LOUISIANA WATER RESOURCES ASSESSMENT FOR SUSTAINABILITY AND ENERGY MANAGEMENT Scott A. Hemmerling, F. Ryan Clark, and Harris C