153.5	No	Yes	No	Inconclusive; unspiked sample conc is > 4x amt of spike added	NA	NA
L10030188 L10030188	L10030188- 19AMS L10030188- 19AMS	3/10/2010 16:30 3/10/2010 16:33		MSD MSD	492.5 494.6	49.75		72.2 76.5	75 75	125 125	S	0	20		74.35	No		Yes, SED30(2-4) Yes, SED30(2-4)	Inconclusive; unspiked sample conc is > 4x amt of spike added	NA	NA
L10030188 L10030188	L10030188- 01AMS L10030188- 01AMS	3/8/2010 12:31 3/8/2010 12:48		MS MSD	348	100	215.2 215.2	133 49.4	70	130	S	27.2	40		91.2	Yes	No No	Yes, SED31(4-6) Yes, SED31(4-6)	high %R on MS (133); low %R on MSD (49.5); Avg %R passes		NA
L10030383	L10030414- 06CMS L10030414- 06CMS	3/10/2010 13:34 3/10/2010 13:37		MSD	0.6809	0.5	0.01467		75 75	125	S	31.8	20	R	114.4	Yes	No	No	high %R on MS (133.2); Avg %R passes; but MS/MSD precision of 31.8 RPD	J to detects	MW-1, MW-2R, MW-3R, BD-01 MATRIX AFFECT IS UNCERTAIN B/C MS IS NOT A SITE SAMPLE
L10030383	L10030414- 06CMS	3/10/2010 13:34		MS	1.096	0.5	0.4261	134	75	125	S						No	No	high %R on MS; Avg %R passes; but MS/MSD RPD exceeds	J to detects	MW-1, MW-2R, MW-3R, BD-01 MATRIX AFFECT IS UNCERTAIN
L10030383	L10030414- 06CMS L10030414- 06CMS	3/10/2010 13:37		MSD	0.6348	0.5	0.4261	125	75 75	125	S	20.3	20	R	113.85	Yes	No	No	limit high %R on MS; Avg %R passes;	J to detects	B/C MS IS NOT A SITE SAMPLE MW-1, MW-2R, MW-3R, BD-01
L10030383	L10030414- 06CMS	3/10/2010 13:37	Cadmium	MSD	0.4713	0.5	0.008348	92.6	75	125		29.6	20	R	108.8	Yes	No	No	but MS/MSD RPD exceeds limit		MATRIX AFFECT IS UNCERTAIN B/C MS IS NOT A SITE SAMPLE
L10030383	L10030414- 06CMS L10030414- 06CMS	3/10/2010 13:34 3/10/2010 13:37		MS MSD	0.6785	0.5	0.02835	130 96.1	75 75	125	S	28.6	20	R	113.05	Yes	No	No	high %R on MS; Avg %R passes; but MS/MSD RPD exceeds limit	J to detects	MW-1, MW-2R, MW-3R, BD-01 MATRIX AFFECT IS UNCERTAIN B/C MS IS NOT A SITE SAMPLE
L10030383	L10030414- 06CMS	3/10/2010 13:34	Lead	MS	0.6214	0.5	0.01467	121	75	125							No	No	MS/MSD RPD exceeds limit	J to detects	MW-1, MW-2R, MW-3R, BD-01 MATRIX AFFECT IS UNCERTAIN
L10030383	L10030414- 06CMS	3/10/2010 13:37 3/10/2010 13:34		MSD	0.4633	0.5	0.01467		75 75	125	S	29.1	20	R	105.35	Yes		No	high %R on MS;	J to detects	B/C MS IS NOT A SITE SAMPLE MW-1, MW-2R,
L10030383	06CMS L10030414- 06CMS	3/10/2010 13:37	Selenium	MSD	0.483	0.5	0.01626	93.4	75	125		30.4	20	R	110.7	Yes	No	No	Avg %R passes; but MS/MSD RPD exceeds limit		MW-3R, BD-01 MATRIX AFFECT IS UNCERTAIN B/C MS IS NOT A SITE SAMPLE
L10030383	L10030414- 06CMS L10030414- 06CMS	3/10/2010 13:34		MS MSD	0.7514	0.5	0.1248	125 91.1	75 75	125	S	25.7	20	R	108.05	Yes		No	high %R on MS; Avg %R passes; but MS/MSD RPD exceeds limit	J to detects	MW-1, MW-2R, MW-3R, BD-01 MATRIX AFFECT IS UNCERTAIN B/C MS IS NOT A SITE SAMPLE

Page 2 of 3 2015\116008\24472MappF-2.xls

Lab Order L10030383	Lab Sample ID L10030414-	Analysis Date 3/10/2010 18:39	Analyte Strontium	QC sample type	Spike Sample Result	Spike added	Original Sample Result 0.5146	%R 142	%R - Low	Method %R - High limit (a)	%R Flag (b)	RPD	Method RPD Limit (a)	RPD Flag (b)		Avg %R within limits?	Is sample >4x spike No	QC Sample Identified as a site sample?	Conclusion high %R on MS;		Affected Samples (estimated based on analysis dates/times since batch numbers not provided for samples)
L10030383	06CMS L10030414- 06CMS	3/10/2010 18:42	Strontium	MSD	1.027	0.5	0.5146	103	75	125		17.4	20		122.5	Yes	No	No	Avg %R passes		
L10030383	L10030103- 06AMS	3/9/2010 9:34	Benzene	MS	14.83	5	0	297	70	130	S						No	No	high %R on MS and MSD (>200)	J to detects	MW-1, MW-2R, MW-3R, BD-01 MATRIX AFFECT IS UNCERTAIN
	L10030103- 06AMS	3/9/2010 9:59	Benzene	MSD	14.92	5	0	298	70	130	S	0.605	20		297.5	No	No	No	-		B/C MS IS NOT A SITE SAMPLE
L10030383	L10030103- 06AMS	3/9/2010 9:34	Xylenes, total	MS	19.85	15	0	132	70	130	S						No	No	high %R on MS and MSD	J to detects	MW-1, MW-2R, MW-3R, BD-01 MATRIX AFFECT IS UNCERTAIN
	L10030103- 06AMS	3/9/2010 9:59	Xylenes, total	MSD	20.1	15	0	134	70	130	S	1.25	20		133	No	No	No			B/C MS IS NOT A SITE SAMPLE
	L10030341- 01DMS	3/9/2010 19:57	Mercury	MS	0.01397	0.01	0.01397	0	75	125	S						No	No	zero %R on MS and MSD	J to detects / R to NDs	MW-1, MW-2R, MW-3R, BD-01 MATRIX AFFECT IS UNCERTAIN B/C MS IS NOT A
	L10030341- 01DMS	3/9/2010 19:57	Mercury	MSD	0.01397	0.01	0.01397	0	75	125	S	0	20		0	No	No	No	-		SITE SAMPLE (all sample results were ND; so all would be rejected)
210030140	21002263202	3/4/2010 10:30	Aroclor-1260	MS	61.3	133	0	46	60	140	S						No	No	low %R on MS & MSD	J/UJ to detects/NDs	SED-4(0-2), SED-5(0-2), SED-6(0-2), SED-7(2-4), SED-7(4-6), SED-8(2-4) MATRIX AFFECT
210030140	21002263202	3/4/2010 10:48	Aroclor-1260	MSD	63.2	133	0	48	60	140	S	3	20		47	No	No	No			IS UNCERTAIN B/C MS IS NOT A SITE SAMPLE
210030140	LCS	3/3/2010 14:56	Aroclor-1260	LCS	139	132	0	105	60	140							No	NA	LCS/LCSD RPD exceeds limit	J to detects	SED-4(0-2), SED-5(0- 2), SED-6(0-2), SED-
210030140	LCSD	3/3/2010 15:14	Aroclor-1260	LCSD	110	132	0	84	60	140		23	20	R	94.5	Yes	No	NA			7(2-4), SED-7(4-6), SED-8(2-4)
	LCS-MO	3/3/2010 5:43		LCS	208.6	300	0	69.5		130	S						No	NA	low %R on MS & MSD	J/UJ to detects/NDs	no samples analyzed on this date in the lab report. Possibly
L10030032	LCSD-MO	3/3/2010 6:01	TPH-ORO	LCSD	182	300	0	60.7	70	130	S	3	20		65.1	No	No	NA			SED31(2-4), SED32(2-4), SED33(0-2), SED33(2-4)

NOTES:

QC - Quality Control

%R - Percent Recovery

RPD - Relative Percent Difference

(a) Control limits based on requirements in the analytical methods (rather than those used by the laboratory) were used to provide a consistent approach for similar analytes:

Inorganics – spike recovery between 75-125% and RPD less than 25% Purgeable Organics (BTEX) and Total TPH – spike recovery between 70-130% and RPD less than 20%

Extractable Organics (PCB) – spike recovery between 60-140% and RPD less than 20%

Spike recovery considered inconclusive if the unspiked sample concentration is greater than four (4) times the amount of spike added.
(b) Flags consistent with those used by the laboratory to identify QC results outside specifications, and defined in the laboratory reports as follows:

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

(c) Qualifiers were added to site sample data based on the results of the data usability evaluation:

J - Estimated. The reported sample concentration is approximate due to exceedance of one or more QC requirements.

UJ - Estimated. The analyte was not detected above the reporting limit; however, the reporting limit is approximate due to exceedance of one or more QC requirements.

R-Rejected. The sample result is rejected due to serious QC deficiencies that make it impossible to verify the presence or absence of the analyte.(d) This table identifies QC deviations noted in the laboratory reports or identified during the data usability evaluation. The following QC elements were found to be acceptable:

1) Preservation and Holding Times - The samples were properly preserved and the holding times were met.

2) Blank Samples - No constituents were detected in any.

3) Duplicate Samples - A blind field duplicate (BD-01) was collected as a duplicate of MW-1 for the ground water samples (lab order L10030383). The RPD for all analytes are within acceptable limits.

Page 3 of 3 $2015 \verb|\| 116008 \verb|\| 24472 Mapp F-2.xls$

Data Review Summary Memorandum for Biota Tissue by Quality Assurance Associates, Inc., March 3, 2014 Appendix F-3

SITE: East White Lake Oilfield

Vermilion Parish, Louisiana

Vermilion Parish School Board Property, Section 16 T15S, R01E

EVENT: Crab and Forage Fish Sampling – December 2010/ January 2011/ May 2011/ June 2011

INTENDED USE: The overall objective of the study is to measure tissue concentrations of the constituents of concern

(COCs) to evaluate potential exposures to (1) blue crabs and forage fish, as well as wildlife (i.e., birds

and mammals) that consume them; and (2) humans that consume blue crabs.

LABORATORIES: Sample Processing and Metals/Lipids Testing TPH/Lipids Testing

Columbia Analytical Services, Inc. (CAS) Pace Analytical Services, Inc. (Pace)

Kelso, Washington Green Bay, Wisconsin
LELAP Certification #03016 LELAP Certification # 04168

Work Orders: K1013947, K1100325, Work Orders: 4046716, 4046733, 4046737,

K1100337, K1100338, K1100344, K1106152, 4046750, 4046755, 4046758, 4048240, 4048241,

K1106154, K1106157, K1106166 4048242, 4048243, 4048244, 4048329, 4048330

TESTS/ Total Metals (As, Ba) by PSEP/ SW846 6020 Total Petroleum Hydrocarbons (TPH) by SW846

METHODS: Total Metals (Hg) by EPA 1631E 3541/ 3620B/ 8015B Modified

Total Inorganic As by EPA 1632 Rev. A Lipid Content by EPA 3541/ Pace SOP (gravimetric)

Methyl Mercury by CAS SOP EPA 1630M

Total Lipids by EPA 3541/ NOAA (gravimetric)

Total Solids by CAS Freeze Dry

SAMPLES: Crab samples from 13 Site locations (T-01 thru T-12 plus T-01A), 10 reference locations (TR-01 thru

TR-09 plus TR-03A), and 6 market locations (BIL, BR, DES, HOU, LC, and NO)

Fish (shad) samples from 12 Site locations (T-01 thru T-12) and 8 reference locations (TR-02 thru

TR-09)

Fish (bluegill) samples from 2 Site locations (T-02 and T-05) and 2 reference locations (TR-01 and

TR-04A)

QAA completed a third-party review of the above chemical analysis data for conformance with the requirements regarding data validation in the Quality Assurance Project Plan/Sample Analysis and Assessment Plan for Crab and Forage Fish Tissue at the East White Lake Oilfield, Vermilion Parish, Louisiana dated December 6, 2010 (the "Plan"). The summary of the results of the data review are discussed in this memo. Sample data qualified as unusable due to exceedances of quality control criteria are listed in Table 1.

QAA completed the review using the following laboratory and project submittals:

- Field record forms;
- Chain of custody forms;
- Laboratory data results and reports; and
- Laboratory electronic data deliverables (EDD).

The data evaluation included a review of the following, using the applicable analytical method and project requirements:

- Chain-of-Custody Procedures
- Data Completeness (Field and QA/QC documentation)
- Analytical Methods
- Reporting Procedures/Limits
- Holding Time, Preservation, and Containers

- Laboratory and Field QC Blanks
- Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries
- Surrogate Recoveries
- Laboratory and Field Duplicate Precision
- Calibration Blanks/Verification
- ICP Interference Checks
- Internal Standard Areas

Additionally, for TPH, the evaluation included the following:

- Initial Calibration
- Analyte Identification
- Analyte Quantitation
- Raw Data Verification

The criteria specified in the Plan were used for the data validation as follows:

- Inorganics Spike Recovery: 70-130% for Total Arsenic, Total Barium, and Total Mercury; 50-150% for Inorganic
 Arsenic; and 65-135% for Methyl Mercury (and not less than 30% or data is rejected) for laboratory control samples
 and matrix spikes
- Inorganics Duplicate Precision: 50 RPD (if results are greater than 5x MQL) or 100 RPD (if results are less than or equal to 5x MQL) for laboratory and field duplicates
- Organics Spike Recovery: 50-150% for TPH (and not less than 10% or data is rejected) for laboratory control samples, matrix spikes, and surrogates
- Organics Duplicate Precision: 25 RPD for laboratory control sample duplicates; 50 RPD (if results greater than 5x MQL) or 100 RPD (if results less than or equal to 5x MQL) for matrix spike and field duplicates

Note: The accuracy criteria for TPH listed in Table 1 of the Plan apply for Texas method 1005/1006. The laboratory used SW846 method 8015B, which calls for historical in-house criteria. Since a database is not available for determining matrix-specific limits for TPH analysis of biological samples, the laboratory (and data reviewer) used the basic guideline limits of 50-150%.

GLOSSARY OF TERMS

The following definitions apply for terms related to analyte reporting limits:

MDL (Method Detection Limit) – the minimum concentration of an analyte that the laboratory can measure and report with 99% confidence that the analyte concentration is greater than zero. The MDL is determined by the laboratory for each analyte in a given reagent matrix (water or soil) generally using the procedures specified in 40 CFR Part 136, Appendix B. It is a measure of the concentration an instrument can detect or 'see' in a given reagent matrix.

SDL (Sample Detection Limit) – the MDL adjusted to reflect sample-specific actions, such as dilution or use of smaller aliquot sizes than prescribed in the analytical method, and taking into account sample characteristics, sample preparation, and analytical adjustments including dry-weight adjustments. It is a measure of the concentration an instrument can detect or 'see' in a given sample.

MQL (Method Quantitation Limit) – the lowest non-zero concentration standard in the laboratory's initial calibration curve calculated using the normal aliquot sizes and final volumes prescribed in the analytical method. The MQL is a measure of the concentration an instrument can accurately measure in a typical sample.

SQL (Sample Quantitation Limit) – the MQL adjusted to reflect sample-specific actions, such as dilution or use of smaller aliquot sizes than prescribed in the analytical method, and takes into account sample characteristics, sample preparation, and analytical adjustments including dry-weight adjustments. It is a measure of the concentration an instrument can accurately measure in a given sample. Analytes with concentrations above the SDL but below the SQL, though present in the sample, may not be accurately measured and are thus flagged as estimated (J).

CHAIN-OF-CUSTODY PROCEDURES

All of the fish and crab organisms were initially received at CAS for sample processing using a custody record created in the field by the sampler (Michael Pisani & Associates, Inc.). CAS logged all of the fish into one SDG (K1013947), and the organisms were homogenized and composited by location and species. CAS assigned one sample ID per location/species and reported the results under this same SDG number.

For the crabs, CAS logged all of the organisms from one location into one SDG and assigned five sample IDs per crab (whole body, hepatopancreas, other soft tissue, meat, and exoskeleton). For each location, some or all of the crabs were dissected into four parts and then each part (either separately or for multiple crabs) was homogenized and composited to obtain the sample mass needed for testing. Each composite was then logged into two sets of four SDGs: (1) K1100325 (hepatopancreas), K1100337 (other soft tissue), K1100338 (exoskeleton), and K1100344 (meat) for the December 2010 and January 2011 samples and (2) K1106152 (hepatopancreas), K1106154 (soft tissue), K1106157 (exoskeleton), and K1106166 (meat) for the May 2011 and June 2011 samples). Aliquots of each composite were prepared and analyzed for Metals/Lipids, as requested and CAS reported the Metals/Lipids results under these eight SDGs. Additionally, aliquots of each hepatopancreas and meat composite were sent to another laboratory for TPH/Lipids testing using a custody record created by CAS. In June 2011, whole body composites (which were not analyzed by CAS) were prepared from the homogenized parts or whole organisms, as available, and aliquots were sent to another laboratory for TPH/Lipids testing using a custody record created by CAS.

All of the hepatopancreas and meat composites except those prepared for the three market crab samples collected in May 2011 and June 2011 (BIL, DES, and HOU) were first sent to Gulf Coast Analytical Laboratories, Inc. in Baton Rouge (GCAL). GCAL was originally contracted to perform the TPH analyses but due to poor method performance (as indicated by extremely low surrogate recovery), the samples were subsequently transferred to Pace Analytical Services, Inc. in Green Bay, Wisconsin (Pace) using the same custody records that were created by CAS for the composite aliquots. (Note that the samples were not assigned to sets in the same way by both laboratories. The GCAL sample no. and then the Pace sample no. are handwritten in columns on the right side of the custody record for ease of reference). The whole body composites and the hepatopancreas/meat composites for the three market crabs collected in May 2011 and June 2011 were sent directly to Pace using a custody record created by CAS.

The CAS data packages include the custody records created in the field and the Pace data packages include the custody records created by CAS for the transfer of the composite aliquots.

Proper sample custody procedures were used for each transfer and custody seals were present on each shipping container, except as follows:

- Custody seals were not used for the transfer from the field to CAS or for the transfer from GCAL to Pace. All samples were delivered by commercial courier and no evidence of sample tampering was noted by any of the laboratories.
- For Pace project no. 4046716, GCAL did not sign and date the second page of the custody record for samples 4047603001 to 4047603003. The first page is signed and dated.

Additionally, the information on the custody records is complete and agrees with that in the field documentation and laboratory reports, except as follows:

- The number of containers (or the down-arrow to indicate the same number of containers applies to each line) is missing on some of the CAS custody records. For the fish collections, the fish specimens for each location (which numbered 20-30 organisms for the shad collections) were placed in a single foil packet (rather than wrapped individually as specified in the Plan). One to four packets were placed in the shipping container. The CAS Cooler Receipt and Preservation Form lists the packets received in each container. For the crab collections, the crab specimens for each location were placed in one shipping container.
- The time of relinquishment was not entered on the CAS custody record for some transfers but the date of relinquishment is always given.
- The down-arrow for the collection date/time is missing on some of the CAS custody records. The collection date/time is also given on the Field Record Forms. Note that the collection time is arbitrary since multiple organisms were collected across a time span, and thus may vary in the laboratory reports from one composite aliquot to another or one test to another for a given location. Additionally, in order to obtain sufficient sample mass, two or three collection events were required at some locations. All sample dates listed in the laboratory reports are correct and are set to last date organisms were collected with one exception. For Pace sample no. 4048241002 (EWL-HOU-C-WHOLE BODY), the Date Collected is reported by the laboratory to be 06/20/2011. Per field documentation, the correct date is 05/23/2011, as reported for all other samples from the HOU location.
- For Pace project no. 4046733, the laboratory report incorrectly shows the Date Received as 06/08/2011 10:00. The correct date is 06/07/2011 10:00 as shown on the custody record
- For Pace project no. 4048240, the field ID for sample 4048240006 is incorrectly shown as EWL-LC-2-C-WHOLE BODY on the custody record created by CAS for transfer of the composite aliquots. The laboratory report shows the correct ID (EWL-LC-C-WHOLE BODY) per the original custody record created in the field.
- For Pace project no. 4048241, the field ID for sample 4048241004 is incorrectly shown as EWL-TR-01A-C-WHOLE BODY on the custody record created by CAS. The laboratory report shows the correct ID (EWL-T-01A-WHOLE BODY) per the original custody record created in the field.

Note: The custody records created in the field were updated by the sampler (Michael Pisani and Associates, Inc.) on 03/09/2011 to include missing sample dates for the fish collections on 01/04/2011 and 01/05/2011 and the NO market crab collection on 12/27/2010. Additionally, the sampler added the collection of bluegill fish samples at T-02 and T-05 onto the custody record for 12/21/2010 and submitted the Field Record Forms for these two collections. The 12/21/2010 updated custody record is included in the CAS crab packages (K1100325, K1100337, K1100338, and K1100344) rather than the CAS fish package (K1013947).

The reviewer also confirmed that all tests are reported as requested on the custody record and noted the following:

- CAS reported Total Lipids and Total Solids along with the Metals results for all samples per the Plan.
- Pace reported TPH and Lipid Content for all samples per the Plan. The custody record and Plan specify Texas method 1005 for TPH, since GCAL performs TPH using this method. Pace performs TPH using method SW846 8015B Modified with automated Soxhlet extraction (SW846 3541) and Florisil cleanup (SW846 3620B).
- The following analyses were not performed due to insufficient sample mass:
 - EWL-T-05-F-COMPOSITE BLUEGILL was not analyzed at Pace for TPH or Lipid Content.
 - A whole body composite was not analyzed at Pace for TPH or Lipid Content for EWL-T-09-C.
 - EWL-TR-01-C-HEPATOPANCREAS was not analyzed at Pace for TPH or Lipid Content.
 - A whole body composite was not analyzed at Pace for TPH or Lipid Content for EWL-TR-06-C.

No data were qualified as unusable due to chain-of-custody issues.

DATA COMPLETENESS (FIELD AND QA/QC DOCUMENTATION)

The CAS data packages include Field Record Forms, which list each crab or fish that was collected and gives identifying information (length, width, weight, sex) for each organism for all collection events, except as follows:

- A Field Record Form is not available for the second collection at Site location T-05 of nine crabs (per the CAS sample processing worksheets) on 12/21/2010.
- A Field Record Form is not available for the second collection at Site location T-09 of four crabs (per the CAS Cooler Receipt and Preservation Form) on 01/10/2011.
- A Field Record Form is not available for the second collection at Site location T-12 of an unknown number of crabs on 12/22/2010. (These crabs were received above temperature and were not used as discussed in the Holding Time, Preservation, and Containers section below.)
- Field Record Forms were not used for the market locations (BIL, BR, DES, HOU, LC, and NO).
- The Field Record Form lists each fish that was collected and gives indentifying information (length, width, weight) for each organism for the collection of shad fish at reference locations TR-02, TR-03 and TR-04 and the collection of bluegill fish at reference locations TR-01 and TR-04A. Sampling team records indicate that the weighing and measuring process for the fish from these first few locations proved to be time consuming due to the number of forage fish collected (20-30 fish for shad collections), and the team modified the protocol to estimate volumes of forage fish thereafter rather than to weigh and measure each individual fish. For the remaining collections of shad and the collection of bluegill at Site locations T-02 and T-05, the Field Record Form does not include identifying information for each organism.

The laboratory data packages contain all necessary data (i.e., the analytical results, custody records, processing/preparation/analysis records, and QA/QC documentation) and the EDD contains all sample results in acceptable format, with the following deviations:

- In the CAS data package K1100334 Rev. 1, the printout does not show the right-hand columns including the units and flags (under Result Notes) for the Total Lipids results on page 520. This page was revised to show the correct sample ID for sample 02 (TR-01A corrected to T-01A as shown on the custody record). The missing information is shown on the unrevised page in the original package and in the EDD.
- For Pace project no. 4046733, the LCS results were revised on 05/23/2012 as shown in the raw data section (page 121) of the data package and confirmed by the validator using the quantitation report. Unrevised results are mistakenly reported in the QC Summary section (page 12).
- For the three market crabs collected in May 2011 and June 2011, some of the worksheets documenting the specimen dissection and tissue homogenization are not included in the laboratory data package.

No data were qualified as unusable due to data completeness issues.

ANALYTICAL METHODS

The laboratories used SW-846 or other rigorous analytical methodologies and are accredited in accordance with LAC, Title 33, Part I, Subpart 3. The methods used are those specified in the Plan (except for TPH which utilized an equivalent method as previously noted) and provide definitive data (i.e., analyte-specific with confirmation of identity and concentration) for Metals and TPH. Note: To support the objectives of health assessment identified in the Plan, the Plan authors requested that TPH reporting in the C08-C28 range also include the additional breakdown into C08-C16 and C16-C28 ranges.

REPORTING PROCEDURES/LIMITS

For CAS, the analytical results include the result, the SDL (under the MDL column on the analytical report), and the SQL (under the MRL column). Non-detects are reported as "ND". The EDD includes the result, SDL (under the sample_quantitation_limit column header and the method_detection_limit column header), and the SQL (under the unadjusted_MQL column header). Non-detects are reported as "U". Confirmed detects between the SDL and SQL (i.e., laboratory J-values) are reported. Metals results are reported on a wet-weight basis as specified in the Plan. All Metals analyses were performed on a freeze-dried (ground and homogenized) sample and the results were corrected based on the Total Solids.

For Pace, the analytical results include the result, the SDL (under the MDL column on the analytical report), and the SQL (under the PQL column). Non-detects are reported as less than the SDL. The EDD includes the result, SDL (under the MDL column header), and the SQL (under the EQL column header). Non-detects are reported as "U". Confirmed detects between the SDL and SQL (i.e., laboratory J-values) are reported and TPH results are reported on a wet-weight (as received) basis as specified in the Plan.

The Plan includes detectability requirements in terms of the MQL (or MDL for Total Arsenic) for the Metals analyses. The MDLs and MQLs reported by CAS are at or below the levels in the Plan for each metal.

HOLDING TIME, PRESERVATION, AND CONTAINERS

Samples were properly preserved in the field, and prepared and analyzed within the holding times as specified in the Plan, except as follows:

- The shipment containing the fish organisms for location TR-01 collected on 12/15/2011 and the Bait sample collected on 12/14/2011 was received on 12/16/2011 at 4.3 C with an empty dry ice bag.
- The shipment containing the crab organisms for location T-12 collected on 12/22/10 was received on 12/27/10 at 8.9 C.
 These organisms were discarded and the composites were prepared using organisms received on 12/21/2010 and 01/04/2011 at ≤ 6 C.

Additionally, the validator noted the following regarding sample handling:

- All fish organisms were received at CAS within three days of collection (with 1-2 days transit time) and all organisms for a given location were collected on the same date.
- All crab organisms were received at CAS within two days of collection (shipped the same day as collected with 1-2 days transit time) and the organisms for a given location were collected on the same date or up to 25 days apart.
- There is no required holding time for Total Solids, the results of which were used to correct the CAS metals results to a
 wet-weight basis. All Total Solids results were determined within 50-days of collection.

No data were qualified as unusable due to holding time issues.

LABORATORY BLANKS

For all tests, the laboratories prepared one method blank per batch (maximum 20 samples) as required in the Plan. (Note that the samples were assigned to batches as received and almost every batch includes a mix of samples from Site, reference and/or market locations.) The method blanks underwent all processing, preparation, cleanup, and analysis procedures. No analytes are reported above the detection limit in the laboratory blanks, except as follows:

CAS The method blanks for a few of the batches have a low-level detect (i.e., laboratory J-values) for Total Arsenic, Total Barium, Total Mercury, or Methyl Mercury.

Per laboratory standard procedure, the method blanks were prepared using a tuna matrix purchased from a grocery store. The method blanks for all batches have detections for Lipid Content at 0.43-0.53% and for TPH (C08-C40) at 77.3-139 mg/kg. The laboratory corrected the method blank results for each carbon (C)-range (using peak area subtraction) for lipid peaks in the C10-C28 range seen in the tuna matrix, and thus the results provide an indication of potential laboratory contamination for that C-range. The results for the other C-ranges provide an indication of potential laboratory contamination and/or matrix interference. The corrected method blank results indicate there was

contamination or matrix interference for the C08-C16 and C16-C28 ranges. In narrative comments regarding method blanks, the laboratory notes that TPH (C08-C40) was detected above the report limit due to a large lipid peak eluting around C34. The presence of TPH (C08-C40) in every method blank and the peaks present on the chromatograms

no laboratory contamination (i.e., the blank results are all non-detect) for the C10-C28 range and no laboratory

indicate that C08-C40 results for organic tissue samples reflect high bias due to the presence of cholesterol/lipid peaks. Laboratory narratives for the tissue samples identify the impact of the "...large lipid peak eluting around C34."

Based upon laboratory recommendation, organic material in the range up to C28 was identified as potential petroleum hydrocarbon that can be quantified without significant impact from the cholesterol/lipid peaks naturally and ubiquitously present in the biological tissue samples; though there is potential for interference from natural (biological or other) organic material in the <C28 range based upon the uncorrected results of the method blank analyses. Additionally, there is potential for petroleum hydrocarbon occurrence in the range of C28-C40, however, this range of the chromatogram is dominated by the cholesterol/lipid peaks. The results for TPH (C08-C40) for the method blanks and samples include the C28-C40 range that is dominated by cholesterol/lipid peaks.

No data were qualified as unusable due to the presence of analytes in the laboratory blanks.

FIELD QUALITY CONTROL BLANKS

No field quality control blanks (e.g., equipment rinsate blanks) were collected with the samples.

LCS/LCSD RECOVERIES

For all applicable tests, the laboratories prepared one LCS per batch (maximum 20 samples) as required in the Plan. Additionally, for some of the TPH batches (i.e., those without an MS/MSD due to insufficient sample mass), Pace prepared an LCSD. The LCS/LCSD were spiked prior to all preparation, cleanup, and analysis procedures. Recoveries are within the project criteria, specified in Table 2 of Plan, except as follows:

CAS No exceptions found.

PACE The spike used for the LCS/LCSD is a no. 2 Diesel Fuel standard per Method 8015B. The standard is certified as covering the C10-C28 carbon range and cannot be broken into different carbon ranges. Thus, though reported for complete documentation, the TPH (C08-C16) and TPH (C16-C28) spike recoveries do not provide an accurate indication of data quality and thus were not evaluated by the validator. Per laboratory standard procedure, the LCS/LCSD for this project were prepared using a tuna matrix. The laboratory corrected the LCS/LCSD results for each C-range (using peak area subtraction) for lipid peaks in the C10-C28 range seen in the tuna matrix, and thus the recoveries provide an indication of laboratory performance for that C-range. The recoveries for the other C-ranges provide an indication of laboratory performance and/or matrix interference.

The LCS and/or LCSD for two of the eight analytical batches have a recovery for TPH (C10-C28) that is below the criteria (at 40-49%) but well above the data rejection limit of 10% for organics. The TPH (C10-C28) recoveries for the remaining six batches are within the criteria.

The recoveries for Diesel Range Organics (C08-C28) are similar to the TPH (C10-C28) recoveries, indicating minimal interference in the C08-C10 region for the tuna matrix.

The TPH (C08-C40) recoveries are all above the criteria at 175-327%, which confirms matrix interference in the C28-C40 region as expected for the cholesterol/lipid-containing tuna matrix and as evident on the LCS/LCSD chromatograms. This indicates that the results for organic tissue samples are affected by interference from cholesterol/lipid peaks present in this C-range.

Since the control spikes are prepared in a fish matrix, the recoveries were not anticipated to be such as may be expected from a blank or inert matrix.

No data were qualified as unusable based on LCS/LCSD recoveries.

MS/MSD RECOVERIES

For all applicable tests, the laboratories prepared at least one MS and/or MSD per batch (maximum 20 samples) as required in the Plan with the exception of five of the TPH batches. Insufficient sample mass was available for preparing MS/MSD for these batches and the laboratory included a LCSD in each batch instead. The MS/MSD were spiked prior to all preparation, cleanup, and analysis procedures and were prepared using samples from Site, reference, and market locations. Recoveries are within the project criteria, except as follows:

CAS The MS and MSD recoveries for Barium are outside the criteria for two of the MS/MSD (prepared using EWL-T-02-C-EXOSKELETON). Due to a low spike amount relative to unspiked sample concentration, an accurate evaluation of these spike recoveries cannot be made and these data were not evaluated.

The MS recovery for Barium is above the criteria for the MS/MSD prepared using EWL-T-02-C-OTHER SOFT TISSUE and the MS recovery is slightly below the criteria for the MS/MSD prepared using EWL-T-03-C-OTHER SOFT TISSUE. The MSD recoveries are within the criteria in both cases.

The Barium recoveries for the remaining 15 MS/MSD are within the criteria.

PACE The spike used for the MS/MSD is a no. 2 Diesel Fuel standard per Method 8015B. The standard is certified as covering the C10-C28 carbon range and cannot be broken into different carbon ranges. Thus, though reported for complete documentation, the TPH (C08-C16) and TPH (C16-C28) spike recoveries do not provide an accurate indication of data quality and thus were not evaluated by the validator. Additionally, as discussed for the LCS/LCSD, cholesterol/lipid interferences for the Diesel Range Organics (C8-C28) and TPH (C08-C40) recoveries do not provide an accurate indication of data quality and thus were not evaluated.

For TPH (C10-C28), the MS recovery is above the criteria and the MSD recovery is within the criteria for the MS/MSD prepared using EWL-T-02-C-HEPATOPANCREAS. The TPH (C10-C28) recoveries for the remaining two MS/MSD (prepared with EWL-T-02-C-MEAT and EWL-T-02-F-COMPOSITE_BLUEGILL) are within the criteria. This indicates that TPH is recoverable and method performance is adequate for these sample matrices.

The validator noted that interference from cholesterol/lipid content may not be apparent from the MS/MSD recoveries since the bias would affect both the unspiked sample concentration and the spiked sample concentration (and the recovery is calculated from the difference of these two). Additionally, the validator noted that the Lipid Content (shown below) for each of the composites is near or above that of the tuna matrix used to prepare the method blanks and LCS/LCSD and the chromatograms for the composites show peaks beyond and above the unresolved "hump" similar to some of the peaks seen on the chromatograms for the method blanks and LCS/LCSD.

SAMPLE	LIPID CONTENT
Method Blanks (Tuna Matrix)	0.43-0.53%
Fish Composites	0.31-3.0%
Whole Body Crab Composites	0.13-0.85%
Hepatopancreas Crab Composites	3.2-30.6%
Meat Crab Composites	0.023-0.79%

The Lipid Content of the composite samples suggests that matrix effect can be expected, similar to that recognized in the tuna matrix.

No data were qualified as unusable based on MS/MSD recoveries.

SURROGATE RECOVERIES

Pace reported the recovery for the surrogate o-Terphenyl for each TPH analysis. The surrogate spike was added prior to all preparation, cleanup, and analysis procedures. Recoveries are within the project criteria, except as follows:

PACE The surrogate is calibrated at a single concentration (50 ug/ml on-column) with the samples being spiked to recovery at that concentration. When a sample is diluted the expected on column concentration falls outside of the calibration concentration range. Therefore when a sample is diluted, the laboratory does not evaluate the surrogate recovery because it is no longer at the calibration concentration and the recovery is defaulted to 0%. Thus, for samples requiring dilution, data quality cannot be evaluated based on surrogate recovery. However, review of the chromatogram for the absence or presence of the surrogate peak is used to check for significant problems with the extraction and analysis for that sample.

Eighty-one analyses including three method blanks, twelve LCS/LCSD, 61 composites, and five MS/MSD required dilution to bring the TPH (C08-C40), which includes the large lipid peak eluting around C34, within the range of calibration. A peak is present on the chromatogram and the data system for the analytical instrument identified the peak as within the surrogate retention time window for every diluted analysis except EWL-TR-09-C-HEPATOPANCREAS. (Note: A surrogate amount is shown on the quantitation report for diluted samples if the surrogate is identified by the data system, but this amount is not multiplied by the dilution factor.)

For the samples not requiring dilution, the surrogate recovery is evaluated and is below the data rejection limit (i.e., less than 10%) for EWL-T-01A-C-MEAT, EWL TR-04-F-COMPOSITE, and EWL TR-09-F-COMPOSITE. It is not possible to determine the absence or presence of analytes that are reported as non detect in these samples. The following results are reported as non detect in these samples and thus are not considered reliable for use in quantitative analysis (i.e., R-qualified):

EWL-T-01A-C-MEAT Diesel Range Organics (C8-C28), TPH (C08-C16), TPH (C16-C28), TPH -

Diesel (C10-C28)

EWL TR-04-F-COMPOSITE TPH (C08-C16)
EWL TR-09-F-COMPOSITE TPH (C08-C16)

For the remaining 50 undiluted composites, seven have a recovery below the criteria (at 10-47 %) but at or above the data rejection limit. Since the samples are a biological matrix, the recoveries were not anticipated to be as good or equivalent to those in soils. The laboratory's in-house surrogate recovery range for a soil matrix is 10% to 130%.

The validator noted that the recovery of o-Terphenyl, which is a polynuclear aromatic hydrocarbon (PAH), reflects on the overall extraction/analysis efficiency for each sample but may not represent the extraction/analysis efficiency for all types of compounds that are measured by the TPH analysis. (TPH contains a wide range of different types of compounds including PAHs but also saturated hydrocarbons, unsaturated hydrocarbons, and cycloparaffins, all of which have different polarities, solubilities, volatilities, etc.) The MS/MSD, which are spiked with No. 2 diesel fuel, provide an important indication of TPH recoverability, and laboratory performance on MS/MSD recoveries indicates that TPH is recoverable and method performance is adequate for these sample matrices.

LABORATORY DUPLICATE PRECISION

For all tests, the laboratories prepared at least one laboratory duplicate (LCSD, MSD, and/or MD). RPDs are within the project criteria, except as follows:

CAS No exceptions found.

PACE The RPD reported for TPH (C08-C40) for the MSD prepared using EWL-T-02-C-HEPATOPANCREAS is above the criteria. However, the RPD is calculated using the MS and MSD measured results and the added spike concentrations differ greatly due to a large difference in the sample mass used for the MS versus the MSD. When calculated based on the MS and MSD recoveries, the RPD is within the criteria.

No data were qualified as unusable based on LCS/LCSD or MS/MSD precision.

FIELD DUPLICATE PRECISION

Three of the thirty locations were designated in the field as duplicate locations, which meets the Plan requirement of approximately 10%. Duplicate samples were prepared by the laboratory for each of the four crab parts (hepatopancreas, other soft tissue, meat, and exoskeleton). All specimens or sub-samples thereof for the duplicate location were composited and then the composite was split by the laboratory. RPDs are within the project criteria, except as follows:

CAS The RPD for Total Barium is outside the criteria for EWL-T-03-C-DUP-MEAT and the RPD for Methyl Mercury is outside the criteria for EWL-T-03-C-DUP-MEAT and EWL-T-10-C-DUP-MEAT.

PACE The RPD for Lipid Content is outside the criteria for EWL-T-03-C-DUP-MEAT.

No data were qualified as unusable based on field duplicate precision.

OTHER COMPARISONS

The validator also compared total to partial results as part of the data review:

- The speciated metal concentrations were compared to the total metal concentrations and the speciated concentration was not found to be significantly above the total concentration, except as follows:
 - Total Inorganic Arsenic concentration is approximately five times the Total Arsenic concentration for EWL BAIT-F-COMPOSITE_CATFISH.
 - The Methyl Mercury concentrations are approximately 50% higher than the Total Mercury concentrations for EWL-T-08-C-EXOSKELETON and EWL-T-09-C-EXOSKELETON.

No data were qualified as unusable due to comparison issues.

INITIAL CALIBRATION (TPH ONLY)

No exceptions were found that affect data quality.

CALIBRATION BLANKS/VERIFICATION

CAS No exceptions were found that affect data quality.

PACE The %difference for the continuing calibration verification (CCV) standard analyzed on 06/28/2012 at 19:09 is outside the ±15% criteria at -18% for the TPH analytes and -24% for the surrogate o-Terphenyl.

No data were qualified as unusable for calibration verification issues.

ICP INTERFERENCE CHECKS

No exceptions were found.

INTERNAL STANDARD AREAS

No exceptions were found that affect data quality.

ANALYTE IDENTIFICATION (TPH ONLY)

No exceptions were found that affect data quality.

ANALYTE QUANTITATION (TPH ONLY)

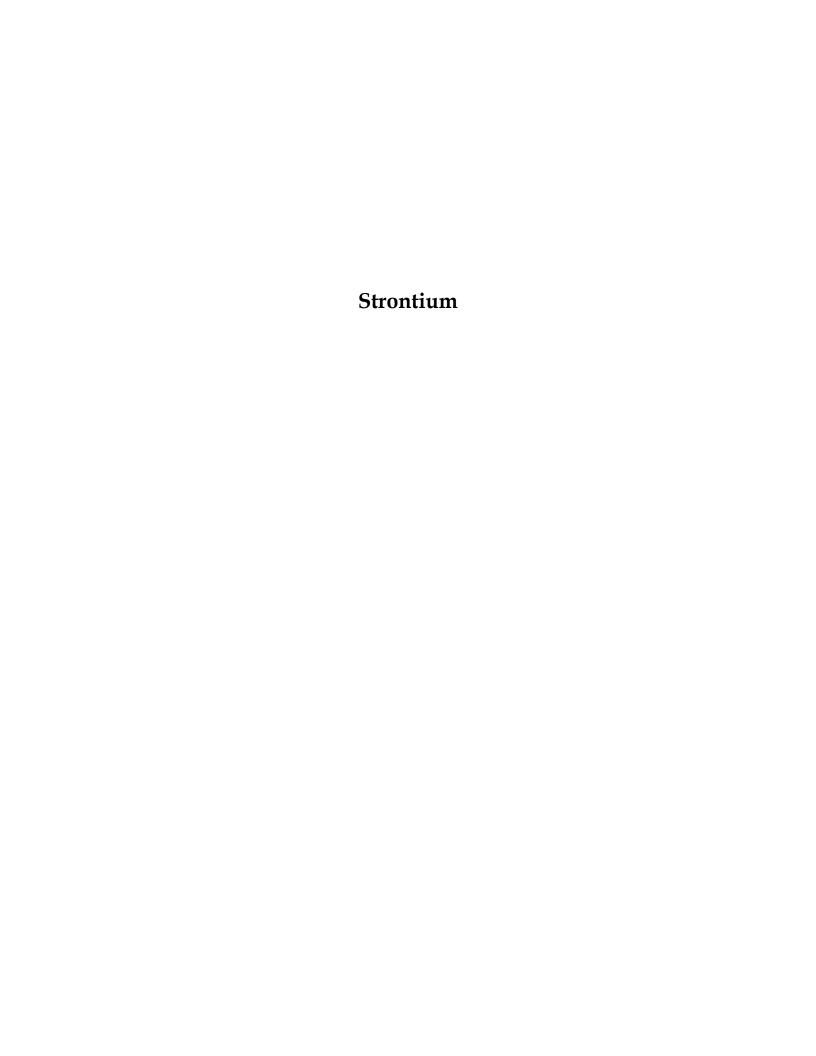
No exceptions were found.

RAW DATA VERIFICATION (TPH ONLY)

No exceptions were found.

Table 1
Analytical Data Qualified as Unusable (R-flag)

Field Identification	Analyte	Qualification	Reason for Qualification						
EWL-T-01A-C-MEAT	Diesel Range Organics (C8-C28)	R	Surrogate recovery less than 10%						
EWL-T-01A-C-MEAT	TPH (C08-C16)	R	Surrogate recovery less than 10%						
EWL-T-01A-C-MEAT	TPH (C16-C28)	R	Surrogate recovery less than 10%						
EWL-T-01A-C-MEAT	TPH - Diesel (C10-C28)	R	Surrogate recovery less than 10%						
EWL TR-04-F-COMPOSITE	TPH (C08-C16)	R	Surrogate recovery less than 10%						
EWL TR-09-F-COMPOSITE	TPH (C08-C16)	R	Surrogate recovery less than 10%						
R – Rejected; data are not usuable due to failure to meet one or more quality control criteria.									


Supporting Calculations for RECAP Standard Development

Appendix G

Project No. 0116008 UNOCAL Vermilion Parish, Louisiana

Environmental Resources Management Southwest, Inc.

3838 North Causeway Boulevard, Suite 3000 Metairie, Louisiana 70002 (504) 831-6700

RECAP STANDARDS FOR STRONTIUM

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

RECAP Standards (a) RfDo **GWSS** GW2 **GW3NDW** Soilssni Soilssi Soilssow **BCF** REF REF mg/kg CAS# mg/kg-d mg/kg-d L/kg mg/L mg/L mg/L mg/kg mg/kg 7440-24-6 60 Strontium 6.00E-01 2.2E+00 2.2E+01 3.3E+01 4.7E+03 **IRIS RAIS**

Notes:

mg/kg-d = milligrams per kilogram per day

L/kg = Liters per Kilogram

mg/L = milligrams per liter

mg/kg = milligrams per kilogram

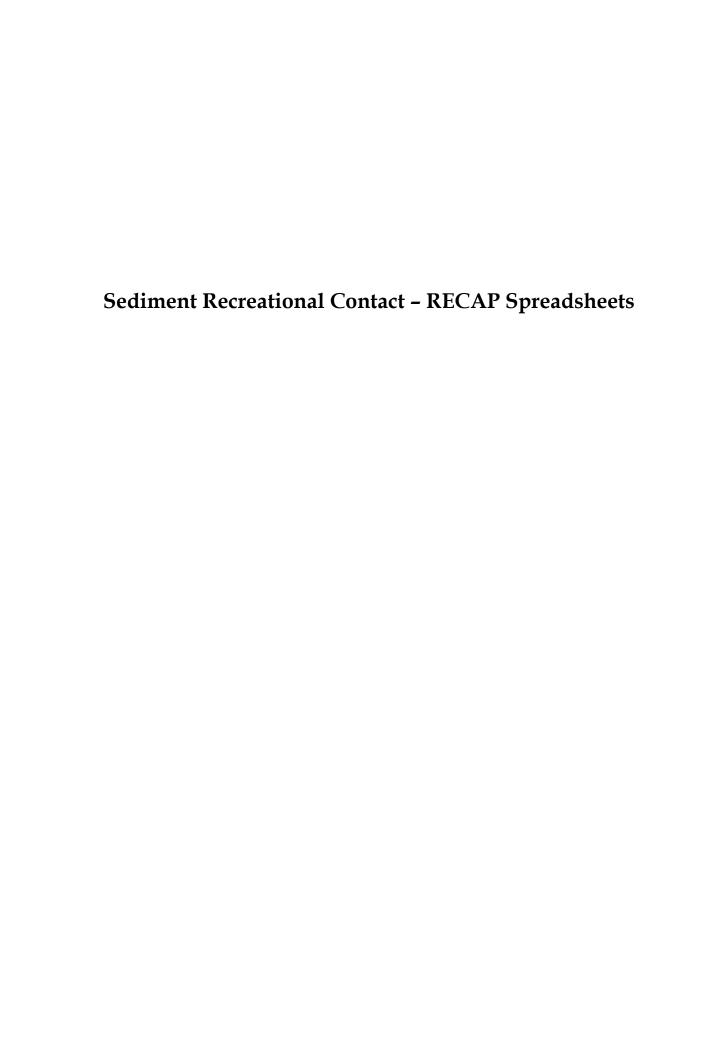
CAS# = Chemical Abstract Number

RfDo = Oral Reference Dose

IRIS = Integrated Risk Information System (USEPA)

RAIS = Risk Assessment Information System (Oak Ridge National Laboratory)

GWss = RECAP Ground Water Screening Standard


GW3NDW = Ground Water Class 3 non-drinking water RECAP Standard

Soil_{Ssi} = Screening Standard for soil protective of human health for industrial land use. Conservatively used for screening a recreational scenario.

Soil_{SSGW} = Screening Standard for soil protective of ground water (RECAP Table 1).

BCF - bioconcentration factor

(a) RECAP Standards calculated in accordance with Appendix H of RECAP (2003). SoilSSGW calculated in accordance with USEPA Soil Screening Guidance.

RECAP SPREADSHEETS SEDIMENT RECREATIONAL CONTACT Child Age 11-16 Years

CHEMICAL AND PHYSICAL PARAMETERS

COMPOUND	CAS#	MOL. WT	Koc	REF	Н	REF	Da	REF	Dw	REF	S	REF
		g/g-mole	cm3/g		atm-m3/mo	ĺ	cm2/s		cm2/s		mg/L	
Barium	7440-39-3	137.33	******	******	*****	******	******	******	******	******	******	*****
Mercury (inorganic)	7487-94-7	200.59	*****	******	*****	******	******	******	******	*****	*****	*****
Aliphatics >C10-C12	NA	160	2.51E+05	10	2.93E+00	10	1.00E-01	10	1.00E-05	10	*****	*****
Aliphatics >C12-C16	NA	200	5.01E+06	10	1.27E+01	10	1.00E-01	10	1.00E-05	10	*****	*****
Aliphatics >C16-C35	NA	270	6.31E+08	10	1.20E+02	10	1.00E-01	10	1.00E-05	10	*****	*****
Aromatics >C12-C16	NA	150	5.01E+03	10	1.29E-03	10	1.00E-01	10	1.00E-05	10	*****	*****
Aromatics >C16-C21	NA	190	1.58E+04	10	3.17E-04	10	1.00E-01	10	1.00E-05	10	*****	*****
Aromatics >C21-C35	NA	240	1.26E+05	10	1.63E-05	10	1.00E-01	10	1.00E-05	10	*****	*****

^{10.} Total Petroleum Hydrocarbon Criteria Workgroup, 1996.

RECAP SPREADSHEETS SEDIMENT RECREATIONAL CONTACT Child Age 11-16 Years CANCER SLOPE FACTORS AND REFERENCE DOSES

COMPOUND	CAS#	SF _o	REF	SFi	REF	RfD _o	REF	RfD _i	REF	ABS
		(mg/kg-day) ⁻¹		(mg/kg-day) ⁻¹		mg/kg-day		mg/kg-day		unitless
Barium	7440-39-3	*****		*****		2.00E-01	I	1.43E-04	Н	0
Mercury (inorganic)	7487-94-7	*****		*****		3.00E-04	I	8.57E-05	I	0
Aliphatics >C10-C12	NA	*****		*****		1.00E-01	Т	3.00E-01	T	0
Aliphatics >C12-C16	NA	*****		*****		1.00E-01	Т	3.00E-01	T	0
Aliphatics >C16-C35	NA	*****		*****		2.00E+00	Т	2.00E+00	*	0.1
Aromatics >C12-C16	NA	*****		*****		4.00E-02	Т	6.00E-02	T	0
Aromatics >C16-C21	NA	*****		*****		3.00E-02	Т	3.00E-02	*	0.1
Aromatics >C21-C35	NA	*****		*****		3.00E-02	Т	3.00E-02	*	0.1

I = Integrated Risk Information System (IRIS), EPA.

H = Health Effects Assessment Summary Tables (HEAST), EPA.

^{* =} Inhalation toxicity not available, oral toxicity value used to assess inhalation exposure.

T = TPH Criteria Working Group, 1997.

RECAP SPREADSHEETS SEDIMENT RECREATIONAL CONTACT Child Age 11-16 Years

Soil prope	erties	Managen	nent Optio	n 1 & 2							
Revision D	oate: 08/04/20	003									
Run date:	9/30/2015										
	ation inputs**	***									
	g/cm3		pb = dry s	soil bulk d	ensity						
	Lpore/Lsoil		n = total s								
	Lwater/Lsoil		nw = water-filled soil porosity								
0.148491	Lair/Lsoil			illed soil p	•						
	g/cm3		ps = soil	particle de	ensity						
0.006					anic carbo	n in soil					
	(ft) = L = leng										
	(ft) = W = wid							er			
0.5	Acres				ıt into Q/C						
76.38527	g/m2-s per k	g/m3	Q/C = inv	erse of m	ean conce	entration a	t center o	f square s	ource		
Q/C Table											
site size	148*148	209*209	295*295	467*467	660*660	1143*114	.3				
site size	0.5 acre					30 acre					
Q/C value	76.3062	67.4304	59.872	51.4648	46.1707	39.2329					

RECAP Spreadsheets Sediment Recreational Contact Child Age 11-16 years

DECAR		
RECAP		
	nent Option 3	
Default E	xposure pa	rameters Industrial scenario was changed to child recreational.
	lation inputs	
1.0E-06		TR = target excess individual lifetime cancer risk
1	unitless	THQ = target hazard quotient
70	,	ATc = averaging time-carcinogens
	yr	ATni = averaging time-noncarcinogens, child recreational (7-16 yrs)
30	•	ATnni = averaging time-noncarcinogens, non-industrial
6	yr	ATnc = averaging time-noncarcinogens, child
350	days/yr	EFni = exposure frequency, non-industrial
104	days/yr	EFi = exposure frequency, child recreational (7-16 yrs)
30	yr	EDni = exposure duration, non-industrial
5	yr	EDi = exposure duration, child recreational (7-16 yrs)
6	yr	EDc = exposure duration, child ages 1-6
1.6E+08	sec	Ti = exposure time, child recreational (7-16 yrs) (5 yr)
1.9E+08	sec	Tnic = exposure time, non-industrial, child (6 yr)
9.5E+08	sec	Tnia = exposure time, non-industrial, adult (30 yr)
59.3	kg	BWa = average body weight, child ages 7-16
15		BWc = average body weight, child ages 1-6
	3	
114	mg-vr/kg-da	IRSadj = ingestion rate, age-adjusted, soil, (see calculation below)
		IRAadj = inhalation rate, age-adjusted (see calculation below)
		IRDadj = dermal contact rate, age-adjusted, soil (see calculation below)
		IRWadj = ingestion rate, water, age-adjusted (see calculation below)
0.089		IRWndw = ingestion rate, water, non-drinking water (incidental)
0.000	Liudy	internal ingestion rate, trates, rich annumg trates (includinal)
150	mg/day	IRSi = ingestion rate, soil, child recreational (7-16 yrs)
	mg/day	IRSc = ingestion rate, soil, child ages 1-6
	m3/day	IRAc = inhalation rate, child ages 1-6
	L/day	IRWa = ingestion rate, water, adult
	m3/day	IRAa = inhalation rate, child ages 7-16
20	morady	in the initiality rate, offind ages 7-10
0.03	kg/day	IRF = ingestion rate, fish
0.02	ng/uay	ina – ingestion rate, non
2800	cm2/day	SAc = surface area of skin, child
	•	
	cm2/day	SAan = surface area of skin, adult, non-industrial
4080	cm2/day	SAai = surface area of skin,child recreational (7-16 yrs)
0.0	malemo	AFo = adherence factor, poil to alice shild
	mg/cm2	AFc = adherence factor, soil-to-skin, child
	mg/cm2	AFan = adherence factor, soil-to-skin, adult, non-industrial
6.31	mg/cm2	AFai = adherence factor, soil-to-skin, child recreational (7-16 yrs)
	1 2	
	Lm3	Kw =water-to-indoor air volatilization factor
****stop*		

LDEQ RECAP WORKSHEET 5 SOILi (mg/kg) Sediment Recreational Contact Child Age 11-16 Years

Derivation of Management Option 1 & 2 Soil-Industrial

Revision Date: 08/04/2003 Run date: 9/30/2015

 $DA = ((na^{(10/3)*}Da^{+}H^{*}41 + nw^{(10/3)*}Dw)/n^{2})/(pb^{+}Koc^{+}foc + nw + na^{+}H^{*}41)$

 $VFi = (Q\C^*1e-4^*(3.14^*DA^*Ti)^0.5)/(2^*pb^*DA)$

Soili-C-O = (TR*BWa*ATc*365)/(EFi*EDi*(SFo*1e-6*IRSi+SFi*(IRAa/VFi)+SFo*SAai*AFai*ABS*1e-6))

Soili-C-I = (TR*BWa*ATc*365)/(EFi*EDi*(SFo*1e-6*IRSi+SFo*SAai*AFai*ABS*1e-6))

Soili-N-O = (THQ*BWa*ATni*365)/(EFi*EDi*((IRSi/RfDo)*1e-6+(IRAa/RfDi)*(1/VFi)+(SAai/RfDo)*AFai*ABS*1e-6))

Soili-N-I = (THQ*BWa*ATni*365)/(EFi*EDi*((IRSi/RfDo)*1e-6+(SAai/RfDo)*AFai*ABS*1e-6)))

	DA	VFi	Soili	Soili	Soili	Soili	min value	Soili	
COMPOUND	(cm2/s)	(m3/kg)	C-O (mg/kg)	C-I (mg/kg)	N-O (mg/kg)	N-I (mg/kg)	(C or N)	(mg/kg)	
Barium	NA	NA		NA		2.77E+05	2.8E+05	2.8E+05	N
Mercury (inorganic)	NA	NA		NA		4.16E+02	4.2E+02	4.2E+02	N
Aliphatics >C10-C12	6.28E-05	6.31E+03	NA		1.72E+04		1.7E+04	1.0E+04	O,T
Aliphatics >C12-C16	1.37E-05	1.35E+04	NA		3.23E+04		3.2E+04	1.0E+04	O,T
Aliphatics >C16-C35	1.03E-06	4.93E+04	NA		1.33E+05		1.3E+05	1.0E+04	O,T
Aromatics >C12-C16	1.40E-06	4.23E+04	NA		1.79E+04		1.8E+04	1.0E+04	O,T
Aromatics >C16-C21	1.11E-07	1.50E+05	NA		2.18E+03		2.2E+03	2.2E+03	Ν
Aromatics >C21-C35	1.04E-09	1.55E+06	NA		2.28E+03		2.3E+03	2.3E+03	N

RECAP SPREADSHEETS APPENDIX H: TABLE H1 SEDIMENT DIRECT CONTACT

CANCER SLOPE FACTORS AND REFERENCE DOSES

COMPOUND	CAS#	SF _o	REF	SFi	REF	RfD _o	REF	RfD _i	REF	ABS
		(mg/kg-day) ⁻¹		(mg/kg-day) ⁻¹		mg/kg-day		mg/kg-day		unitless
Barium	7440-39-3	*****		*****		2.00E-01	I	1.43E-04	Н	0
Mercury (inorganic)	7487-94-7	*****		*****		3.00E-04	I	8.57E-05	I	0
Aliphatics >C10-C12	NA	*****		*****		1.00E-01	Т	3.00E-01	T	0
Aliphatics >C12-C16	NA	*****		*****		1.00E-01	Т	3.00E-01	T	0
Aliphatics >C16-C35	NA	*****		*****		2.00E+00	Т	2.00E+00	*	0.1
Aromatics >C12-C16	NA	*****		*****		4.00E-02	Т	6.00E-02	T	0
Aromatics >C16-C21	NA	*****		*****		3.00E-02	Т	3.00E-02	*	0.1
Aromatics >C21-C35	NA	*****		*****		3.00E-02	Т	3.00E-02	*	0.1

I = Integrated Risk Information System (IRIS), EPA.

H = Health Effects Assessment Summary Tables (HEAST), EPA.

^{* =} Inhalation toxicity not available, oral toxicity value used to assess inhalation exposure.

T = TPH Criteria Working Group, 1997.

RECAP SPREADSHEETS APPENDIX H: TABLE H2 SEDIMENT DIRECT CONTACT

CHEMICAL AND PHYSICAL PARAMETERS

COMPOUND	CAS#	MOL. WT	Koc	REF	Н	REF	Da	REF	Dw	REF	S	REF
		g/g-mole	cm3/g		atm-m3/mo	ĺ	cm2/s		cm2/s		mg/L	
Barium	7440-39-3	137.33	******	******	*****	******	*****	*****	******	*****	*****	*****
Mercury (inorganic)	7487-94-7	200.59	******	******	******	******	******	******	******	******	*****	*****
Aliphatics >C10-C12	NA	160	2.51E+05	10	2.93E+00	10	1.00E-01	10	1.00E-05	10	*****	*****
Aliphatics >C12-C16	NA	200	5.01E+06	10	1.27E+01	10	1.00E-01	10	1.00E-05	10	*****	*****
Aliphatics >C16-C35	NA	270	6.31E+08	10	1.20E+02	10	1.00E-01	10	1.00E-05	10	*****	*****
Aromatics >C12-C16	NA	150	5.01E+03	10	1.29E-03	10	1.00E-01	10	1.00E-05	10	*****	*****
Aromatics >C16-C21	NA	190	1.58E+04	10	3.17E-04	10	1.00E-01	10	1.00E-05	10	*****	*****
Aromatics >C21-C35	NA	240	1.26E+05	10	1.63E-05	10	1.00E-01	10	1.00E-05	10	******	*****

^{10.} Total Petroleum Hydrocarbon Criteria Workgroup, 1996.

RECAP SPREADSHEETS SEDIMENT DIRECT CONTACT

Soil prope	erties	Managen	nent Optio	n 1 & 2						
Revision D	Date: 08/04/20	003								
Run date:	9/30/2015									
*****calcul	ation inputs**	***								
	g/cm3		pb = dry s	soil bulk d	ensity					
	Lpore/Lsoil		n = total s							
0.21	Lwater/Lsoil		nw = water-filled soil porosity							
0.148491	Lair/Lsoil		na = air-fi	illed soil p	orosity					
	g/cm3		ps = soil	particle de	ensity					
0.006	g/g		foc = frac	tional orga	anic carbo	n in soil				
	(ft) = L = leng	•								
	(ft) = W = wid							er		
0.5	Acres		AOI site a	area - inpu	ıt into Q/C	equation	below			
76.38527	g/m2-s per k	g/m3	Q/C = inv	erse of m	ean conce	entration a	t center o	f square s	ource	
Q/C Table										
site size	148*148	209*209	295*295	467*467	660*660	1143*114	13			
site size	0.5 acre					30 acre				
Q/C value	76.3062	67.4304	59.872	51.4648	46.1707	39.2329				

RECAP WORKSHEETS SEDIMENT RECREATIONAL CONTACT ADULT

RECAP		
	l nent Option (
Delault	xposure pa	arameters Industrial scenario was changed to adult recreational
*****	lation inputs	*****
1.0E-06		TR = target excess individual lifetime cancer risk
	unitless	THQ = target hazard quotient
!	uriilless	Tria – target nazara quotient
70	vr	ATc = averaging time-carcinogens
30	•	ATni = averaging time-noncarcinogens, adult recreational
30	•	ATnni = averaging time-noncarcinogens, non-industrial
	yr	ATnc = averaging time-noncarcinogens, child
350	days/yr	EFni = exposure frequency, non-industrial
104	days/yr	EFi = exposure frequency, adult recreational
30	•	EDni = exposure duration, non-industrial
30	yr	EDi = exposure duration, adult recreational
6	yr	EDc = exposure duration, child ages 1-6
9.5E+08		Ti = exposure time, adult recreational (30 yrs)
1.9E+08		Tnic = exposure time, non-industrial, child (6 yr)
9.5E+08	sec	Tnia = exposure time, non-industrial, adult (30 yr)
70		
70	-	BWa = average body weight, adult ages 7-31
15	кд	BWc = average body weight, child ages 1-6
111		IDCodi ingostion rate and adjusted soil (and coloulation below)
		IRSadj = ingestion rate, age-adjusted, soil, (see calculation below)
		IRAadj = inhalation rate, age-adjusted (see calculation below) IRDadj = dermal contact rate, age-adjusted, soil (see calculation below)
		IRWadj = ingestion rate, water, age-adjusted (see calculation below)
0.089		IRWndw = ingestion rate, water, non-drinking water (incidental)
0.003	Liday	interview = ingestion rate, water, non-drinking water (incidental)
50	mg/day	IRSi = ingestion rate, soil, industrial
	mg/day	IRSc = ingestion rate, soil, child ages 1-6
	m3/day	IRAc = inhalation rate, child ages 1-6
	L/day	IRWa = ingestion rate, water, adult
	m3/day	IRAa = inhalation rate, adult ages 7-31
	,	
0.02	kg/day	IRF = ingestion rate, fish
	-	
2800	cm2/day	SAc = surface area of skin, child
	cm2/day	SAan = surface area of skin, adult, non-industria
6910	cm2/day	SAai = surface area of skin, adult, recreational
	mg/cm2	AFc = adherence factor, soil-to-skin, child
	mg/cm2	AFan = adherence factor, soil-to-skin, adult, non-industrial
0.2	mg/cm2	AFai = adherence factor, soil-to-skin, adult, industrial
	Lm3	Kw =water-to-indoor air volatilization factor
*****stop*	* *	

RECAP SPREADSHEETS WORKSHEET 5 SOILi (mg/kg) SEDIMENT RECREATIONAL CONTACT ADULT

Derivation of Management Option 1 & 2 Soil-Industrial

Revision Date: 08/04/2003 Run date: 9/30/2015

 $DA = ((na^{(10/3)*}Da^*H^*41 + nw^{(10/3)*}Dw)/n^2)/(pb^*Koc^*foc + nw + na^*H^*41)$

 $VFi = (Q\C^*1e-4^*(3.14^*DA^*Ti)^0.5)/(2^*pb^*DA)$

Soili-C-O = (TR*BWa*ATc*365)/(EFi*EDi*(SFo*1e-6*IRSi+SFi*(IRAa/VFi)+SFo*SAai*AFai*ABS*1e-6))

Soili-C-I = (TR*BWa*ATc*365)/(EFi*EDi*(SFo*1e-6*IRSi+SFo*SAai*AFai*ABS*1e-6))

Soili-N-O = (THQ*BWa*ATni*365)/(EFi*EDi*((IRSi/RfDo)*1e-6+(IRAa/RfDi)*(1/VFi)+(SAai/RfDo)*AFai*ABS*1e-6))

Soili-N-I = (THQ*BWa*ATni*365)/(EFi*EDi*((IRSi/RfDo)*1e-6+(SAai/RfDo)*AFai*ABS*1e-6)))

	DA	VFi	Soili	Soili	Soili	Soili	min value	Soili	
COMPOUND	(cm2/s)	(m3/kg)	C-O (mg/kg)	C-I (mg/kg)	N-O (mg/kg)	N-I (mg/kg)	(C or N)	(mg/kg)	
Barium	NA	NA		NA		9.83E+05	9.8E+05	9.8E+05	Ν
Mercury (inorganic)	NA	NA		NA		1.47E+03	1.5E+03	1.5E+03	N
Aliphatics >C10-C12	6.28E-05	1.55E+04	NA		5.10E+04		5.1E+04	1.0E+04	O,T
Aliphatics >C12-C16	1.37E-05	3.31E+04	NA		9.76E+04		9.8E+04	1.0E+04	O,T
Aliphatics >C16-C35	1.03E-06	1.21E+05	NA		1.39E+06		1.4E+06	1.0E+04	O,T
Aromatics >C12-C16	1.40E-06	1.04E+05	NA		5.50E+04		5.5E+04	1.0E+04	O,T
Aromatics >C16-C21	1.11E-07	3.68E+05	NA		3.04E+04		3.0E+04	1.0E+04	O,T
Aromatics >C21-C35	1.04E-09	3.81E+06	NA		3.81E+04		3.8E+04	1.0E+04	O,T

RECAP SPREADSHEETS APPENDIX H: TABLE H1 SEDIMENT DIRECT CONTACT

CANCER SLOPE FACTORS AND REFERENCE DOSES

COMPOUND	CAS#	SF _o	REF	SFi	REF	RfD _o	REF	RfD _i	REF	ABS
		(mg/kg-day) ⁻¹		(mg/kg-day) ⁻¹		mg/kg-day		mg/kg-day		unitless
Barium	7440-39-3	*****		*****		2.00E-01	I	1.43E-04	Н	0
Mercury (inorganic)	7487-94-7	*****		*****		3.00E-04	I	8.57E-05	I	0
Aliphatics >C10-C12	NA	*****		*****		1.00E-01	Т	3.00E-01	T	0
Aliphatics >C12-C16	NA	*****		*****		1.00E-01	Т	3.00E-01	T	0
Aliphatics >C16-C35	NA	*****		*****		2.00E+00	Т	2.00E+00	*	0.1
Aromatics >C12-C16	NA	*****		*****		4.00E-02	Т	6.00E-02	T	0
Aromatics >C16-C21	NA	*****		*****		3.00E-02	Т	3.00E-02	*	0.1
Aromatics >C21-C35	NA	*****		*****		3.00E-02	Т	3.00E-02	*	0.1

I = Integrated Risk Information System (IRIS), EPA.

H = Health Effects Assessment Summary Tables (HEAST), EPA.

^{* =} Inhalation toxicity not available, oral toxicity value used to assess inhalation exposure.

T = TPH Criteria Working Group, 1997.

RECAP SPREADSHEETS APPENDIX H: TABLE H2 SEDIMENT DIRECT CONTACT

CHEMICAL AND PHYSICAL PARAMETERS

COMPOUND	CAS#	MOL. WT	Koc	REF	Н	REF	Da	REF	Dw	REF	S	REF
		g/g-mole	cm3/g		atm-m3/mo	İ	cm2/s		cm2/s		mg/L	
Barium	7440-39-3	137.33	******	******	******	******	******	******	******	******	*****	*****
Mercury (inorganic)	7487-94-7	200.59	******	******	*****	******	******	******	******	******	*****	*****
Aliphatics >C10-C12	NA	160	2.51E+05	10	2.93E+00	10	1.00E-01	10	1.00E-05	10	*****	*****
Aliphatics >C12-C16	NA	200	5.01E+06	10	1.27E+01	10	1.00E-01	10	1.00E-05	10	*****	*****
Aliphatics >C16-C35	NA	270	6.31E+08	10	1.20E+02	10	1.00E-01	10	1.00E-05	10	*****	*****
Aromatics >C12-C16	NA	150	5.01E+03	10	1.29E-03	10	1.00E-01	10	1.00E-05	10	*****	*****
Aromatics >C16-C21	NA	190	1.58E+04	10	3.17E-04	10	1.00E-01	10	1.00E-05	10	*****	*****
Aromatics >C21-C35	NA	240	1.26E+05	10	1.63E-05	10	1.00E-01	10	1.00E-05	10	*****	*****

^{10.} Total Petroleum Hydrocarbon Criteria Workgroup, 1996.

RECAP SPREADSHEETS SEDIMENT DIRECT CONTACT

Soil prope	erties	Managen	nent Optio	n 1 & 2					
Revision D	Date: 08/04/20	003							
Run date:	9/30/2015								
*****calculation inputs****									
	g/cm3		pb = dry s	soil bulk d	ensity				
0.358491	Lpore/Lsoil		n = total s	soil porosi	ty				
0.21	Lwater/Lsoil		nw = wate	er-filled so	il porosity				
0.148491	Lair/Lsoil		na = air-fi	lled soil p	orosity				
2.65	g/cm3		ps = soil	particle de	ensity				
0.006					anic carbo	n in soil			
	(ft) = L = leng								
148	(ft) = W = wid	dth of impa	acted area	a perpendi	icular to flo	ow direction	on of aquif	er	
0.5	Acres		AOI site a	area - inpu	ıt into Q/C	equation	below		
76.38527	g/m2-s per k	g/m3	Q/C = inv	erse of m	ean conce	entration a	t center o	f square s	ource
Q/C Table									
site size	148*148	209*209	295*295	467*467	660*660	1143*114	3		
site size		1 acre	2 acre	5 acre	10 acre	30 acre			
Q/C value	76.3062	67.4304	59.872	51.4648	46.1707	39.2329			

RECAP SPREADSHEETS SEDIMENT DIRECT CONTACT DEFAULT INDUSTRIAL WORKER

RECAP		
Managemen	t Option 1 &	2
	osure parar	
*****calculati	ion inputs***	**
	unitless	TR = target excess individual lifetime cancer risk
	unitless	THQ = target hazard quotient
70	vr	ATc = averaging time-carcinogens
25		ATni = averaging time-noncarcinogens, industrial (=EDi)
30		ATnni = averaging time-noncarcinogens, non-industrial (=EDni)
	yr	ATnc = averaging time-noncarcinogens, child (=EDc)
350	days/yr	EFni = exposure frequency, non-industrial
	days/yr	EFi = exposure frequency, industrial
	, ,	
30	yr	EDni = exposure duration, non-industrial
25		EDi = exposure duration, industrial
	yr	EDc = exposure duration, child ages 1-6
24		EDa = exposure duration, non-industrial adult portion (EDni - EDc)
788940000	sec	Ti = exposure time, industrial (EDi in seconds)
189345600	sec	Tnic = exposure time, non-industrial, child (EDc in seconds)
946728000	sec	Tnia = exposure time, non-industrial, adult (EDni in seconds)
70	kg	BWa = average body weight, adult ages 7-31
15	kg	BWc = average body weight, child ages 1-6
114.28571	mg-yr/kg-da	IRSadj = ingestion rate, age-adjusted, soil, (see calculation below)
10.857143	m3-yr/kg-da	IRAadj = inhalation rate, age-adjusted (see calculation below)
360.8	mg-yr/kg-da	IRDadj = dermal contact rate, age-adjusted, soil (see calculation below)
1.0857143	L-yr/kg-day	IRWadj = ingestion rate, water, age-adjusted (see calculation below)
0.089	L/day	IRWndw = ingestion rate, water, non-drinking water (incidental)
50	mg/day	IRSi = ingestion rate, soil, industrial
	mg/day	IRSc = ingestion rate, soil, child ages 1-6
	m3/day	IRAc = inhalation rate, child ages 1-6
	L/day	IRWc = ingestion rate, water, child
	L/day	IRWa = ingestion rate, water, adult
	m3/day	IRAa = inhalation rate, adult ages 7-31
	mg/day	IRSa = ingestion rate, soil, non-industrial adult
0.02	kg/day	IRF = ingestion rate, fish
	cm2/day	SAc = surface area of skin, child
	cm2/day	SAan = surface area of skin, adult, non-industrial
3300	cm2/day	SAai = surface area of skin, adult, industrial
	mg/cm2	AFc = adherence factor, soil-to-skin, child
	mg/cm2	AFan = adherence factor, soil-to-skin, adult, non-industrial
0.2	mg/cm2	AFai = adherence factor, soil-to-skin, adult, industrial
	Lm3	Kw =water-to-indoor air volatilization factor
*****stop****	×	

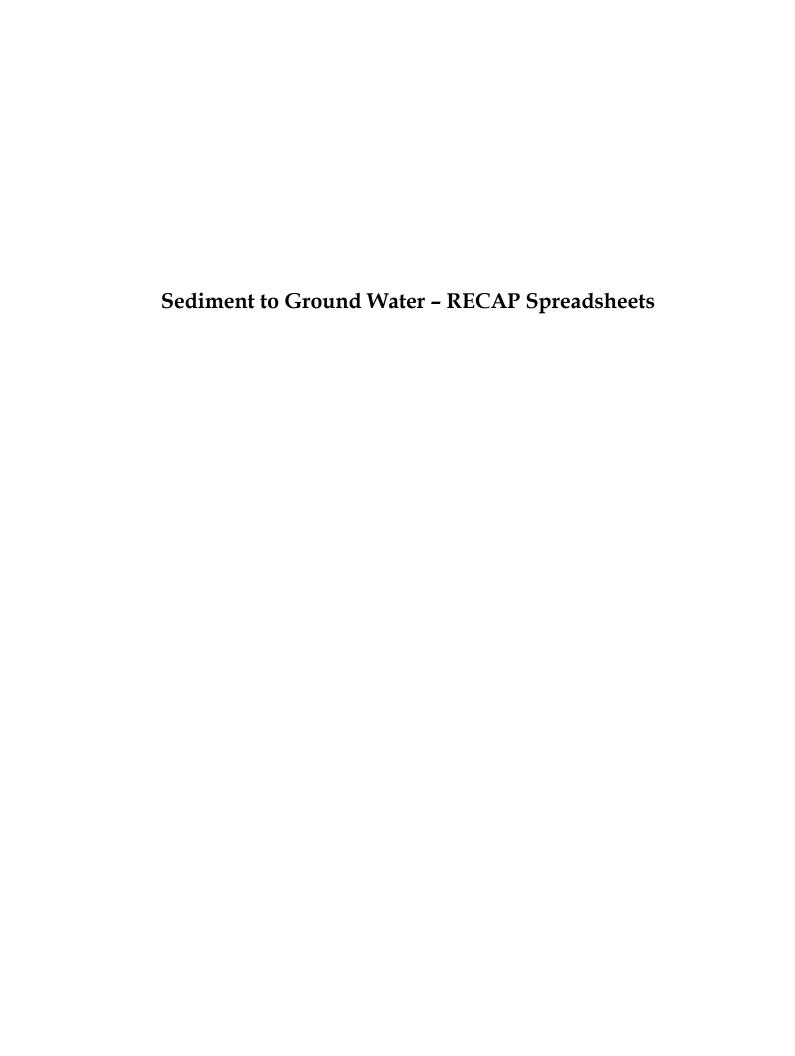
RECAP SPREADSHEETS WORKSHEET 5 SOILi (mg/kg) DEFAULT INDUSTRIAL WORKER (current toxicity values)

Derivation of Management Option 1 & 2 Soil-Industrial

Revision Date: 08/04/2003 Run date: 9/30/2015

 $DA = ((na^{(10/3)*}Da^{+}H^{*}41 + nw^{(10/3)*}Dw)/n^{2})/(pb^{+}Koc^{+}foc + nw + na^{+}H^{*}41)$

 $VFi = (Q\C^*1e-4^*(3.14^*DA^*Ti)^0.5)/(2^*pb^*DA)$


Soili-C-O = (TR*BWa*ATc*365)/(EFi*EDi*(SFo*1e-6*IRSi+SFi*(IRAa/VFi)+SFo*SAai*AFai*ABS*1e-6))

Soili-C-I = (TR*BWa*ATc*365)/(EFi*EDi*(SFo*1e-6*IRSi+SFo*SAai*AFai*ABS*1e-6))

Soili-N-O = (THQ*BWa*ATni*365)/(EFi*EDi*((IRSi/RfDo)*1e-6+(IRAa/RfDi)*(1/VFi)+(SAai/RfDo)*AFai*ABS*1e-6))

Soili-N-I = (THQ*BWa*ATni*365)/(EFi*EDi*((IRSi/RfDo)*1e-6+(SAai/RfDo)*AFai*ABS*1e-6)))

		DA	VFi	Soili	Soili	Soili	Soili	min value	Soili	
COMPOUND	CAS	(cm2/s)	(m3/kg)	C-O (mg/kg)	C-I (mg/kg)	N-O (mg/kg)	N-I (mg/kg)	(C or N)	(mg/kg)	
Barium	7440-39-3	NA	NA		NA		4.09E+05	4.1E+05	4.1E+05	N
Mercury (inorganic)	7487-94-7	NA	NA		NA		6.13E+02	6.1E+02	6.1E+02	N
Aliphatics >C10-C12	ALI_10-12	6.28E-05	1.41E+04	NA		1.96E+04		2.0E+04	1.0E+04	O,T
Aliphatics >C12-C16	ALI_12-16	1.37E-05	3.02E+04	NA		3.77E+04		3.8E+04	1.0E+04	O,T
Aliphatics >C16-C35	ALI_16-35	1.03E-06	1.10E+05	NA		6.88E+05		6.9E+05	1.0E+04	O,T
Aromatics >C12-C16	ARO_12-16	1.40E-06	9.46E+04	NA		2.14E+04		2.1E+04	1.0E+04	O,T
Aromatics >C16-C21	ARO_16-21	1.11E-07	3.36E+05	NA		1.75E+04		1.7E+04	1.0E+04	O,T
Aromatics >C21-C35	ARO_21-35	1.04E-09	3.47E+06	NA		2.52E+04		2.5E+04	1.0E+04	O,T

RECAP SPREADSHEETS APPENDIX H: TABLE H1 SEDIMENT TO GROUND WATER CANCER SLOPE FACTORS AND REFERENCE DOSES

COMPOUND	CAS#	SF _o	REF	SFi	REF	RfD _o	REF	RfD _i	REF	ABSd
		(mg/kg-day) ⁻¹		(mg/kg-day) ⁻¹		mg/kg-day		mg/kg-day		unitless
Methylnaphthalene,2-	91-57-6	*****		*****		4.00E-03	I	*****		0
Aliphatics >C16-C35	ALI_16-35	*****		*****		2.00E+00	Т	2.00E+00	*	0.1
Aromatics >C8-C10	ARO_08-10	*****		*****		4.00E-02	Т	6.00E-02	Т	0
Aromatics >C10-C12	ARO_10-12	*****		*****		4.00E-02	Т	6.00E-02	Т	0
Aromatics >C12-C16	ARO_12-16	*****		*****		4.00E-02	Т	6.00E-02	Т	0
Aromatics >C16-C21	ARO_16-21	*****		*****		3.00E-02	Т	3.00E-02	*	0.1

I = Integrated Risk Information System (IRIS), EPA.
 * = Inhalation toxicity not available, oral toxicity value used to assess inhalation exposure.

T = TPH Criteria Working Group, 1997.

RECAP SPREADSHEETS APPENDIX H: TABLE H2 SEDIMENT TO GROUND WATER

CHEMICAL AND PHYSICAL PARAMETERS

COMPOUND	CAS#	MOL. WT	Koc	REF	Н	REF	Da	REF	Dw	REF	S	REF
		g/g-mole	cm3/g		atm-m3/mol		cm2/s		cm2/s		mg/L	
Methylnaphthalene,2-	91-57-6	142.2	2.24E+03	3	5.80E-05	3	4.80E-02	3	7.84E-06	3	2.46E+01	2
Aliphatics >C16-C35	ALI_16-35	270	6.31E+08	10	1.20E+02	10	1.00E-01	10	1.00E-05	10	******	*****
Aromatics >C8-C10	ARO_08-10	120	1.58E+03	10	1.17E-02	10	1.00E-01	10	1.00E-05	10	******	*****
Aromatics >C10-C12	ARO_10-12	130	2.51E+03	10	3.41E-03	10	1.00E-01	10	1.00E-05	10	******	*****
Aromatics >C12-C16	ARO_12-16	150	5.01E+03	10	1.29E-03	10	1.00E-01	10	1.00E-05	10	******	*****
Aromatics >C16-C21	ARO_16-21	190	1.58E+04	10	3.17E-04	10	1.00E-01	10	1.00E-05	10	******	*****

^{2.} Superfund Chemical Data Matrix, June 1996.

^{3.} Air Emissions Models for Waste and Wastewater, EPA-453/R-94-080A, 1994.

^{10.} Total Petroleum Hydrocarbon Criteria Workgroup, 1996.

RECAP SPREADSHEETS DEFAULT SOIL PROPERTIES

Soil prope	erties	Managen	nent Optio	n 1 & 2					
Revision D	Date: 08/04/20	003							
Run date:	9/30/2015								
*****calcula	ation inputs**	***							
	g/cm3		pb = dry s						
0.358491	Lpore/Lsoil		n = total s	soil porosi	ty				
0.21	Lwater/Lsoil				oil porosity	,			
0.148491	Lair/Lsoil		na = air-fi	illed soil p	orosity				
	g/cm3		ps = soil	particle de	ensity				
0.006					anic carbo	n in soil			
	(ft) = L = leng								
148	(ft) = W = wid				er				
0.5	Acres		AOI site a	area - inpu	ut into Q/C	equation	below		
76.38527	g/m2-s per k	g/m3	Q/C = inv	erse of m	ean conce	entration a	t center o	f square s	ource
Q/C Table	!								
site size	148*148	209*209	295*295	467*467	660*660	1143*114	3		
site size	0.5 acre	1 acre	2 acre	5 acre	10 acre	30 acre			
Q/C value	76.3062	67.4304	59.872	51.4648	46.1707	39.2329			

RECAP SPREADSHEETS DEFAULT EXPOSURE PARAMETERS

RECAP		
Managemen	t Option 1 &	2
	osure paran	
*****calculati	on inputs****	*
1.0E-06		TR = target excess individual lifetime cancer risk
	unitless	THQ = target hazard quotient
	urini 000	The target hazara quelient
70	vr	ATc = averaging time-carcinogens
25		ATni = averaging time-noncarcinogens, industrial (=EDi)
30	•	ATnni = averaging time-noncarcinogens, non-industrial (=EDni)
	yr	ATnc = averaging time-noncarcinogens, child (=EDc)
	, .	The averaging into nonconstruction, contact (22 o)
350	days/yr	EFni = exposure frequency, non-industrial
	days/yr	EFi = exposure frequency, industrial
200	aayo/yi	ETT = exposure frequency, maderial
30	vr	EDni = exposure duration, non-industrial
25	-	EDi = exposure duration, industrial
	yr	EDc = exposure duration, middental EDc = exposure duration, child ages 1-6
24	•	EDa = exposure duration, non-industrial adult portion (EDni - EDc)
788940000		Ti = exposure time, industrial (EDi in seconds)
189345600		Thic = exposure time, non-industrial, child (EDc in seconds)
946728000		Thic = exposure time, non-industrial, adult (EDni in seconds) This = exposure time, non-industrial, adult (EDni in seconds)
340720000	360	Triid = exposure time, non-industrial, addit (EDIII in seconds)
70	kg	BWa = average body weight, adult ages 7-31
	kg	BWc = average body weight, addit ages 7-31 BWc = average body weight, child ages 1-6
13	Ng	BVVC – average body weight, child ages 1-0
11/ 28571	ma-vr/ka-da	IRSadj = ingestion rate, age-adjusted, soil, (see calculation below)
		IRAadj = inhalation rate, age-adjusted (see calculation below)
		IRDadj = dermal contact rate, age-adjusted, soil (see calculation below)
		IRWadj = ingestion rate, water, age-adjusted (see calculation below)
		IRWndw = ingestion rate, water, non-drinking water (incidental)
0.009	L/uay	TRYVIOW = ingestion rate, water, non-difficing water (incluentar)
50	mg/day	IRSi = ingestion rate, soil, industrial
		IRSc = ingestion rate, soil, industrial IRSc = ingestion rate, soil, child ages 1-6
	m3/day	IRAc = inhalation rate, child ages 1-6
	•	· · · · · · · · · · · · · · · · · · ·
	L/day	IRWc = ingestion rate, water, child
	L/day	IRWa = ingestion rate, water, adult
	m3/day	IRAa = inhalation rate, adult ages 7-31
	mg/day	IRSa = ingestion rate, soil, non-industrial adult
0.02	kg/day	IRF = ingestion rate, fish
2000	am 2/da:	CAs surface area of ckin shild
	cm2/day	SAc = surface area of skin, child
	cm2/day	SAan = surface area of skin, adult, non-industrial
3300	cm2/day	SAai = surface area of skin, adult, industrial
0.0		A For a discourage factor and the discourse of the second
	mg/cm2	AFc = adherence factor, soil-to-skin, child
	mg/cm2	AFan = adherence factor, soil-to-skin, adult, non-industrial
0.2	mg/cm2	AFai = adherence factor, soil-to-skin, adult, industrial
0 =	1 0	
	Lm3	Kw =water-to-indoor air volatilization factor
*****stop****	•	

RECAP SPREADSHEETS WORKSHEET 2 GW 3NDW (mg/l) (current toxicity factors and BCFs)

Derivation of Management Option 1, 2, & 3 Groundwater Classification 3-Non-Drinking Water

Revision Date: 08/04/2003 Run date: 9/30/2015

C (mg/l) GW3NDW = (TR*BWa) / (SFo*(IRWndw+BCF*IRF)) N (mg/l) GW3NDW = (THQ*RfDo*BWa) / (IRWndw+BCF*IRF)

	LAC 33:IX.	LAC 33:IX.					LAC(NDW) or max	
	1113(HHNDW)	1113(HHDW)	MCL	BCF			(LAC,MCL, (MIN C, N))	
COMPOUND	(mg/L)	(mg/L)	(mg/l)	(l/kg)	C (mg/l)	N (mg/l)	(mg/l)	
Methylnaphthalene,2-				7.47E+01	NA	1.77E-01	1.8E-01	(*2)N
Aliphatics >C16-C35				0.00E+00	NA	1.57E+03	1.6E+03	(*2)N
Aromatics >C8-C10				0.00E+00	NA	3.15E+01	3.1E+01	(*2)N
Aromatics >C10-C12				0.00E+00	NA	3.15E+01	3.1E+01	(*2)N
Aromatics >C12-C16				0.00E+00	NA	3.15E+01	3.1E+01	(*2)N
Aromatics >C16-C21				0.00E+00	NA	2.36E+01	2.4E+01	(*2)N

References: Data hierarchy is based on (*1) then (*2).

(*1) Louisiana Administrative Code 33.IX.1113, Table 1 (HHNDW)

(*2) The maximum value of LAC 33.IX1113 (DW), MCL, or the minimum of human health non-drinking water criteria calculated in accordance with "Human Health Numerical Criteria Derivations for Toxic Substances", LDEQ-OWR, June 23, 1994; (N=non-carcinogen, C=carcinogen)

Notes:

BCF values from RAIS (2015) for site-specific constituents except TPH, which are from RECAP (2003).

RECAP SPREADSHEETS WORKSHEET 6 SOILGW and SOILsat (mg/kg) SEDIMENT TO GROUND WATER (current toxicity values and BCFs)

Derivation of Management Option 1 & 2 SoilGW & Soilsat

Revision Date: 08/04/2003 Run date: 9/30/2015

SoilGW1 = DFsummers*(GW1*(pb*Koc*foc+nw+na*H*41))/(pb)

SoilGW2 = DFsummers*(GW2*(pb*Koc*foc+nw+na*H*41))/(pb)

SoilGW3NDW =DFsummers* (GW3NDW*(pb*Koc*foc+nw+na*H*41))/(pb)

SoilGW3DW =DFsummers* (GW3DW*(pb*Koc*foc+nw+na*H*41))/(pb)

Soilsat = S*(Koc*foc*pb+nw+H*41*na)/pb

	SoilGW1	SoilGW2	SoilGW3DW	SoilGW3NDW	Soilsat
COMPOUND	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Methylnaphthalene,2-	4.0E+01	4.0E+01	2.1E+01	4.8E+01	NA
Aliphatics >C16-C35	5.5E+09	5.5E+09	5.1E+09	1.2E+11	NA
Aromatics >C8-C10	6.5E+01	6.5E+01	2.6E+02	6.1E+03	NA
Aromatics >C10-C12	1.0E+02	1.0E+02	4.1E+02	9.6E+03	NA
Aromatics >C12-C16	2.0E+02	2.0E+02	8.1E+02	1.9E+04	NA
Aromatics >C16-C21	2.1E+03	2.1E+03	1.9E+03	4.5E+04	NA

Ground Water Class 3 Non-Drinking Water - RECAP Spreadsheets

RECAP SPREADSHEETS APPENDIX H: TABLE H1 GROUND WATER AND SURFACE WATER COCS CANCER SLOPE FACTORS AND REFERENCE DOSES

COMPOUND	CAS#	SF _o	REF	SFi	REF	RfD _o	REF	RfD _i	REF	ABSd
		(mg/kg-day) ⁻¹		(mg/kg-day) ⁻¹		mg/kg-day		mg/kg-day		unitless
Acenaphthene	83-32-9	*****		*****		6.00E-02	I	*****	*	0
Arsenic	7440-38-2	1.50E+00	I	1.51E+01	I	3.00E-04	I	4.30E-06	С	0.03
Barium	7440-39-3	*****		*****		2.00E-01	I	1.43E-04	Н	0
Cadmium	7440-43-9	*****		6.30E+00	I	5.00E-04	I,D	2.90E-06	Α	0.001
Chromium(III)	16065-83-1	*****		*****		1.50E+00	I	*****		0
Mercury (inorganic)	7487-94-7	*****		*****		3.00E-04	l	8.57E-05	l	0
Selenium	7782-49-2	*****		*****		5.00E-03	I	5.70E-03	С	0
Zinc	7440-66-6	*****		*****		3.00E-01	l	*****		0
Aliphatics C6-C8	ALI_06-08	*****		*****		5.00E+00	Т	5.30E+00	T	0
Aliphatics >C8-C10	ALI_08-10	*****		*****		1.00E-01	Т	2.90E-01	Т	0
Aliphatics >C10-C12	ALI_10-12	*****		*****		1.00E-01	Т	3.00E-01	T	0
Aliphatics >C12-C16	ALI_12-16	*****		*****		1.00E-01	Т	3.00E-01	Т	0
Aliphatics >C16-C35	ALI_16-35	*****		*****		2.00E+00	Т	2.00E+00	*	0.1
Aromatics >C8-C10	ARO_08-10	*****		*****		4.00E-02	Т	6.00E-02	Т	0
Aromatics >C10-C12	ARO_10-12	*****		*****		4.00E-02	Т	6.00E-02	Т	0
Aromatics >C12-C16	ARO_12-16	*****		*****		4.00E-02	Т	6.00E-02	Т	0
Aromatics >C16-C21	ARO_16-21	*****		*****		3.00E-02	Т	3.00E-02	*	0.1
Aromatics >C21-C35	ARO_21-35	*****		*****		3.00E-02	Т	3.00E-02	*	0.1

I = Integrated Risk Information System (IRIS), EPA.

D= Dermal RfD for cadmium is 2.5E-05 mg/kg-d (based on an oral absorption efficiency of 5%; RAGS-E, EPA 1999).

	2= 00 mg/ng a \2a0	= = : : : : : : : : : : : : : : : : : :	<i>5</i>).					
Strontium	7440-24-6	*****	*****	6.00E-01		*****		0

H = Health Effects Assessment Summary Tables (HEAST), EPA.

A = Health Effects Assessment Summary Tables Alternative, EPA Region III Risk-Based Concentration Table.

C = CalEPA (from RAIS)

^{* =} Inhalation toxicity not available, oral toxicity value used to assess inhalation exposure.

T = TPH Criteria Working Group, 1997.

RECAP SPREADSHEETS DEFAULT EXPOSURE PARAMETERS

RECAP		
Managemen	t Option 1 &	2
	osure paran	
*****calculati	on inputs****	*
1.0E-06		TR = target excess individual lifetime cancer risk
	unitless	THQ = target hazard quotient
	urini 000	The target hazard questions
70	vr	ATc = averaging time-carcinogens
25		ATni = averaging time-noncarcinogens, industrial (=EDi)
30	•	ATnni = averaging time-noncarcinogens, non-industrial (=EDni)
	yr	ATnc = averaging time-noncarcinogens, child (=EDc)
	, .	
350	days/yr	EFni = exposure frequency, non-industrial
	days/yr	EFi = exposure frequency, industrial
200	aayo/yi	211 - expectate frequency, material
30	vr	EDni = exposure duration, non-industrial
25	-	EDi = exposure duration, industrial
	yr	EDc = exposure duration, child ages 1-6
24	•	EDa = exposure duration, non-industrial adult portion (EDni - EDc)
788940000		Ti = exposure time, industrial (EDi in seconds)
189345600		Thic = exposure time, non-industrial, child (EDc in seconds)
946728000		Thic = exposure time, non-industrial, adult (EDni in seconds)
340720000	360	Thia – exposure time, non-industrial, addit (EDIII in seconds)
70	kg	BWa = average body weight, adult ages 7-31
	kg	BWc = average body weight, addit ages 7-31
13	Ng	BVVC = average body weight, child ages 1-0
11/ 28571	ma-vr/ka-da	IRSadj = ingestion rate, age-adjusted, soil, (see calculation below)
		IRAadj = inhalation rate, age-adjusted (see calculation below)
	· · ·	IRDadj = dermal contact rate, age-adjusted (see calculation below)
		IRWadj = ingestion rate, water, age-adjusted (see calculation below)
		IRWndw = ingestion rate, water, non-drinking water (incidental)
0.009	L/uay	TRAVIOW = Ingestion rate, water, non-difficing water (incluentar)
50	mg/day	IRSi = ingestion rate, soil, industrial
		IRSc = ingestion rate, soil, industrial
	mg/day m3/day	IRAc = inhalation rate, child ages 1-6
	•	IRWc = ingestion rate, water, child
	L/day	Y Y
	L/day	IRWa = ingestion rate, water, adult
	m3/day	IRAa = inhalation rate, adult ages 7-31
	mg/day	IRSa = ingestion rate, soil, non-industrial adult
0.02	kg/day	IRF = ingestion rate, fish
2000	om 2/dov	SAs – surface area of skip, shild
	cm2/day	SAc = surface area of skin, child
	cm2/day	SAan = surface area of skin, adult, non-industrial
3300	cm2/day	SAai = surface area of skin, adult, industrial
0.0		AFa adhanga fatar add ta dig abili
	mg/cm2	AFc = adherence factor, soil-to-skin, child
	mg/cm2	AFan = adherence factor, soil-to-skin, adult, non-industrial
0.2	mg/cm2	AFai = adherence factor, soil-to-skin, adult, industrial
0.7	1 0	
	Lm3	Kw =water-to-indoor air volatilization factor
*****stop****	•	

RECAP SPREADSHEETS WORKSHEET 2 GW 3NDW (mg/l) (current toxicity factors and BCFs)

Derivation of Management Option 1, 2, & 3 Groundwater Classification 3-Non-Drinking Water

Revision Date: 08/04/2003 Run date: 9/30/2015

C (mg/l) GW3NDW = (TR*BWa) / (SFo*(IRWndw+BCF*IRF)) N (mg/l) GW3NDW = (THQ*RfDo*BWa) / (IRWndw+BCF*IRF)

	LAC 33:IX.	LAC 33:IX.					LAC(NDW) or max	
	1113(HHNDW)	l	MCL	BCF			(LAC,MCL, (MIN C, N))	
COMPOUND	(mg/L)	(mg/L)	(mg/l)	(l/kg)	C (mg/l)	N (mg/l)	(mg/l)	
Acenaphthene		-		7.55E+02	NA	2.77E-01	2.8E-01	(*2)N
Arsenic		5.00E-02	1.00E-02	3.00E+02	7.66E-06	3.45E-03	5.0E-02	LAC(DW)
Barium			2.00E+00	4.00E+00	NA	8.28E+01	8.3E+01	(*2)N
Cadmium		1.00E-02	5.00E-03	2.00E+02	NA	8.56E-03	1.0E-02	LAC(DW)
Chromium(III)		5.00E-02	1.00E-01	2.00E+02	NA	2.57E+01	2.6E+01	(*2)N
Mercury (inorganic)		2.00E-03	2.00E-03	1.00E+03	NA	1.05E-03	2.0E-03	LAC(DW)
Selenium			5.00E-02	2.00E+02	NA	8.56E-02	8.6E-02	(*2)N
Zinc		5.00E+00		1.00E+03	NA	1.05E+00	5.0E+00	LAC(DW)
Aliphatics C6-C8				0.00E+00	NA	3.93E+03	3.9E+03	(*2)N
Aliphatics >C8-C10				0.00E+00	NA	7.87E+01	7.9E+01	(*2)N
Aliphatics >C10-C12				0.00E+00	NA	7.87E+01	7.9E+01	(*2)N
Aliphatics >C12-C16				0.00E+00	NA	7.87E+01	7.9E+01	(*2)N
Aliphatics >C16-C35				0.00E+00	NA	1.57E+03	1.6E+03	(*2)N
Aromatics >C8-C10				0.00E+00	NA	3.15E+01	3.1E+01	(*2)N
Aromatics >C10-C12				0.00E+00	NA	3.15E+01	3.1E+01	(*2)N
Aromatics >C12-C16				0.00E+00	NA	3.15E+01	3.1E+01	(*2)N
Aromatics >C16-C21				0.00E+00	NA	2.36E+01	2.4E+01	(*2)N
Aromatics >C21-C35				0.00E+00	NA	2.36E+01	2.4E+01	(*2)N
TPH-GRO (C6-C10)							3.1E+01	
TPH-DRO (C10-C28)							2.4E+01	
TPH-ORO (>C28)							2.4E+01	

References: Data hierarchy is based on (*1) then (*2).

- (*1) Louisiana Administrative Code 33.IX.1113, Table 1 (HHNDW)
- (*2) The maximum value of LAC 33.IX1113 (DW), MCL, or the minimum of

human health non-drinking water criteria calculated in accordance with "Human Health Numerical Criteria

Derivations for Toxic Substances", LDEQ-OWR, June 23, 1994; (N=non-carcinogen, C=carcinogen)

Notes:

BCF values from RAIS (2015) for site-specific constituents except TPH, which are from RECAP (2003).

ADDITIONAL COMPOUNDS	ı						
Strontium	A STATE OF THE STA		6.00F+01	NA	3.26F+01	3.3F+01	(*2)N

Ground Water Recreational Standard Development - RAIS Calculator

Site-Specific Adult Recreator GW RS Modified from the Indoor Worker PRG for Tapwater Calculator

Variable	Value
TR (target cancer risk) unitless	0.000001
ED _{iw} (exposure duration) year	30
THQ (target hazard quotient) unitless	1
LT (lifetime - indoor worker) year	70
EF _{iw} (exposure frequency) day/year	104
ET _{iw} (exposure time - inhalation) hour/day	0
ET _{iww} (exposure time - dermal) hour/event	2
EV _{iw} (dermal events) event/day	1
BW _{iw} (body weight) kg	70
SA _{iw} (skin surface area) cm ²	6910
IRW _{iw} (water intake rate) L/day	0
K (volatilization factor of Andelman) L/m ³	0
AT _{iw} (averaging time) day/year	365
I_{sc} (apparent thickness of stratum corneum; used to calculate τ) cm	0.001

Output generated 20SEP2015:20:03:47

Site-Specific Adult Recreator GW RS Modified from the Indoor Worker PRG for Tapwater Calculator

Chemical	Mutagen?	VOC?	Chronic RfD (mg/kg-day)	RfD Reference	Chronic RfC (mg/m³)	RfC Reference	Ingestion SF (mg/kg-day) ⁻¹	SFO Reference	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Reference
Barium	No	No	2.00E-01	IRIS	5.00E-04	HEAST	-		-	
Benzene	No	Yes	4.00E-03	IRIS	3.00E-02	IRIS	5.50E-02	IRIS	7.80E-06	IRIS
Strontium, Stable	No	No	6.00E-01	IRIS	-		-		-	

	RAGSe GIABS	Кр									In
Chemical	(unitless)	(cm/hour)	MW	pi	logds	dsclc	dsc	В	tau_event	FA	EPD?
Barium	0.07	0.001	137.33	3.1415927	-3.569048	0.0002697	2.70E-07	0.0045072	0.6178695	1	Yes
Benzene	1	0.0149	78.11	3.1415927	-3.237416	0.0005789	5.79E-07	0.0506485	0.2879153	1	Yes
Strontium, Stable	1	0.001	87.62	3.1415927	-3.290672	0.0005121	5.12E-07	0.0036002	0.3254773	1	Yes

Chemical	Carc Absorbed dose per event (mg/cm²-event)	Noncarc Absorbed dose per event (mg/cm²-event)	Ingestion PRG TR=1.0E-6 (ug/L)	Dermal PRG TR=1.0E-6 (ug/L)	Inhalation PRG TR=1.0E-6 (ug/L)	Carc PRG TR=1.0E-6 (ug/L)	Ingestion PRG HQ=1 (ug/L)	Dermal PRG HQ=1 (ug/L)	Inhalation PRG HQ=1 (ug/L)	Noncarc PRG HI=1 (ug/L)
Barium	-	4.98E-01	-	-	-	-	-	2.49E+05	-	2.49E+05
Benzene	1.51E-03	1.42E-01	-	4.04E+01	-	4.04E+01	-	3.80E+03	-	3.80E+03
Strontium, Stable	-	2.13E+01	-	-	-	-	-	1.07E+07	-	1.07E+07

Output generated 20SEP2015:20:03:47

Site-Specific Child Recreator GW RS

Modified from the Indoor Worker PRG for Tapwater Calculator

Variable	Value
TR (target cancer risk) unitless	0.000001
ED _{iw} (exposure duration) year	5
THQ (target hazard quotient) unitless	1
LT (lifetime - indoor worker) year	70
EF _{iw} (exposure frequency) day/year	104
ET _{iw} (exposure time - inhalation) hour/day	0
ET _{iww} (exposure time - dermal) hour/event	2
EV _{iw} (dermal events) event/day	1
BW _{iw} (body weight) kg	59.3
SA _{iw} (skin surface area) cm ²	4080
IRW _{iw} (water intake rate) L/day	0
K (volatilization factor of Andelman) L/m ³	0
AT _{iw} (averaging time) day/year	365
I_{sc} (apparent thickness of stratum corneum; used to calculate τ) cm	0.001

Output generated 20SEP2015:20:25:17

Site-Specific Child Recreator GW RS

Modified from the Indoor Worker PRG for Tapwater Calculator

									Inhalation Unit	
			Chronic RfD	RfD	Chronic RfC	RfC	Ingestion SF	SFO	Risk	IUR
Chemical	Mutagen?	VOC?	(mg/kg-day)	Reference	(mg/m ³)	Reference	(mg/kg-day) ⁻¹	Reference	(ug/m ³) ⁻¹	Reference
Barium	No	No	2.00E-01	IRIS	5.00E-04	HEAST	-		-	
Benzene	No	Yes	4.00E-03	IRIS	3.00E-02	IRIS	5.50E-02	IRIS	7.80E-06	IRIS
Strontium, Stable	No	No	6.00E-01	IRIS	-		-		-	

	RAGSe GIABS	Кр									In
Chemical	(unitless)	(cm/hour)	MW	pi	logds	dsclc	dsc	В	tau_event	FA	EPD?
Barium	0.07	0.001	1.37E+02	3.1415927	-3.57E+00	0.0002697	2.6974E-07	0.0045072	0.6178695	1	Yes
Benzene	1	0.0149	7.81E+01	3.1415927	-3.24E+00	0.0005789	5.79E-07	0.0506485	2.88E-01	1	Yes
Strontium, Stable	1	0.001	8.76E+01	3.1415927	-3.290672	0.0005121	5.1207E-07	0.0036002	0.3254773	1	Yes

Chemical	Carc Absorbed dose per event (mg/cm²-event)	Noncarc Absorbed dose per event (mg/cm²-event)	Ingestion PRG TR=1.0E-6 (ug/L)	Dermal PRG TR=1.0E-6 (ug/L)	Inhalation PRG TR=1.0E-6 (ug/L)	Carc PRG TR=1.0E-6 (ug/L)	Ingestion PRG HQ=1 (ug/L)	Dermal PRG HQ=1 (ug/L)	Inhalation PRG HQ=1 (ug/L)	Noncarc PRG HI=1 (ug/L)
Barium	-	7.14E-01	-	-	-	-	-	3.57E+05	-	3.57E+05
Benzene	1.30E-02	2.04E-01	-	3.47E+02	-	3.47E+02	-	5.46E+03	-	5.46E+03
Strontium, Stable	-	3.06E+01	-	-	-	-	-	1.53E+07	-	1.53E+07

Output generated 20SEP2015:20:25:17

Site-Specific Adult Shower Scenario GW RS

Modified from the Indoor Worker PRG for Tapwater Calculator

Variable	Value
TR (target cancer risk) unitless	0.000001
ED _{iw} (exposure duration) year	30
THQ (target hazard quotient) unitless	1
LT (lifetime - indoor worker) year	70
EF _{iw} (exposure frequency) day/year	104
ET _{iw} (exposure time - inhalation) hour/day	0.71
ET _{iww} (exposure time - dermal) hour/event	0
EV _{iw} (dermal events) event/day	1
BW _{iw} (body weight) kg	70
SA _{iw} (skin surface area) cm ²	0
IRW _{iw} (water intake rate) L/day	0.089
K (volatilization factor of Andelman) L/m ³	0.5
AT _{iw} (averaging time) day/year	365
I_{sc} (apparent thickness of stratum corneum; used to calculate τ) cm	0.001

Output generated 20SEP2015:20:36:45

Site-SpecificIndoor Worker PRG for Tapwater

									Inhalation Unit	
			Chronic RfD	RfD	Chronic RfC	RfC	Ingestion SF	SFO	Risk	IUR
Chemical	Mutagen?	VOC?	(mg/kg-day)	Reference	(mg/m³)	Reference	(mg/kg-day) ⁻¹	Reference	(ug/m ³) ⁻¹	Reference
Barium	No	No	2.00E-01	IRIS	5.00E-04	HEAST	-		-	
Benzene	No	Yes	4.00E-03	IRIS	3.00E-02	IRIS	5.50E-02	IRIS	7.80E-06	IRIS
Strontium, Stable	No	No	6.00E-01	IRIS	-		-		-	

	RAGSe GIABS	Кр									In
Chemical	(unitless)	(cm/hour)	MW	pi	logds	dsclc	dsc	В	tau_event	FA	EPD?
Barium	0.07	0.001	137.33	3.1415927	-3.569048	0.0002697	2.70E-07	0.0045072	0.6178695	1	Yes
Benzene	1	0.0149	78.11	3.1415927	-3.237416	0.0005789	5.79E-07	0.0506485	0.2879153	1	Yes
Strontium, Stable	1	0.001	87.62	3.1415927	-3.290672	0.0005121	5.12E-07	0.0036002	0.3254773	1	Yes

Chemical	Carc Absorbed dose per event (mg/cm²-event)	Noncarc Absorbed dose per event (mg/cm²-event)	Ingestion PRG TR=1.0E-6 (ug/L)	Dermal PRG TR=1.0E-6 (ug/L)	Inhalation PRG TR=1.0E-6 (ug/L)	Carc PRG TR=1.0E-6 (ug/L)	5	Dermal PRG HQ=1 (ug/L)	Inhalation PRG HQ=1 (ug/L)	Noncarc PRG HI=1 (ug/L)
Barium	-	-	-	-	-	-	5.52E+05	-	-	5.52E+05
Benzene	-	-	1.17E+02	-	7.10E+01	4.42E+01	1.10E+04	-	7.12E+03	4.33E+03
Strontium, Stable	-	-	-	-	-	-	1.66E+06	-	-	1.66E+06

Output generated 20SEP2015:20:36:45

Site-Specific Child Shower Scenario GW RS

Modified from the Indoor Worker PRG for Tapwater Calculator

Variable	Value
TR (target cancer risk) unitless	0.000001
ED _{iw} (exposure duration) year	5
THQ (target hazard quotient) unitless	1
LT (lifetime - indoor worker) year	70
EF _{iw} (exposure frequency) day/year	104
ET _{iw} (exposure time - inhalation) hour/day	0.71
ET _{iww} (exposure time - dermal) hour/event	0
EV _{iw} (dermal events) event/day	1
BW _{iw} (body weight) kg	59.3
SA _{iw} (skin surface area) cm ²	0
IRW _{iw} (water intake rate) L/day	0.089
K (volatilization factor of Andelman) L/m ³	0.5
AT _{iw} (averaging time) day/year	365
I_{sc} (apparent thickness of stratum corneum; used to calculate $ au$) cm	0.001

Output generated 20SEP2015:21:01:12

Site-Specific Child Shower Scenario GW RS Indoor Worker PRG for Tapwater

									Inhalation Unit	t l
			Chronic RfD	RfD	Chronic RfC	RfC	Ingestion SF	SFO	Risk	IUR
Chemical	Mutagen?	VOC?	(mg/kg-day)	Reference	(mg/m ³)	Reference	(mg/kg-day) ⁻¹	Reference	(ug/m ³) ⁻¹	Reference
Barium	No	No	2.00E-01	IRIS	5.00E-04	HEAST	-		_	
Benzene	No	Yes	4.00E-03	IRIS	3.00E-02	IRIS	5.50E-02	IRIS	7.80E-06	IRIS
Strontium, Stable	No	No	6.00E-01	IRIS	-		-		-	

	RAGSe GIABS	Кр									In
Chemical	(unitless)	(cm/hour)	MW	pi	logds	dsclc	dsc	В	tau_event	FA	EPD?
Barium	0.07	0.001	137.33	3.1415927	-3.569048	0.0002697	2.6974E-7	0.0045072	0.6178695	1	Yes
Benzene	1	0.0149	78.11	3.1415927	-3.237416	0.0005789	5.7887E-7	0.0506485	0.2879153	1	Yes
Strontium, Stable	1	0.001	87.62	3.1415927	-3.290672	0.0005121	5.1207E-7	0.0036002	0.3254773	1	Yes

Chemical	Carc Absorbed dose per event (mg/cm²-event)	Noncarc Absorbed dose per event (mg/cm²-event)	Ingestion PRG TR=1.0E-6 (ug/L)	Dermal PRG TR=1.0E-6 (ug/L)	Inhalation PRG TR=1.0E-6 (ug/L)	Carc PRG TR=1.0E-6 (ug/L)	Ingestion PRG HQ=1 (ug/L)	Dermal PRG HQ=1 (ug/L)	Inhalation PRG HQ=1 (ug/L)	Noncarc PRG HI=1 (ug/L)
Barium	-	-	-	-	-	-	4.68E+05	-	-	4.68E+05
Benzene	-	-	5.95E+02	-	4.26E+02	2.48E+02	9.35E+03	-	7.12E+03	4.04E+03
Strontium, Stable	-	-	-	-	-	-	1.40E+06	-	-	1.40E+06

Output generated 20SEP2015:21:01:12

Surface Water Recreational Standard Development - RAIS Calculator

Site-Specific Adult Recreator SW RS

Modified from the Indoor Worker PRG for Tapwater Calculator

Variable	Value
TR (target cancer risk) unitless	0.000001
ED _{iw} (exposure duration) year	30
THQ (target hazard quotient) unitless	1
LT (lifetime - indoor worker) year	70
EF _{iw} (exposure frequency) day/year	104
ET _{iw} (exposure time - inhalation) hour/day	0
ET _{iww} (exposure time - dermal) hour/event	4
EV _{iw} (dermal events) event/day	1
BW _{iw} (body weight) kg	70
SA _{iw} (skin surface area) cm ²	6910
IRW _{iw} (water intake rate) L/day	0
K (volatilization factor of Andelman) L/m ³	0
AT _{iw} (averaging time) day/year	365
I_{sc} (apparent thickness of stratum corneum; used to calculate $ au$) cm	0.001

Output generated 20SEP2015:18:26:12

Site-Specific Adult Recreator SW RS

Modified from the Indoor Worker PRG for Tapwater Calculator

Chemical	Mutagen?	VOC?	Chronic RfD (mg/kg-day)	RfD Reference	Chronic RfC (mg/m³)	RfC Reference	Ingestion SF (mg/kg-day) ⁻¹	SFO Reference	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Reference
Acenaphthene	No No	Yes	6.00E-02	IRIS	(mg/m /	Reference	(mg/kg day)	Reference	(ug/iii)	Reference
Arsenic, Inorganic	No	No	3.00E-04	IRIS	1.50E-05	CALEPA	1.50E+00	IRIS	4.30E-03	IRIS
Barium	No	No	2.00E-01	IRIS	5.00E-04	HEAST	-		-	
Cadmium (Water)	No	No	5.00E-04	IRIS	1.00E-05	ATSDR F	-		1.80E-03	IRIS
Chromium(III), Insoluble Salts	No	No	1.50E+00	IRIS			_		-	
Mercuric Chloride	No	No	3.00E-04	IRIS	3.00E-04	SURROGA	-		-	
Selenium	No	No	5.00E-03	IRIS	2.00E-02	CALEPA	-		-	
Strontium, Stable	No	No	6.00E-01	IRIS	-		-		-	
Zinc and Compounds	No	No	3.00E-01	IRIS	-		-		-	
·										
Chemical	RAGSe GIABS (unitless)	Kp (cm/hour)	MW	pi	logds	dsclc	dsc	В	tau event	FA
Acenaphthene	1	0.086	154.21	3.1415927	-3.663576	0.000217	2.17E-07	0.4107536	0.7681124	1
Arsenic, Inorganic	1	0.001	74.922	3.1415927	-3.219563	0.0006032	6.03E-07	0.0033291	0.2763198	1
Barium	0.07	0.001	137.33	3.1415927	-3.569048	0.0002697	2.70E-07	0.0045072	0.6178695	1
Cadmium (Water)	0.05	0.001	112.41	3.1415927	-3.429496	0.000372	3.72E-07	0.0040778	0.4480688	1
Chromium(III), Insoluble Salts	0.013	0.001	52	3.1415927	-3.0912	0.0008106	8.11E-07	0.0027735	0.2056121	1
Mercuric Chloride	0.07	0.001	271.5	3.1415927	-4.3204	0.0000478	4.78E-08	0.0063374	3.4853689	1
Selenium	1	0.001	78.96	3.1415927	-3.242176	0.0005726	5.73E-07	0.0034177	0.2910883	1
Strontium, Stable	1	0.001	87.62	3.1415927	-3.290672	0.0005121	5.12E-07	0.0036002	0.3254773	1
Zinc and Compounds	1	0.0006	65.38	3.1415927	-3.166128	0.0006821	6.82E-07	0.001866	0.24433	1
Chemical	Carc Absorbed dose per event (mg/cm²-event)	Noncarc Absorbed dose per event (mg/cm²-event)	Ingestion PRG TR=1.0E-6 (ug/L)	Dermal PRG TR=1.0E-6 (ug/L)	Inhalation PRG TR=1.0E-6 (ug/L)	Carc PRG TR=1.0E-6 (ug/L)	Ingestion PRG HQ=1 (ug/L)	Dermal PRG HQ=1 (ug/L)	Inhalation PRG HQ=1 (ug/L)	Noncarc PRG HI=1 (ug/L)
Acenaphthene	-	2.13E+00	(9/	(3)	(3)	\ <i>3</i> /	(3)	5.01E+03	(g/	5.01E+03
Arsenic, Inorganic	5.53E-05	1.07E-02	-	1.38E+01	-	1.38E+01	-	2.67E+03	-	2.67E+03
Barium	_	4.98E-01	_	_	_	-	_	1.24E+05	_	1.24E+05
Cadmium (Water)	-	8.89E-04	-	-	-	-	-	2.22E+02	-	2.22E+02
Chromium(III), Insoluble Salts	_	6.93E-01	-	_	_	-	_	1.73E+05	-	1.73E+05
Mercuric Chloride	-	7.47E-04	-	-	-	-	-	1.87E+02	-	1.87E+02
Selenium	-	1.78E-01	-	-	-	-	-	4.44E+04	-	4.44E+04
Strontium, Stable	-	2.13E+01	-	-	-	-	-	5.33E+06	-	5.33E+06
Zinc and Compounds		1.07E+01						4.44E+06		4.44E+06

Output generated 20SEP2015:18:26:12

Site-Specific Child Recreator SW RS

Modified from the Indoor Worker PRG for Tapwater Calculator

Variable	Value
TR (target cancer risk) unitless	0.000001
ED _{iw} (exposure duration) year	5
THQ (target hazard quotient) unitless	1
LT (lifetime - indoor worker) year	70
EF _{iw} (exposure frequency) day/year	104
ET _{iw} (exposure time - inhalation) hour/day	0
ET _{iww} (exposure time - dermal) hour/event	4
EV _{iw} (dermal events) event/day	1
BW _{iw} (body weight) kg	59.3
SA _{iw} (skin surface area) cm ²	4080
IRW _{iw} (water intake rate) L/day	0
K (volatilization factor of Andelman) L/m ³	0
AT _{iw} (averaging time) day/year	365
I_{sc} (apparent thickness of stratum corneum; used to calculate τ) cm	0.001

Output generated 20SEP2015:18:42:31

Site-Specific Child Recreator SW RS Modified from the Indoor Worker PRG for Tapwater Calculator

Chemical	Mutagen?	VOC?	Chronic RfD (mg/kg-day)	RfD Reference	Chronic RfC (mg/m³)	RfC Reference	Ingestion SF (mg/kg-day) ⁻¹	SFO Reference	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Reference	
Acenaphthene	No	Yes	6.00E-02	IRIS	-		-		-		
Arsenic, Inorganic	No	No	3.00E-04	IRIS	1.50E-05	CALEPA	1.50E+00	IRIS	4.30E-03	IRIS	
Barium	No	No	2.00E-01	IRIS	5.00E-04	HEAST	-		-		
Cadmium (Water)	No	No	5.00E-04	IRIS	1.00E-05	ATSDR F	-		1.80E-03	IRIS	
Chromium(III), Insoluble Salts	No	No	1.50E+00	IRIS	-		-		-		
Mercuric Chloride	No	No	3.00E-04	IRIS	3.00E-04	SURROGA	-		-		
Selenium	No	No	5.00E-03	IRIS	2.00E-02	CALEPA	-		-		
Strontium, Stable	No	No	6.00E-01	IRIS	-		-		-		
Zinc and Compounds	No	No	3.00E-01	IRIS	-		-		-		
Chemical	RAGSe GIABS (unitless)	Kp (cm/hour)	MW	pi	logds	dsclc	dsc	В	tau_event	FA	In EPD
Acenaphthene	1	0.086	154.21	3.1415927	-3.663576	0.000217	2.17E-07	0.4107536	0.7681124	1	Yes
Arsenic, Inorganic	1	0.001	74.922	3.1415927	-3.219563	0.0006032	6.03E-07	0.0033291	0.2763198	1	Yes
Barium	0.07	0.001	137.33	3.1415927	-3.569048	0.0002697	2.70E-07	0.0045072	0.6178695	1	Yes
Cadmium (Water)	0.05	0.001	112.41	3.1415927	-3.429496	0.000372	3.72E-07	0.0040778	0.4480688	1	Yes
Chromium(III), Insoluble Salts	0.013	0.001	52	3.1415927	-3.0912	0.0008106	8.11E-07	0.0027735	0.2056121	1	Yes
Mercuric Chloride	0.07	0.001	271.5	3.1415927	-4.3204	0.0000478	4.78E-08	0.0063374	3.4853689	1	Yes
Selenium	1	0.001	78.96	3.1415927	-3.242176	0.0005726	5.73E-07	0.0034177	0.2910883	1	Yes
Strontium, Stable	1	0.001	87.62	3.1415927	-3.290672	0.0005121	5.12E-07	0.0036002	0.3254773	1	Yes
Zinc and Compounds	1	0.0006	65.38	3.1415927	-3.166128	0.0006821	6.82E-07	0.001866	0.24433	1	Yes
						Ī					
	Carc Absorbed dose per event	Noncarc Absorbed dose per event	Ingestion PRG TR=1.0E-6	Dermal PRG TR=1.0E-6	Inhalation PRG TR=1.0E-6	TR=1.0E-6	Ingestion PRG HQ=1	HQ=1	Inhalation PRG HQ=1	Noncarc PRG HI=1	
Chemical	(mg/cm ² -event)	(mg/cm ² -event)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	i
Acenaphthene	-	3.06E+00	-	-	-	-	-	7.19E+03	-	7.19E+03	i
Arsenic, Inorganic	4.76E-04	1.53E-02	-	1.19E+02	-	1.19E+02	-	3.83E+03	-	3.83E+03	i
Barium	-	7.14E-01	-	-	-	-	-	1.79E+05	-	1.79E+05	l
Cadmium (Water)	-	1.28E-03	-	-	-	-	-	3.19E+02	-	3.19E+02	i
Chromium(III), Insoluble Salts	-	9.95E-01	-	-	-	-	-	2.49E+05	-	2.49E+05	ł
Mercuric Chloride	-	1.07E-03	-	-	-	-	-	2.68E+02	-	2.68E+02	i
Selenium	-	2.55E-01	-		-	-	-	6.38E+04	-	6.38E+04	i
Strontium, Stable	-	3.06E+01	-	-	-	-	-	7.65E+06	-	7.65E+06	i
Zinc and Compounds	-	1.53E+01	-	-	_	-	-	6.38E+06	-	6.38E+06	ł

Output generated 20SEP2015:18:42:31

Biota Consumption Tissue Screening Level (TSL) Development

Tissue Screening Level (TSL) Calculations (a

Input Parameters		Value (b)
Target Risk (TR)		1.00E-04
Target Hazard Quotient (THQ)		1
Body Weight (BW) (kg)		70
Averaging Time (yr)		
Carcinogen (ATc)		70
Noncarcinogen (ATnc)		30
Exposure Frequency (EF) (d/yr)		365
Exposure Duration (yr)		30
Ingestion Rates (IRF) (g/d)		
Default, fish/shellfish	(c)	30
2x Default	(d)	60
Crab Hepatopancreas (HP)	(e)	7.5
Crab Meat	(f)	30

			_	No	n-Carcinogeni	c TSLs (mg/k	(g) (a)		Carcinogenic 1	「SLs (mg/kg)	(a)
		RfDo (g)	SFo (g)	Crab o Default	r Fish (k) 2x Default	Crab HP	Crab Meat	Crab o Default	or Fish (k) 2x Default	Crab HP	Crab Meat
Constituent		mg/kg-day	(mg/kg-day) ⁻¹	IRF	IRF	HP IRF	Meat IRF	IRF	IRF	HP IRF	Meat IRF
TPH >C8-16 TPH >C8-16 (average Aliph, Arom)	(h)	7.0E-02		160	82	650	160				
TPH >C16-28 TPH >C16-28, (average Aliph, Arom)	(h)	1.0E+00		2400	1200	9500	2400				
Metals Arsenic, inorganic		3.0E-04	1.5E+00	0.7	0.35	2.8	0.7	0.36	0.18	1.5	0.36
Barium		2.0E-01		470	230	1900	470				
Mercury, total		3.0E-04		0.7	0.35	2.8	0.7				
Methyl Mercury		1.0E-04		0.23	0.12	0.93	0.23				

Notes:

- (a) TSLs were calculated using the algorithms provided by LDEQ et al. (2012).
- (b) Values for input parameters taken from LDEQ et al (2012), unless otherwise noted.
- (c) Default ingestion rate specific to edible tissues (typically) crab meat identified by LDHH et al. (2012).
- (d) An IRF of two-times the default was used as a sensitivity analysis.
- (e) Default ingestion rate specific to crab hepatopancreas identified by LDHH et al. (2012).
- (f) Applicable to edible tissues of crab or fish.
- (g) Toxicity values from RECAP (LDEQ, 2003) for TPH and from EPA for metals.
- (h) TSL calculated using weighted toxicity value (i.e., oral reference dose, RfD) assuming 50% aliphatics and 50% aromatics:
- TPH>C8-16: The RfD (0.07 mg/kg-day) is the average of the RfDs provided in RECAP for aliphatic and aromatic hydrocarbons within this range.
- TPH>C16-28: The RfD (1.0 mg/kg-day) is the average of the RfDs provided in RECAP for aliphatic and aromatic hydrocarbons within this range.

References:

EPA. 2000. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Vol. 2: Risk Assessment and Fish Consumption Limits, Third Ed.

LDEQ. 2003. Risk Evaluation / Corrective Action Program

LDHH et al. 2012. Protocol for Issuing Public Health Advisories for Chemical Contaminants in Recreationally Caught Fish and Shellfish.

LDEQ et al. 2012. Tissue Screening Level Guidelines for Issuance of Public Health Advisories for Selected Contaminants and Supporting Documentation.

Tissue Screening Level (TSL) Calculations, Modified for Child (a)

Input Parameters		Value (b)	
Target Risk (TR)		1.00E-04	
Target Hazard Quotient (THQ)		1	
Child Body Weight (BW) (kg)	(c)	35	
Averaging Time (yr)			
Carcinogen (ATc)		70	
Noncarcinogen (ATnc)		6	
Exposure Frequency (EF) (d/yr)		365	
Exposure Duration (yr)		6	
Ingestion Rates (IRF) (g/d)			
Default Child, fish/shellfish	(c)	15	

				TSLs (mg/kg) (a)	(mg/kg) (a)
				Crab or Fish (d)	Crab or Fish (d)
Constituent		RfDo (e)	SFo (e)	Default Child IRF	Default Child IRF
TPH					
TPH >C8-16	(f)	7.0E-02		160	
TPH >C16-28	(f)	1.0E+00		2400	
Metals					
Arsenic, inorganic		3.0E-04	1.5E+00	0.7	1.8
Barium	(g)	2.0E-01		470	
Mercury, total	(h)	3.0E-04		0.7	
Methyl Mercury		1.0E-04		0.23	

Non-Carcinogenic

Carcinogenic TSI s

Notes:

- (a) TSLs were calculated using the algorithms provided by LDEQ et al. (2012).
- (b) Values for input parameters were obtained from LDEQ et al. (2012), unless otherwise noted.
- (c) Child-specific parameters (i.e., body weight and fish ingestion rate) were obtained from Table 1 of LDHH et al (2012).
- (e) Toxicity values from RECAP (LDEQ, 2003) for hydrocarbons and from EPA for metals.
- (d) Applicable to edible tissues of crab or fish.
- (f) TSL calculated using weighted toxicity value (i.e., oral reference dose, RfD) assuming 50% aliphatics and 50% aromatics:
 TPH>C8-16: The RfD (0.07 mg/kg-day) is the average of the RfDs provided in RECAP for aliphatic and aromatic hydrocarbons within this range.
 TPH>C16-28: The RfD (1.0 mg/kg-day) is the average of the RfDs provided in RECAP for aliphatic and aromatic hydrocarbons within this range.

As reference, in samples of sediment in which hydrocarbon fractions were detected at the site, 68 to 100% of the total concentration was aliphatic, the less toxic of the hydrocarbon types. The average aliphatic content was 93%, and average aromatic content was 7%.

- (g) Toxicity value used in the TSL calculations (2.0E-01 mg/kg-day) is the current toxicity value in EPA's Integrated Risk Information System (IRIS). The toxicity value in RECAP (2003) is an outdated toxicity value (RfDo = 2.0E-01 mg/kg-day).
- (h) Toxicity based on mercuric chloride and mercury salts.

References:

LDEQ. 2003. Risk Evaluation / Corrective Action Program

LDEQ et al. 2012. Tissue Screening Level Guidelines for Issuance of Public Health Advisories for Selected Contaminants and Supporting Documentation.

LDHH et al. 2012. Protocol for Issuing Public Health Advisories for Chemical Contaminants in Recreationally Caught Fish and Shellfish.

East White Lake Oil and Gas Field Seafood Sampling Evaluation Vermilion Parish, Louisiana, by Louisiana Department of Health and Hospitals, March 13, 2015

Appendix H

Project No. 0116008 UNOCAL Vermilion Parish, Louisiana

3838 North Causeway Boulevard, Suite 3000 Metairie, Louisiana 70002 (504) 831-6700

March 13, 2015

Louisiana Department of Health and Hospitals

Statement of Issues

In December 2014, the Louisiana Department of Natural Resources (LDNR) requested that the Louisiana Department of Health and Hospitals (LDHH) review data collected by Environmental Resources Management, Inc. (ERM) from the East White Lake Oil and Gas Field in Vermilion Parish, Louisiana. ERM staff collected blue crabs and forage fish in December 2010 and January 2011 from East White Lake areas of interest and reference locations on behalf of the Union Oil Company of California (UNOCAL). UNOCAL conducted oil and gas exploration and production activities in the area for approximately 55 years; currently, there are 15 active onsite oil and gas wells (operated by divested companies) that are regulated by LDNR [1]. According to the Vermilion Parish School Board, these activities have impacted their property located at Section 16 of Township 15 South, Range 01 East, in Vermilion Parish, Louisiana, within the East White Lake Oil and Gas Field.

In accordance with the *Protocol for Issuing Public Health Advisories for Chemical Contaminants in Recreationally Caught Fish and Shellfish* (February 2012) [2], LDHH has provided a review of the December 2010/January 2011 ERM data [3]. LDHH has also included a review of the October 2010 crab data prepared by Omega EnviroSolutions (OES), Inc. on behalf of the Vermillion Parish School Board [4]. OES data was provided to LDHH in November 2010 by Senator Gautreaux. In November 2010, LDHH collected blue crab samples from East White Lake areas of interest [5]; these data are also included in this evaluation.

Data Evaluation

October 2010 blue crab whole body dataset: Omega EnvironSolutions (OES), Inc.

October 16-18, 2010, contractors placed traps and collected 22 blue crabs at 9 locations throughout the East White Lake school board-owned property (Appendix A, Figure 1) [4]. Whole body samples were received at the Test America analytical laboratory (South Burlington, VT) on October 19, 2010. Individual whole crabs were homogenized and analyzed for total metals (EPA SW-846, Method 6010 B), total mercury (EPA SW-846, Method 7471 A), and total petroleum hydrocarbons (TPH) (NJ-OQA-QAM-025 New Jersey total petroleum hydrocarbons (GC)).

Table 1 below includes contaminants of concern detected in crab samples as identified by OES consultants. Based on subsistence consumption (142 grams per day) and total arsenic, barium, total mercury and TPH whole body concentration assumptions, consultants have requested the consideration of imposing a fish and shellfish consumption advisory for the East White Lake area. Recreational and commercial harvest bans were further recommended by school board consultants while regulators conduct additional sampling and risk assessment evaluations.

Crab data presented in Table 1 are based on whole body analysis. The advisory development process in Louisiana is based on analyses of edible tissues. Typically, this includes muscle tissue fillets without skin, bones, or organs. For species where organs are also considered edible, the organs may be included with the muscle tissue for analysis, and / or analyzed separately, when differences exist in population consumption habits. For example, edible tissue of crabs typically includes all leg and claw meat, back shell meat and body cavity meat. The hepatopancreas ("crab fat") may be included for analysis as determined by the eating habits of the local population; however, it must be analyzed separately to enable the evaluation of health risks associated with consuming crabs of variable fat content.

Tissue Screening Levels (TSLs) presented in *Tissue Screening Level Guidelines for Issuance of Public Health Advisories for Selected Contaminants and Supporting Documentation (March 2012)* [6] are representative of acceptable contaminant concentrations in edible tissues of the organism. It is not appropriate to compare TSLs to data based on whole body analysis which includes non-edible tissues (i.e., crab shells). This is particularly true of inorganic constituents such as arsenic and barium that are likely to be concentrated in the non-edible shell of the blue crab.

Dataset Limitations

- Whole body sample analysis is not supported by the Louisiana advisory protocol. Advisory development is based on edible tissue only, with separate hepatopancreas analysis.
- The Louisiana advisory protocol utilizes the average constituent concentration
 detected in edible tissues. The data analysis in the OES report was based on the
 maximum detected constituent concentration, which is not representative of the
 concentration likely to be consumed in a meal composed of multiple crabs.
- The advisory supported consumption rate is based on the protection of the general population that consumes 30 grams per day (of a single species obtained from the same water body) for a period of 30 years. There is a lack of documentation to support the alternate subsistence crabbing ingestion rate of 142 grams per day.
- Arsenic speciation was not conducted as part of the laboratory analyses,
 preventing the evaluation of health risks related to inorganic arsenic portions.
 Over 90% of arsenic found in edible seafood tissue is present in the non-toxic
 organic form [7]. Whole body, non-speciated data reported in this dataset do not
 provide an accurate characterization of arsenic tissue concentrations from these
 East White Lake sampling locations.

- Arsenic reporting limits and some method detection limits were above tissue screening levels. Detection and reporting limits must be lower than the regulatory contamination limits in order to effectively evaluate risk.
- A draft TSL for barium can be calculated as outlined in the Louisiana advisory protocol. However, because the form of barium present in the crab tissue is not known, it is not appropriate to compare it to a drafted TSL. Barium is usually present in water systems as barium sulfate, an insoluble, relatively non-toxic form [8]. The literature further supports the likelihood that barium replaces calcium in shell which is composed largely of calcium carbonate [9]. Homogenized whole body sampling methodology utilized in this dataset does not provide an accurate characterization of barium tissue concentrations from these East White Lake sampling locations.
- TPH was detected in one crab described as having a black/stained plastron and upper carapace (C-5-1 location). It was assumed that the TPH detected in the crab was equally represented by three carbon fractions (C8-C16, C16-C21, C21-C35); however, laboratory documentation was not provided to support this approach. The TPH fractionation method yields more specific information regarding the TPH constituents present within a sample. Consultants calculated a TSL using an average toxicity value to represent the carbon fractions. The toxicity value used for the TSL calculation does not appear to capture both aliphatic and aromatic hydrocarbon ranges.

Table 1: OES whole body crab results in milligrams per kilogram (mg/kg). October 2010.

Sample ID	Wet weight (grams)	Length (millimeters)	Width (millimeters)	Total Arsenic	Barium	Total Mercury	Total Petroleum Hydrocarbon (C8-C40)
Recreational				0.36	466	0.7	1657
tissue				inorganic			
screening							
level*							
Subsistence				0.147	99	0.15	350
tissue							
screening							
level*							
C-1-1	154.22	63.4	141.42	$0.81~{\rm U}^{1}$	290	0.032	61 U
C-1-2	138.84	63.16	146.16	$0.47 \mathrm{J}^2$	203	0.052	33 J
C-2-1	148	66.5	144.64	0.69 J	250	0.079	58 U
C-2-2	242	74.94	159.5	0.94	234	0.15	31 J
C-2-3	171.79	64.14	150.24	0.61 J	256	0.182	41 J
C-3-1**	138.6	65.68	128.16	0.37 J	167	0.038	32 J
C-3-2	207	72.6	174.16	0.74	356	0.032	33 J
C-3-3	125.33	62.2	144.76	0.84 J	254	0.039	37 J
C-3-4	123.91	65.78	143.24	0.41 J	220	0.048	60 U
C-4-1	210	71.84	155.5	0.64 J	198	0.045	38 J
C-4-2	127	57.74	137.36	0.61 J	220	0.052	42 J
C-5-1 ^a	278	80.74	178.9	0.58 J	219	0.038	370 a
C-6-1	126.62	62.54	141.44	0.36 J	452	0.042	59 U
C-6-2	312	83.62	186.62	0.92	241	0.059	58 U
C-6-3	177.92	67.94	141.84	0.99	154	0.034	40 J
C-6-4	132.5	59.42	135.88	0.92 J	312	0.081	40 J
C-6-5	127.74	63.46	136	0.74 J	342	0.058	58 U
C-6-6	128.38	60.3	138.72	0.85	348	0.051	36 J
C-8-1	327	86.94	194.82	0.87 J	280	0.03	57 U
C-8-2	278	78.24	175.88	0.64 J	214	0.05	55 U
C-9-1	200	68.62	161.1	0.57 J	229	0.047	58 U
C-9-2	202	70.16	169.8	0.43 J	165	0.049	35 J

^{**} Consultant calculated; *claw was broken off on this specimen; *specimen plastron black and stained;

¹J- estimated value; ²U- non-detect

November 2010 blue crab tissue dataset: Louisiana Department of Health and Hospitals

On November 23rd and 29th, 2010, LDHH collected composite samples of at least 8 blue crabs from each of the 9 locations on the Vermillion Parish School Board property (Appendix A, Figure 2) [5]. Samples were delivered on the same day to the Office of Public Health's Central Laboratory (Metairie, LA) to be analyzed for total arsenic and barium via EPA Method 200.8 [10]. Crab composite samples were segregated into two sets for processing and analysis. Set one composited location-specific samples of 4 to 9 crabs and boiled them together using clean tap water. The tap water used for the boil was sampled prior to boiling and post boiling. After boiling, crab tissue and hepatopancreas were removed from the shell, separated, and component homogenized for frozen storage until ready to perform testing. Set two also composited location-specific samples of 4 to 9 uncooked crabs. Crab tissue and hepatopancreas were removed from the shell, separated, and component homogenized for frozen storage until ready to perform testing.

Table 2 below includes laboratory analysis results by station and contaminant. Set one testing procedures were intentionally selected to address OES consultant concerns hypothesizing liberation of crab shell contaminants during boiling and cooking. Arsenic and barium concentrations were not detected in pre-boiled water samples; post-boiled water samples were below health screening values for barium and arsenic.

Set two testing procedures were conducted according to the advisory protocol.

Mean whole body OES arsenic concentrations were 0.682 mg/kg. LDHH mean arsenic tissue concentrations were below the laboratory detection limit (0.5 mg/kg), while mean boiled and unboiled hepatopancreas concentrations ranged slightly above detection (0.447 - 0.545 mg/kg).

A draft TSL (467 mg/kg) was calculated for barium; mean barium concentrations were well below the TSL value. Overall barium concentrations from both LDHH datasets were significantly lower than values presented in OES whole body samples including non-edible shell portions.

Dataset Limitations

Arsenic speciation was not an available operational method within the LDHH
laboratory at the time of analyses. Remaining portions of each composite sample
were held in frozen storage for further arsenic speciation as the laboratory
obtained resources to perform the method. While the majority of arsenic found in
edible seafood tissue is present in the non-toxic organic form, the percentage
could not be quantified in the LDHH evaluation.

- The arsenic method detection limit (0.5 mg/kg) was less sensitive than the tissue screening level (0.36 mg/kg). Reporting and detection limits must be lower than the regulatory contamination limit, which may not always be possible for complex sample matrices.
- Tissue wet weights, precise number of crabs per composite sample, and barium laboratory detection limits were unavailable in raw data form. Dataset hold time expired and files were destroyed.
- Health screening values are media specific; tissues TSLs were used in this evaluation to screen pre and post-boil water samples.

Table 2: LDHH crab tissue, fat and water results in milligrams per kilogram (mg/kg). November 2010.

Analyte	!				Sta	ation					
		1	2	3	4	5	6	7	8	9	Mean
Arsenic					· ·		<u>'</u>				
Set 2	meat not boile d	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50
Set 1	meat boile d	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Set 2	fat not boile d	< 0.50	0.672	0.77	0.749	< 0.50	0.816	0.606	< 0.50	0.544	0.545
Set 1	fat boile d	0.634	0.593	< 0.50	0.512	< 0.50	0.72	0.565	< 0.50	< 0.50	0.447
Set 1	water pre- boile d	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.00	<0.00
Set 1	water post- boile d	0.012	0.009	0.013	0.018	0.01	0.012	0.009	0.25	0.009	0.038
Barium		*	*	*	*	*	*	*	*	*	*
Set 2	meat not boile d	1.89	3.28	2.29	3.85	2.19	4.95	2.92	2.93	1.24	2.838
Set 1	meat boile d	3.86	5.55	4.88	4.77	5.85	11.2	4.71	5.45	3.39	5.518
Set 2	fat not	9.86	10.4	4.98	6.19	9.92	13.8	19.5	7.17	9.39	10.134

	boile d										
Set 1	fat boile d	13.1	8.36	4.53	6.78	11.9	20.2	16.1	8.38	8.79	10.904
Set 1	water pre- boile d	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.00	<0.00
Set 1	water post- boile d	0.087	0.11	0.11	0.13	0.09	0.18	0.1	0.25	0.15	0.134

^{*}Suspect result due to the heterogeneous nature of the sample or an uncorrected matrix effect

December 2010 / January 2011 blue crab and forage fish datasets: Environmental Resources Management (ERM)

December 13, 2010 and January 10, 2011, ERM contractors collected blue crabs at 13 locations in the East White Lake Oil and Gas Field, six reference locations in Schooner Bayou Canal and from four reference locations in White Lake (Appendix, A, Figure 3). Crab traps were checked and harvested for crabs until a minimum of five crabs per location were collected; a total of 307 crabs were collected for analysis [3]. Crabs were also purchased for analysis from commercial markets in Baton Rouge, Lake Charles, New Orleans, Des Allemands, Biloxi and Houston. Samples were received at Columbia Analytical Services, Inc. for analysis of total barium and speciated mercury and arsenic; and Pace Analytical Services, Inc. for analysis of TPH. Composite crab meat and hepatopancreas were analyzed separately in accordance with the Louisiana advisory protocol.

Forage fish were collected and analyzed as whole body samples to support the evaluation of ecological risk. According to the advisory protocol, whole body samples are not used for human health risk purposes, therefore, they were not further evaluated in this report.

Tables 3 and 4 below include laboratory analysis results by location and contaminant and comparisons of crab concentrations to default and consultant derived tissue screening levels (TSLs). Measured TPH crab meat concentrations in the C8-C16 and >C16-C28 carbon ranges were non-detect at all East White Lake and reference locations and in three of six commercial market samples. Edible tissue concentrations (ETCs) (combining meat and hepatopancreas concentrations) were calculated to include one-half the detection limit for non-detect results. Mean ETCs and hepatopancreas TPH carbon range concentrations were below consultant derived TSLs for all site, reference and commercial market samples. Consultant derived TPH TSLs were calculated using average toxicity factors provided by the Louisiana Department of Environmental Quality (LDEQ) Risk Evaluation / Corrective Action Program (RECAP) [11]. The oral reference dose was

calculated by using an average of the aliphatic and aromatic hydrocarbons within each carbon range (C8-C16, >C16-C-28).

Mean inorganic arsenic and methyl mercury concentrations detected in site, reference and commercial market crab tissue were below default TSLs; mean crab hepatopancreas concentrations were detected below consultant derived TSLs using the hepatopancreas-specific default consumption rate identified in the Louisiana advisory protocol.

Mean barium concentrations detected in site, reference and commercial market crab tissue and hepatopancreas (including ETC) were also below the consultant derived TSL.

Hazard Indices were calculated to evaluate the potential for additive target organ effects for the noncarcinogenic metals and TPH carbon range crab constituents in site, reference and commercial market datasets. This process is in accordance with the Louisiana TSL guidelines; no potential human health concern was identified, i.e., all hazard indices were less than 1. Inorganic arsenic, the singular carcinogen, was within the target 1×10^{-4} cancer risk range.

Dataset Limitations

- Consultant derived TSL for TPH carbon range C8-C16 (160 mg/kg) was slightly different than LDHH's calculation of 163 mg/kg. The hepatopancreas TSL (650 mg/kg) was also slightly different than LDHH's calculation of 653 mg/kg. These inconsistencies do not alter the risk outcome.
- Consultant derived TSL for TPH carbon range >C16-C28 (2400 mg/kg) could not be replicated by LDHH. LDHH derived a TSL for this TPH carbon range at 2333 mg/kg. The hepatopancreas TSL (9500 mg/kg) was also different than LDHH's calculation of 9333 mg/kg. These inconsistencies do not alter the risk outcome.
- Consultant derived TSL for barium (470 mg/kg) was slightly higher than LDHH'S TSL calculation of 466 mg/kg. The hepatopancreas TSL (1900 mg/kg) was also slightly different than LDHH's calculation of 1867 mg/kg. These inconsistencies do not alter the risk outcome.
- The Louisiana advisory protocol assesses non-detect samples by assigning a value of zero if more than half of the contaminant specific samples are below the reporting limit. ERM data appear to assign one-half of the reporting limit for all non-detect samples, regardless of the non-detect frequency.

 $Table\ 3:\ ERM\ TPH\ Concentrations\ in\ Crab\ (mg/kg-wet\ weight).\ December\ 2010\ /\ January\ 2011\ [3].$

									9. (Edible Tissue	e Concentration	Percentage b	ased on Reported
			Me	at		Нера	topa	ancreas		(HP &	Meat) (a)	Tissu	e Weight
	280 20 5020	TPH	TT	TPH	П	TPH	П	TPH	П	TPH	TPH	200	1001000
	Sample ID	(C8-C16)		(C16-28)		(C8-C16)		(C16-28)		(C8-C16)	(C16-28)	Meat	HP
	EWL-T-01A-C	4.5	UR	4.5	UR	21.6	U	59.4	ш	NA	NA	84%	16%
	EWL-T-01-C	9.4	U	9.4	U	70.3	Ш	167	ш	15.8	32.2	83%	17%
	EWL-T-02-C	5	U	5	U	22.2	U	90.8	ш	3.96 U		83%	17%
	EWL-T-03-C (c)	13.9	U	13.9	U	242	Ш	242	ш	48.4	48.3	82%	18%
	EWL-T-04-C	5.5	U	5.5	U	5.8	U	9.9	J	2.77 U		84%	16%
	EWL-T-05-C	5.1	U	5.1	U	136	U	856	Ш	13.7 U	10000	83%	17%
d)	EWL-T-06-C	8	U	8	U	34.1	U	174		6.14 U		84%	16%
Site	EWL-T-07-C	6.5	U	6.5	U	47.1	Ш	101	ш	10.8	20.1	83%	17%
V 2	EWL-T-08-C	5	U	5	U	90	Ш	300	ш	15.3	46.1	85%	15%
	EWL-T-09-C	6.7	U	6.7	U	54	U	209	ш	7.54 U		82%	18%
	EWL-T-10-C ^(c)	12.6	U	12.6	U	142		314		30.9	62.1	82%	18%
	EWL-T-11-C	12.9	U	12.9	U	111	П	443		24.3	81.2	83%	17%
	EWL-T-12-C	4.4	U	4.4	U	60.6	J	277		12.9	52.4	82%	18%
	7			5,,100								2	
	Average ^(b)	NC		NC		69		249		16	49	0.83	0.17
-	EWL-TR-01-C	8.7	U	8.7	TT	NA	П	NA	\blacksquare	NA	NA NA	82%	18%
	EWL-TR-01-C	4.7	Ū	4.7	U	61.1	H	143	+	14.1	30.5	80%	20%
	EWL-TR-03A-C	5.2	U	5.2	U	135	H	305	+1	27	58.3	82%	18%
	EWL-TR-03-C	4.9	U	4.9	U	34.3	τJ	145	—	5.19 U	Modern Co.	81%	19%
بو	EWL-TR-04-C	4.6	Ū	4.6	U	91.6	 	262	+1	15.3	40	85%	15%
Reference	EWL-TR-05-C	4.8	U	4.8	U	53.9	IJ	82	J	7.19 U		80%	20%
er	EWL-TR-06-C	7.4	U	7.4	U	21.7	U	144		4.96 U	(CO) (CO) (CO) (CO) (CO) (CO) (CO) (CO)	82%	18%
Set 1	EWL-TR-07-C	4.8	Ū	4.8	U	85.5		302		15.4	49.2	84%	16%
	EWL-TR-08-C	5.0	U	5.0	U	188	П	254	77	40.3	53.8	80%	20%
	EWL-TR-09-C	5.2	U	5.2	U	100	П	393	П	23.2	85	79%	21%
							П	*******	\Box				
	Average ^(b)	NC		NC	П	80	П	226	П	17	44	0.82	0.18
		2.5	1771			00.4	TTT	1.10	\equiv	2.27	1 262	0.407	1.00/
	EWL-BIL-C	3.5	U	4.4	J	22.4	U	140	+	3.27 U	675650,6756	84%	16%
	EWL-BR-C	9.6	U	9.6	U	23.7	U	241	+	6.2 U	MAZE MODEL	80%	20%
et	EWL-DES-C	5.6	U	8.1	J	22.7	U	88.1	+	3.54 U		91%	9%
Market	EWL-HOU-C	5.3	U	7.5	J	28.4	U	174	+	4.08 U		88%	12%
Va	EWL-LC-C ^(c)	16.2	U	16.2	U	310.5	\sqcup	351		71.3	79.8	79%	21%
15	EWL-NO-C	14.4	U	14.4	U	197	₩	298		38.8	55.6	83%	17%
	Average ^(b)	NC		6.7	世	93		215	\pm	21	43	0.84	0.16

Notes

Example 1 Result was reported as not detected by the laboratory (i.e., less than the MDL, defined by the laboratory as the "Adjusted Method Detection Limit"); value shown is the MDL.(blue shaded cells). One-

half the detection limit was used to calculate Edible Tissue Concentrations (ETCs), so ETCs with U are calculated from one-half detection limits for non-detect meat and hepatopancreas results. J = Laboratory qualifier indicating that the reported value is an estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. R = Surrogate recovery identified as less than 10%; therefore, this non-detect result is considered not reliable for use in quantitative analysis. NA = Edible Tissue Concentration could not be calculated due to unavailable meat or hepatopancreas data (either due to insufficient hepatopancreas sample to analyze TPH or R-qualified results). NC = Not calculated; for datasets that were completely nondetect, an average concentration was not calculated.

- (a) Edible Tissue Concentration (ETC) for each composite crab sample, the ETC was calculated as the sum of the mass-weighted TPH concentrations for crab meat and hepatopancreas, using sample-specific tissue weight (mass) data reported by the laboratory for meat and hepatopancreas as follows:
- $ETC = (concentration in meat) \times (\% edible tissue comprised of meat) + (concentration in hepatopancreas) \times (\% edible tissue comprised of hepatopancreas). One-half MDLs were used to represent concentrations for nondetect results.$
- (b) For averaging datasets comprised of both nondetect values and detections, one-half detection limits were used to represent concentrations of nondetect results.
- (c) Duplicate samples were prepared by the sample preparation laboratory (Columbia Analytical Services, Inc.) as separate aliquots from the same composite homogenized tissue (i.e., meat or hepatopancreas), where one aliquot is considered the parent and the other is labeled as a laboratory duplicate. The concentrations listed in this table, and used in the risk assessment, represent the average concentration from the parent sample and the duplicate. Since the tissue weight data was obtained from the composite homogenized tissue, the tissue weights are equal for the parent sample and duplicate.

Table 4: ERM Comparison of Concentrations in Crab to Default Tissue Screening Levels (TSLs) and Calculation of the Hazard Indices [3].

Evaluation of Crab Edible T	issue Concentration	ons (ETCs)								
				Crab Edible Tissue Concentration (HP & Meat) (a,b)						
	Default TSLs (e)		Target	Site		Refe	rence	Mar	rket	
Constituent	TSLnc	TSLc	Organs (d)	Average	Max	Average	Max	Average	Max	
TPH (c)										
TPH >C8-16	160		liver, hematological system, decreased BW	16	48.4	17	40.3	21	71.3	
TPH >C16-28	2400		liver, kidney	49	148	44	85	43	79.8	
Metals										
Arsenic, inorganic	0.7	0.36	skin, vascular	0.011	0.016	0.013	0.016	0.015	0.023	
Barium	470	:	kidney	9.2	14	11	16	1.5	3.1	
Mercury, total	0.7	222	autoimmune	0.069	0.091	0.062	0.092	0.036	0.049	
Methyl Mercury	0.23		developmental neuro- psychological impairment	0.039	0.061	0.028	0.052	0.018	0.027	
						Hazard Ir	ndices (d)			
			Kidney	0.04	0.09	0.04	0.07	0.02	0.04	
			Liver	0.1	0.4	0.1	0.3	0.2	0.5	
Evaluation of Crab Meat Co	ncentrations									
				Crab Meat Concentrations (b)						
	Crab Mea	t TSLs (e)	Target	Site Reference			Market			
Constituent	TSLnc	TSLc	Organs (d)	Organs (d) Average Max		Average	Max	Average	Max	
TPH (c)										
TPH >C8-16	160		liver, hematological system, decreased BW	NC	13.9 U	NC	8.7 U	NC	16.2 U	
TPH >C16-28	2400	===:	liver, kidney	NC	13.9 U	NC	8.7 U	6.7	8.1 J	
Metals										
Arsenic, inorganic	0.7	0.36	skin, vascular	0.0032	0.0065 J	0.0039	0.0090 J	0.0076	0.014 J	
Barium	470		kidney	6.7	12	8.4	14	1.3	2.5	
Mercury, total	0.7		autoimmune	0.077	0.10	0.068	0.11	0.039	0.054	
Methyl Mercury	0.23		developmental neuro- psychological impairment	0.043	0.069	0.032	0.061	0.019	0.029	
				Hazard Indices (d)						
			Kidney	0.01	0.03	0.02	0.03	0.005	0.009	

Evaluation of Crab Hepatop	ancreas (HP) Cond	entrations								
				Crab Hepatopancreas Concentrations (b)						
	Crab HP TSLs (e) TSLnc TSLc		Target	Site		Reference		Market		
Constituent			Organs (d)	Average	Max	Average	Max	Average	Max	
TPH (c)										
TPH >C8-16	650		liver, hematological system, decreased BW	69	242	80	188	93	311	
TPH >C16-28	9500		liver, kidney	249	856	226	393	215	351	
Metals										
Arsenic, inorganic	2.8	1.5	skin, vascular	0.047	0.079	0.054	0.066	0.049	0.072	
Barium	1900	1===);	kidney	21	32	24	33	2.9	6.1	
Mercury, total	2.8	202	autoimmune	0.034	0.045	0.033	0.056	0.022	0.042	
Methyl Mercury	0.93	1500)	developmental neuro- psychological impairment	0.021	0.039	0.014	0.024	0.0089	0.015	
	_			Hazard Indices (d)						
			Kidney	0.04	0.1	0.04	0.06	0.02	0.04	
			Liver	0.1	0.5	0.1	0.3	0.2	0.5	

Concentrations in mg/kg-wet weight U = Result was reported as not detected by the laboratory (i.e., less than the MDL, defined by the laboratory as the "Adjusted Method Detection Limit"); value shown is the MDL. One-half the detection limit was used to calculate Edible Tissue Concentrations (ETCs), so ETCs with U are calculated from one-half detection limits for non-detect meat and hepatopancreas results.

- J = Laboratory qualifier indicating that the reported value is an estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. NA = HI not calculated when data for the relevant constituents are all nondetect. NC = Not calculated; for datasets that were completely nondetect, an average concentration was not calculated.
- (a) Edible Tissue Concentration (ETC) for each composite crab sample, the ETC was calculated as the sum of the mass-weighted TPH concentrations for crab meat and hepatopancreas, using sample-specific tissue weight (mass) data reported by the laboratory for meat and hepatopancreas as follows: ETC = (concentration in meat) x (% edible tissue comprised of meat) + (concentration in hepatopancreas) x (% edible tissue comprised of hepatopancreas). One-half MDLs were used to represent concentrations for nondetect results.
- (b) For datasets with all results reported as nondetect, an average concentration was not calculated (NC), and the highest detection limit was used to represent the maximum nondetect result. For datasets comprised of both detects and nondetects, one-half detection limit was used for determining the average concentration for the dataset, and the highest detected value (including J-flagged) was used as the maximum.
- (c) TSL calculated using weighted toxicity value assuming 50% aliphatics and 50% aromatics.
- (d) Hazard Indices calculated for target organs associated with more than one detected constituent.
- (e) TSLs were calculated using the algorithms provided in the Tissue Screening Level Guidelines for Issuance of Public Health Advisories for Selected Contaminant (LDEQ et al., 2012). For evaluation of ETCs and crab meat, the TSLs were calculated using default parameters. For evaluation of hepatopancreas, the TSLs were calculated using a hepatopancreas-specific ingestion rate identified in the Protocol for Issuing Public Health Advisories for Chemical Contaminants in Recreationally Caught Fish and Shellfish (LDHH et al., 2012).

Conclusions

As requested by LDNR, LDHH has completed a review of the December 2010/January 2011 ERM crab data collected from the East White Lake areas of interest. October 2010 OES and November 2010 LDHH datasets were also included to provide a comprehensive review of all available data.

OES sampling methodology, laboratory analysis and data evaluation approaches are not consistent with the advisory development process as detailed in the *Protocol for Issuing Public Health Advisories for Chemical Contaminants in Recreationally Caught Fish and Shellfish.* October 2010 OES data are inadequate to support a consumption advisory for the East White Lake sampling areas.

November 2010 LDHH crab tissue data was collected to further characterize edible crab portions from the OES-sampled areas of interest. Sampling was conducted in accordance with the Louisiana advisory protocol; mean arsenic and barium tissue concentrations were below their respective tissue screening level (TSL). Speciation methodology was not available at the time of laboratory analyses to quantify organic arsenic content. LDHH data do not support the need for a consumption advisory due to barium and arsenic concentrations in crab tissue.

December 2010/January 2011 ERM crab tissue samples were collected and analyzed in accordance with the Louisiana advisory protocol. Mean inorganic arsenic, methyl mercury, barium and TPH concentrations detected in site, reference and commercial market crab tissue and hepatopancreas were either non-detect or below default and consultant derived TSLs. Reported constituent concentrations detected in crabs from the East White Lake areas of interest are below levels of health concern; no potential human health hazards were identified.

References

- 1. Michael Pisani & Associates, Inc. Environmental Consulting Services. April 23, 2010. Site Evaluation Plan Section 16 T 15S R 01E, East White Lake Oil and Gas Field. Vermilion Parish, Louisiana.
- 2. Louisiana Department of Health and Hospitals, Louisiana Department of Environmental Quality, Louisiana Department of Agriculture and Forestry and Louisiana Department of Wildlife and Fisheries. February 2012. Protocol for Issuing Public Health Advisories for Chemical Contaminants in Recreationally Caught Fish and Shellfish Chemical Contamination of Fish and Shellfish in Louisiana.
- 3. Environmental Resources Management. March 6, 2014. Transmittal of Crab and Forage Fish Tissue Sampling. Results for Total Petroleum Hydrocarbons. East White Lake Oilfield, Vermilion Parish, Louisiana. Vermilion Parish School Board Property, Section 16 T15S, R01E.
- 4. Gary C. Barbee, Ph.D. Omega EnviroSolutions, Inc. Canyon, TX. November 2, 2010. Supplemental Toxicological Evaluation Report for the Vermilion Parish School Board Property, Section 16, T. 15 S. R. 1 E., Vermilion Parish, Louisiana.
- 5. Louisiana Department of Health and Hospitals. Office of Public Health Central Laboratory. Laboratory Report: Total Arsenic and Barium via EPA Method 200.8. December 6, 2010. East White Lake, Vermilion Parish, Louisiana.
- 6. Louisiana Department of Health and Hospitals, Louisiana Department of Environmental Quality, Louisiana Department of Agriculture and Forestry and Louisiana Department of Wildlife and Fisheries. March 2012. Tissue Screening Level Guidelines for Issuance of Public Health Advisories for Selected Contaminants and Supporting Documentation.
- 7. Agency for Toxic Substances and Disease Registry (ATSDR). 2007. Toxicological profile for Arsenic. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
- 8. Agency for Toxic Substances and Disease Registry (ATSDR). 2007. Toxicological Profile for Barium and Compounds (Update). Atlanta, GA: U.S. Department of Public Health and Human Services, Public Health Service.
- 9. Gillikin, D., Dehairs, F., Lorrain, A., Steenmans, D., Baeyens, W., and Andre, L. Barium uptake into the shells of the common mussel (*Mytilus edulis*) and the potential for estuarine paleo-chemistry reconstruction. *Geochim. Cosmochim. Acta* 70, 2 (2006) 395-407.

- 10. Louisiana Department of Health and Hospitals, Louisiana Department of Environmental Quality, Louisiana Department of Agriculture and Forestry and Louisiana Department of Wildlife and Fisheries. November 24, 2010. Sampling Collection Procedure for Testing Arsenic and Barium in Crabs Using ICP-MS in the DHH/OPH Central Laboratory. Protocol.
- 11. Louisiana Department of Environmental Quality. Risk Evaluation/Corrective Action Program (RECAP). 2003. Table D-3 Petroleum Hydrocarbon Fraction-Specific Chronic Reference Doses.

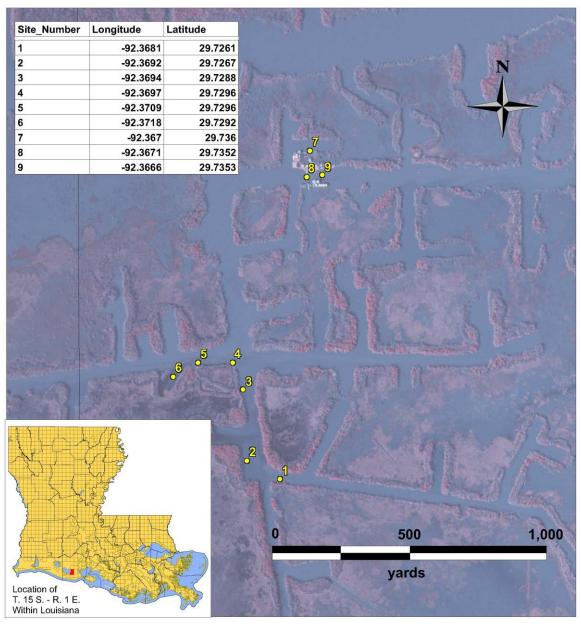

Appendix A: Figures

Figure 1: October 2010 Omega EnvironSolutions Crab Sampling Locations [4].

Figure 2: November 2010 Louisiana Department of Health and Hospitals Crab Sampling Locations [10].

Approximate Sampling Locations of the "Supplemental Toxicological Evaluation Report for the Vermilion Parish School Board Property, Section 16, T. 15 S. - R. 1 E., Vermilion Parish, Louisiana"



Prepared on 11/18/2010 by the Louisiana Department of Health & Hospitals, Office of Public Health, Section of Environmental Epidemiology & Toxicology

The Louisiana Department of Health and Hospitals/Office of Public Health/Section of Environmental Epidemiology and Toxicology (SEET) cannot guarantee the accuracy of the information contained on this map and expressly disclaims liability for errors and omissions in its contents.

Figure 3: December 2010/January 2011 Environmental Resources Management (ERM) Crab and Fish Sampling Locations [3].

Fish Tissue Data Collected by LDEQ for Mercury Monitoring Program, Subsegment 050703 (White Lake)

Appendix I

Project No. 0116008 UNOCAL Vermilion Parish, Louisiana

3838 North Causeway Boulevard, Suite 3000 Metairie, Louisiana 70002 (504) 831-6700

Appendix I Fish Tissue Data Collected by LDEQ for Mercury Monitoring Program, Subsegment 050703 (White Lake)

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Data obtained 10/22/2014, from http://www.deq.louisiana.gov/portal/tabid/2729/Default.aspx

Subsegment	Collection Date	Parameter	MDL	Result	Average Weight	Average Length	Number Of Fish	Species	Avg
LA050703_00	7/10/2008	MERCURY	0.0003	.38 ppm	1775.0 (g)	55.9 (cm)	3	BOWFIN	
LA050703_00	7/10/2008	MERCURY	0.0003	.35 ppm	(g)	71.0 (cm)	1	BOWFIN	
LA050703_00	7/10/2008	MERCURY	0.0003	.33 ppm	(g)	71.0 (cm)	1	BOWFIN	
LA050703_00	7/10/2008	MERCURY	0.0003	.23 ppm	1212.5 (g)	47.8 (cm)	2	BOWFIN	
LA050703_00	7/10/2008	MERCURY	0.0003	.57 ppm	3632.5 (g)	67.5 (cm)	2	BOWFIN	0.37
LA050703_00	7/10/2008	MERCURY	0.0003	.27 ppm	3445.0 (g)	67.3 (cm)	1	RED DRUM	
LA050703_00	7/10/2008	MERCURY	0.0003	.18 ppm	967.5 (g)	45.5 (cm)	2	RED DRUM	
LA050703_00	7/10/2008	MERCURY	0.0003	.27 ppm	1542.5 (g)	52.9 (cm)	2	RED DRUM	
LA050703_00	7/10/2008	MERCURY	0.0003	.23 ppm	1882.5 (g)	54.5 (cm)	2	RED DRUM	0.24
LA050703_00	7/10/2008	MERCURY	0.0003	.21 ppm	282.5 (g)	29.4 (cm)	2	FRESHWATER DRUM	
LA050703_00	7/10/2008	MERCURY	0.0003	.27 ppm	435.0 (g)	32.3 (cm)	2	FRESHWATER DRUM	0.24
LA050703_00	7/10/2008	MERCURY	0.0003	.26 ppm	400.0 (g)	28.5 (cm)	6	BLACK CRAPPIE	
LA050703_00	7/10/2008	MERCURY	0.0003	.3 ppm	509.0 (g)	30.6 (cm)	5	BLACK CRAPPIE	0.28
LA050703_00	7/10/2008	MERCURY	0.0003	.19 ppm	527.5 (g)	32.3 (cm)	2	LARGEMOUTH BASS	
LA050703_00	7/10/2008	MERCURY	0.0003	.27 ppm	727.5 (g)	36.3 (cm)	2	LARGEMOUTH BASS	
LA050703_00	7/10/2008	MERCURY	0.0003	.22 ppm	896.3 (g)	38.1 (cm)	4	LARGEMOUTH BASS	
LA050703_00	7/10/2008	MERCURY	0.0003	.2 ppm	362.5 (g)	28.8 (cm)	6	LARGEMOUTH BASS	
LA050703_00	7/10/2008	MERCURY	0.0003	.23 ppm	271.3 (g)	26.1 (cm)	4	LARGEMOUTH BASS	0.22
LA050703_00	7/10/2008	MERCURY	0.0003	.64 ppm	11215.0 (g)	93.3 (cm)	1	FLATHEAD CATFISH	0.64
LA050703_00	7/10/2008	MERCURY	0.0003	.2 ppm	708.8 (g)	42.0 (cm)	4	BLUE CATFISH	0.20

LA050703_00	7/12/2004	MERCURY	0.0001	.3 ppm	1690.0 (g)	51.6 (cm)	2	BOWFIN	
LA050703_00	7/12/2004	MERCURY	0.0001	.23 ppm	1690.0 (g)	51.6 (cm)	2	BOWFIN	0.27
LA050703_00	7/12/2004	MERCURY	0.0001	.28 ppm	277.5 (g)	28.3 (cm)	2	FRESHWATER DRUM	0.28
LA050703_00	7/12/2004	MERCURY	0.0001	.44 ppm	460.0 (g)	32.4 (cm)	1	WHITE CRAPPIE	0.44
LA050703_00	7/12/2004	MERCURY	0.0001	.22 ppm	191.7 (g)	22.5 (cm)	3	BLACK CRAPPIE	0.22
LA050703_00	7/12/2004	MERCURY	0.0001	.69 ppm	1030.0 (g)	40.6 (cm)	1	LARGEMOUTH BASS	!
LA050703_00	7/12/2004	MERCURY	0.0001	.21 ppm	415.0 (g)	28.9 (cm)	1	LARGEMOUTH BASS	
LA050703_00	7/12/2004	MERCURY	0.0001	.47 ppm	705.0 (g)	35.4 (cm)	1	LARGEMOUTH BASS	
LA050703_00	7/12/2004	MERCURY	0.0001	.72 ppm	1180.0 (g)	42.6 (cm)	1	LARGEMOUTH BASS	0.52

Appendix I Fish Tissue Data Collected by LDEQ for Mercury Monitoring Program, Subsegment 050703 (White Lake)

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Subsegment	Collection Date	Parameter	MDL	Result	Average Weight	Average Length	Number Of Fish	Species	Avg
LA050703_00	7/12/2004	MERCURY	0.0001	.06 ppm	271.7 (g)	32.6 (cm)	3	BLUE CATFISH	
LA050703_00	7/12/2004	MERCURY	0.0001	.04 ppm	785.0 (g)	44.5 (cm)	1	BLUE CATFISH	
LA050703_00	7/12/2004	MERCURY	0.0001	.28 ppm	4930.0 (g)	73.6 (cm)	1	BLUE CATFISH	0.13
LA050703_00	7/23/2003	MERCURY	0.0001	.58 ppm	1760.0 (g)	54.4 (cm)	1	BOWFIN	
LA050703_00	7/23/2003	MERCURY	0.0001	.37 ppm	1725.0 (g)	52.7 (cm)	3	BOWFIN	
LA050703_00	7/23/2003	MERCURY	0.0001	.3 ppm	1232.5 (g)	48.0 (cm)	2	BOWFIN	
LA050703_00	7/23/2003	MERCURY	0.0001	.27 ppm	1232.5 (g)	48.0 (cm)	2	BOWFIN	0.38
LA050703_00	7/23/2003	MERCURY	0.0001	.17 ppm	1245.0 (g)	48.6 (cm)	1	RED DRUM	0.17
LA050703_00	7/23/2003	MERCURY	0.0001	.24 ppm	322.5 (g)	30.1 (cm)	2	FRESHWATER DRUM	
LA050703_00	7/23/2003	MERCURY	0.0001	.29 ppm	510.0 (g)	34.6 (cm)	1	FRESHWATER DRUM	0.27
LA050703_00	7/23/2003	MERCURY	0.0001	.17 ppm	200.0 (g)	22.7 (cm)	9	BLACK CRAPPIE	
LA050703_00	7/23/2003	MERCURY	0.0001	.17 ppm	170.0 (g)	21.3 (cm)	6	BLACK CRAPPIE	0.17
LA050703_00	7/23/2003	MERCURY	0.0001	.4 ppm	620.0 (g)	33.4 (cm)	1	LARGEMOUTH BASS	
LA050703 00	7/23/2003	MERCURY	0.0001	.41 ppm	480.0 (g)	30.9 (cm)	2	LARGEMOUTH BASS	
LA050703_00	7/23/2003	MERCURY	0.0001	.41 ppm	361.0 (g)	28.4 (cm)	5	LARGEMOUTH BASS	0.41
LA050703 00	7/23/2003	MERCURY	0.0001	.15 ppm	2510.0 (g)	59.4 (cm)	1	BLUE CATFISH	
LA050703_00	7/23/2003	MERCURY	0.0001	.13 ppm	355.0 (g)	35.0 (cm)	2	BLUE CATFISH	0.14
LA050703_00	4/2/1998	MERCURY		.33 ppm	2268.0 (g)	57.0 (cm)	1	BOWFIN	
LA050703_00	4/2/1998	MERCURY		.14 ppm	1408.0 (g)	51.1 (cm)	3	BOWFIN	0.24
LA050703_00	4/2/1998	MERCURY		.02 ppm	226.8 (g)	25.7 (cm)	4	FRESHWATER DRUM	
LA050703_00	4/2/1998	MERCURY		.04 ppm	538.7 (g)	32.4 (cm)	2	FRESHWATER DRUM	
LA050703_00	4/2/1998	MERCURY		.05 ppm	340.2 (g)	28.5 (cm)	4	FRESHWATER DRUM	0.04
	NOT		. — — —						— — — —
LA050703_00	4/2/1998 DETECTED	MERCURY		ppm	354.4 (g)	27.9 (cm)	2	WHITE CRAPPIE	
LA050703 00	4/2/1998	MERCURY		.03 ppm	559.9 (g)	32.4 (cm)	4	WHITE CRAPPIE	0.03

Appendix I Fish Tissue Data Collected by LDEQ for Mercury Monitoring Program, Subsegment 050703 (White Lake)

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Data obtained 10/22/2014, from http://www.deq.louisiana.gov/portal/tabid/2729/Default.aspx

Subsegment	Collection Date	Parameter MDL	Result	Average Weight	Average Length	Number Of Fish	Species	Avg
LA050703_00	4/2/1998	MERCURY	.15 ppm	330.7 (g)	27.6 (cm)	3	BLACK CRAPPIE	
LA050703_00	4/2/1998	MERCURY	.02 ppm	237.4 (g)	24.5 (cm)	8	BLACK CRAPPIE	0.09
LA050703_00	4/2/1998	MERCURY	.07 ppm	396.9 (g)	29.1 (cm)	1	LARGEMOUTH BASS	
LA050703_00	4/2/1998	MERCURY	.18 ppm	538.7 (g)	32.8 (cm)	1	LARGEMOUTH BASS	0.13
LA050703_00	4/2/1998	MERCURY	.05 ppm	1190.7 (g)	47.3 (cm)	2	BLUE CATFISH	
LA050703_00	4/2/1998	MERCURY	.05 ppm	744.2 (g)	41.4 (cm)	4	BLUE CATFISH	
LA050703_00	4/2/1998	MERCURY	.03 ppm	500.8 (g)	37.9 (cm)	3	BLUE CATFISH	0.04

Ecological Checklist

Appendix J

Project No. 0116008 UNOCAL Vermilion Parish, Louisiana

Environmental Resources Management Southwest, Inc.

3838 North Causeway Boulevard, Suite 3000 Metairie, Louisiana 70002 (504) 831-6700

Figure 4. Ecological Checklist (Form 18, RECAP, LDEQ 2003)

RECAP FORM 18 ECOLOGICAL CHECKLIST

Section	on 1 - Facility Information
1.	Name of facility: Vernilian Parish School Board / E.W. Field
2.	Location of facility: <u>EWL 0: Land Gas Field</u> <u>Section 16 of Township 15 South</u> , Parish: <u>Vermilion Parish</u> Parish: <u>Vermilion Parish</u>
3.	Mailing address: N/A
4.	Type of facility and/or operations associated with AOC: oil and gas exploration and production, recreation Name of AOC or AOI: YPSB / ENL Field
5.	Name of AOC or AOI: VPSB / EWL Field
6.	If available, attach a USGS topographic map of the facility and/or aerial or other photographs of the release site and surrounding areas. see reports
Section	on 2 - Land Use Information
1.	Describe land use at and in the vicinity of the AOC/AOI: oil and gas exploration and production, recreation (hunting, fishing, etc.)
2.	Describe land use adjacent to the facility: hunting, fishing, atc.
3.	Provide the following information regarding the nearest surface water body which has been impacted or has the potential to be impacted by COC migrating from the AOC/AOC:
a)	Name of the surface water body: Schooner Bayou, White Lake
b)	Type of surface water body:
	[] freshwater river or stream [] freshwater swamp/marsh/wetland intermediate marsh [] saltwater or brackish swamp/marsh/wetland [] lake or pond [] bayou or estuary [] drainage ditch/ Canals [] other:
c)	Designated use of the segment/subsegment of the surface water body (LAC 33:IX): 050703 Primary Contact rec., Secondary Contact rec., Fish and wild life propagation, agriculture.
d)	Distance from the AOC/AOI to nearest surface water body: \$ 0.5 Mi

	If yes, explain:
	wetlends, intermediate marsh
eti	on 3 - Release Information
	Nature of the release: oil and gas exploration and production
	Location of the release (within the facility): see report
	Location of the release with respect to the facility property boundaries: with in boundaries
	3
	Constituents known or suspected have been released: pil and ass exploration
	Constituents known or suspected have been released: bil and gas exploration
	Constituents known or suspected have been released: oil and gas exploration and production
	and production
	Indicate which media are known or suspected to be impacted and if sampling data are available:
	Indicate which media are known or suspected to be impacted and if sampling data are available: [Y soil 0 - 3 feet bgs [Yyes [] no limited area.]
	Indicate which media are known or suspected to be impacted and if sampling data are available: [Y soil 0 - 3 feet bgs [Yyes [] no limited area [Y soil 0 - 15 feet bgs ? [] yes [] no
	Indicate which media are known or suspected to be impacted and if sampling data are available: [Y soil 0 - 3 feet bgs
	Indicate which media are known or suspected to be impacted and if sampling data are available: [Y soil 0 - 3 feet bgs
	Indicate which media are known or suspected to be impacted and if sampling data are available: [V soil 0 - 3 feet bgs [Vyes [] no limited area [V
	Indicate which media are known or suspected to be impacted and if sampling data are available: [Y soil 0 - 3 feet bgs

Section 4 - Criteria for Further Assessment

If the AOI meets all of the criteria presented below, then typically no further ecological evaluation shall be required. If the AOI does not meet all of the criteria, then a screening level ecological risk shall be conducted. The Submitter should make the initial decision regarding whether or not a screening level ecological risk assessment is warranted based on compliance of the AOI with criteria listed below. After review of the ecological checklist and other available site information, the Department will make a final determination on the need for a screening level ecological risk assessment. If site conditions at the AOI change such that one or more of the criteria are not met, then a screening level ecological risk assessment shall be conducted. Answers shall be based on current site conditions (i.e., shall not consider future remedial actions or institutional or engineering controls).

Indicate if the AOI meets the following criteria:

- (1) The area of impacted soil is approximately 5 acres or less in size (based on the AOI identified for the human health assessment) and it is not expected that the COC will migrate such that the soil AOI becomes greater than 5 acres in size. [/] yes [] no
- (2) There is no current release or demonstrable long-term threat of release (via runoff or groundwater discharge) of COC from the AOI to a surface water body. [] yes [Yno perhaps

(3)	currently being	ng expose	d, or expected to be expo	sed, to CO	endangered species, and/or their habitats are not OC present at or migrating from the AOI.
	[yes	[] no	confirmation	needed	ł .
(4)	There are no	obvious ii [] no	mpacts to ecological rece	ptors or the	eir habitats and none are expected in the future.
Is furth	her ecological e termination is s	evaluation subject to	n required at this AOI? Department concurrence.	Myes	() no
Section	5 - Site Sumn	nary			
	•		ttal shall include a site su criteria for further assess		at presents sufficient information to verify that the
Section	6 - Submitter	Informa	tion		
Date: _	May 13-14,	2014	site inspection		
Name o	of person submi	tting this	checklist: John 1	4. Ro	odgers, Jr.
Affiliat	ion: <u>Clem</u>	son Ur	niversity		
Signatu	ire: Jelin H	, Rodg	en, gr. 1	Date: Ju	1/424, 2015 (Form 18 completed)
	onal Preparers:				

Assessment of Sediment Direct Contact Using Analytical Results in Dry Weight

Appendix K

Project No. 0116008 UNOCAL Vermilion Parish, Louisiana

3838 North Causeway Boulevard, Suite 3000 Metairie, Louisiana 70002 (504) 831-6700

TABLE K-1

SEDIMENT (0-3 FT)

COMPARISON TO RECAP DIRECT CONTACT SCREENING STANDARDS (DRY WEIGHT)

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

	verminon Pari	sn, Louisiana	C . 1'	0 211
				nent 0-3' bgs
Constituents (a)	Soil _{SSni} (b)	$Soil_{SSi}$ (c)	Maximum (0-3') (d)	Location of Maximum
	(mg/kg)	(mg/kg)	(mg/kg-dry)	Concentration
Metals				_
Arsenic	12	12	22	SS7 (0-1.4')
Barium	550	14,000	15,700	SS7 (0-1.4')
Cadmium	3.9	100	3.12	WL-3 (0-2')
Chromium	12000	310,000	25.1	SS11 (0-2.5')
Lead	400	1,400	125	WL-3 (0-2')
Mercury	2.3	61	8.52	Hg-MPA-07 (0.5-2')
Selenium	39	1,000	2.11	SED16 (0-2')
Strontium (e)	4700	120,000	459	AB13 (0-3')
Zinc	2300	61,000	1780	WL-3 (0-2')
Volatile Organic Compounds (VOCs)				
Benzene	1.5	3.1	ND (0.057-0.14)	-
Ethylbenzene	160	230	ND (0.35-0.88)	-
Toluene	68	470	ND (0.35-0.88)	-
Xylenes	18	120	ND (1.06-2.65)	-
Semi-Volatile Organic Compounds (SVOCs)				
Benzo(b)fluoranthene	0.62	2.9	0.0625	SED-9 (0-0.5')
Chrysene	62	290	0.069	SED-9 (0-0.5')
Fluoranthene	220	2900	1.3	SS7 (1.4-2.5')
Fluorene	280	5400	1.69	SS7 (1.4-2.5')
Indeno(1,2,3-cd)pyrene	0.62	2.9	0.313	SED-9 (0-0.5')
2-Methylnaphthalene	22	170	5.29	SS7 (1.4-2.5')
Phenanthrene	2100	43000	4.87	SS7 (1.4-2.5')
TPH - Fractions				
Aliphatics >C06-C8	1200	8000	ND (19.3-44.2)	-
Aliphatics >C08-C10	120	880	ND (19.3-44.2)	-
Aliphatics >C10-C12	230	2000	514	SED28 (0-2')
Aliphatics >C12-C16	370	3800	3310	WL-3 (0-2')
Aliphatics >C16-C35	7100	10000	12600	SED28 (0-2')
Aromatics >C08-C10	65	510	ND (12.9-29.5)	-
Aromatics >C10-C12	120	1100	98.5	WL-3 (0-2')
Aromatics >C12-C16	180	2100	790	SED28 (0-2')
Aromatics >C16-C21	150	1700	1420	WL-3 (0-2')
Aromatics >C21-C35	180	2500	2020	SED28 (0-2')
Polychlorinated Biphenyls (PCBs)				
Total PCBs	0.11	0.90	ND (0.079-1.87)	-

Notes:

Concentrations in milligrams per kilogram (mg/kg) dry weight

 $\ensuremath{\mathsf{ND}}$ - Nondetect at the detection limit, or range of detection limits, shown in parentheses.

TPH - Total Petroleum Hydrocarbons.

A **bold and boxed** value indicates that the maximum reported concentration exceeds a screening standard for the respective constituent and is identified as a site-related COC subject to further evaluation under a higher Management Option.

- (a) Constituents in this table include constituents detected in sediment and indicator constituents for petroleum hydrocarbons (e.g., BTEX, PAHs).
- (b) Soil_{SSni} = RECAP Screening Option Standard from Table 1 of RECAP 2003 for soil protective of nonindustrial land use.
- (c) Soil_{SSi} = RECAP Screening Option Standard from Table 1 of RECAP 2003 for soil protective of industrial land use.
- (d) The maximum reported concentration in sediment samples most representative of surface sediment in the 0 to 3 foot interval (remediated areas excluded). The samples included in the direct contact evaluation are summarized in Table 5-3. Detections in split sample results from two separate laboratories (as submitted by ICON and MP&A) were averaged when valid data were available from both laboratories, and the detected value was used when one detection was reported.
- (e) Value not provided in RECAP; the risk-based values were calculated in accordance with Appendix H of RECAP 2003 (see Appendix G).

TABLE K-2

SEDIMENT

COMPARISON TO MO-3 DIRECT CONTACT STANDARDS (DRY WEIGHT)

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

AOIC (mg/kg-dry) (f, g)

						7101c (III)	3 Kg (1) (1/6)
Nonindustrial Direct Contact COCs (a)	Sed _r Adult (b)	Sed _r Child (b)	Industrial Soil _i (c)	Soil _{sat} (d)	Limiting RS (e)	Maximum Sediment Concentration	Further Evaluation for Arsenic: Average Concentration
Metals							
Arsenic	12	12	12	NA	12	22	6.4
Barium	980,000	280,000	409,000	NA	280,000	15,700	
Mercury	1,500	420	610	NA	420	8.52	
TPH - Fractions							
Aliphatics >C10-C12	51,000	17,000	20,000	NA	17,000	514	
Aliphatics >C12-C16	98,000	32,000	38,000	NA	32,000	3,310	
Aliphatics >C16-C35	1,400,000	130,000	690,000	NA	130,000	12,600	
Aromatics >C12-C16	55,000	18,000	21,000	NA	18,000	790	
Aromatics >C16-C21	30,000	2,200	17,000	NA	2,200	1,420	
Aromatics >C21-C35	38,000	2,300	25,000	NA	2,300	2,020	
				Cumu	lative Evaluation:		
					Kidney HI =	0.9	
					Liver HI =	0.2	

Notes:

Concentrations in milligrams per kilogram (mg/kg) dry weight

MO-3 - Management Option 3 under RECAP

RS - RECAP Standard

COC - Constituent of Concern

AOIC - Area of Investigation Concentration

TPH - Total Petroleum Hydrocarbons

NA - Not Applicable

Sedr - site-specific RECAP Standard for sediment protective of human health for recreational land use.

A **bold** value indicates that the reported concentration exceeds the Limiting RS for the respective constituent and warrants further evaluation.

- (a) Constituents with concentrations above the RECAP Soil_{SSni} in sediment samples representative of the 0 to 3 foot interval were included for further evaluation under MO-3 (screening evaluation provided in Table K-1). See Table 5-3 for a list of sediment samples collected by ICON and MP&A used in the quantitative evaluation.
- (b) Sediment RS were developed using the algorithms provided in Appendix H of RECAP for direct contact (per RECAP FAQ guidance), with updated toxicity factors, and modifying exposure assumptions as appropriate for sediment exposure. Exposure assumptions are identified for an adult and child recreational scenario in Table 6-2, with references/rationale for the selected exposure assumptions. Exposure pathways include ingestion, dermal contact, and inhalation of volatiles released to the breathing zone.
- (c) RECAP standard protective of industrial land use, calculated in accordance with Appendix H of RECAP (2003), using default industrial exposure parameters provided in RECAP with current toxicity factors (as identified in Table 6-1).
- (d) Soilsat Soil saturation concentration (RECAP Table 2)
- (e) The limiting RS is the minimum of the Sedr adult, Sedr child, and Industrial Soili.
- (f) The AOIC is the maximum reported concentration (after split results were averaged) in samples most representative of surface sediment in the 0 to 3 foot interval. Sediment samples included in the direct contact evaluation are summarized in Table 5-3. Further evaluation for arsenic included the use of an average concentration as the AOIC in accordance with RECAP (2003). Sediment samples in the 0 to 3 interval (as summarized in Table 5-3) within and between the oilfield access canals (south of Schooner Bayou) were included in the arsenic average calculation; AB1 to AB4 and the SED-BK samples were excluded from the average calculation. Calculation provided in Table K-3.
- (g) The Hazard Index (HI) approach was used to address additivity for non-carcinogenic effects on the same target organ/ system, in accordance with Appendices D and G of RECAP (2003). Target organs are identified in Table 6-1. For the COCs in this evaluation, the kidney and liver are affected by more than one COC. The HI is calculated as the sum of the individual Hazard Quotients (HQ) for the COCs affecting each target organ. For TPH fractions that are considered a single COC per RECAP (2003), the highest HQ was used to represent the TPH range in calculating the HI:

Kidney: Barium, Aromatics > C16-C35	Kidney HI =	0.9	= 0.056 (Ba HQ) + 0.88 [Max (Arom 16-21 HQ, Arom 21-35 HQ)]
Liver: Aliphatics >C8-16, Aliphatics >C16-35	Liver HI =	0.2	= 0.1 [Max (Alip 10-12 HQ, Alip 12-16 HQ)] + 0.1 (Alip 16-35 HQ)

TABLE K-3

AVERAGE ARSENIC CONCENTRATION IN SEDIMENT WITHIN AND BETWEEN OILFIELD ACCESS CANALS

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Average Arsenic Concentration (mg/kg-dry) *	6.42
---	------

*excluding AB1 to AB4, and SED-BK samples

	Core Interval		
Boring ID	(ft bls)	Date	mg/kg-Dry Wt.
B2	2-4	8-Aug-06	13.80
B4	0-1	9-Aug-06	10.00
B5	0-1.5	9-Aug-06	6.57
B6	1.5-3	9-Aug-06	5.17
В9	0-0.5	9-Aug-06	8.17
B-10	1.5-4	9-Aug-06	7.19
B17	0-3	10-Aug-06	7.75
B19	1-2.5	10-Aug-06	15.4
SS3	0-0.6	25-Apr-06	8.79
SS3	0.6-2.2	25-Apr-06	10.90
SS3	2.2-2.6	25-Apr-06	9.61
SS5	0-2.15	26-Apr-06	11.40
SS7	0-1.4	26-Apr-06	22.00
SS7	1.4-2.5	26-Apr-06	21.50
SS8	0-2'	26-Feb-10	8.01
SS10	0-2'	26-Feb-10	7.28
SS11	0-2.5	27-Apr-06	5.28
SS12	0-3.7	27-Apr-06	6.17
AB5	0-6'	13-Nov-06	6.03
AB13	0-3'	13-Nov-06	12.90
AB14	0-3'	13-Nov-06	5.51
AB15	0-6'	13-Nov-06	8.15
SED4	0-2'	25-Feb-10	3.50
SED5	0-2'	25-Feb-10	5.47
SED6	0-2'	25-Feb-10	5.68
SED7	0-2'	25-Feb-10	3.70
SED8	0-2'	25-Feb-10	4.21
SED9	0-2'	25-Feb-10	4.52
SED10	0-2'	25-Feb-10	4.79
SED11	0-2'	25-Feb-10	7.09
SED12	0-2'	25-Feb-10	3.61
SED13	0-2'	26-Feb-10	4.40
SED14	0-2'	26-Feb-10	3.44
SED16	0-2'	26-Feb-10	5.17
SED17	0-2'	26-Feb-10	3.87
SED18	0-2'	26-Feb-10	6.20
SED19	0-2'	26-Feb-10	4.81
SED20	0-2'	26-Feb-10	4.94
SED21	0-2'	26-Feb-10	3.54
SED22	0-2'	26-Feb-10	3.86
SED23	0-2'	2-Mar-10	5.24
	D 0 (4		•

TABLE K-3

AVERAGE ARSENIC CONCENTRATION IN SEDIMENT WITHIN AND BETWEEN OILFIELD ACCESS CANALS

East White Lake Oil and Gas Field Vermilion Parish, Louisiana

Average Arsenic Concentration (mg/kg-dry) *	6.42
---	------

*excluding AB1 to AB4, and SED-BK samples

	Core Interval		
Boring ID	(ft bls)	Date	mg/kg-Dry Wt.
SED24	0-2'	2-Mar-10	4.55
SED25	0-2'	2-Mar-10	5.04
SED26	0-2'	2-Mar-10	4.52
SED27	0-2'	2-Mar-10	4.12
SED28	0-2'	2-Mar-10	4.16
SED29	0-2'	2-Mar-10	4.47
SED30	0-2'	2-Mar-10	4.28
SED31	0-2'	1-Mar-10	2.14
SED32	0-2'	1-Mar-10	3.34
SED33	0-2'	1-Mar-10	2.91
MPA-AB13	0-3'	20-May-10	8.46
AB-13*	0-3'	10-Aug-10	17.6
AB-13 SO-E*	0-3'	10-Aug-10	10.6
AB-14*	0-3'	10-Aug-10	6.29
SED-8	0-6"	6-May-10	4.86
SED-9	0-6"	5-May-10	4.99
SED-11	0-6"	6-May-10	4.59
SED-13	0-6"	6-May-10	4.06
SED-19	0-6"	6-May-10	3.00
SED-24	0-6"	5-May-10	6.81
SED-26	0-6"	5-May-10	4.20
SED-31	0-6"	5-May-10	6.42
SED-120 (SED-30 locat)	0-6"	7-May-10	4.67
WL-1	(0-2)	1/5/2015	3.84
WL-2	(0-2)	1/5/2015	0.911
WL-3	(0-2)	1/6/2015	2.59
WL-4	(0-2)	1/6/2015	3.7
WL-5	(0-2)	1/6/2015	4.61
WL-6	(0-2)	1/6/2015	4.99
WL-7	0-2'	1/6/2015	3.49
WL-8	0-2'	1/6/2015	6.14

Laboratory Reports for Biota Samples

Āppendix L

Project No. 0116008 UNOCAL Vermilion Parish, Louisiana

Environmental Resources Management Southwest, Inc.

3838 North Causeway Boulevard, Suite 3000 Metairie, Louisiana 70002 (504) 831-6700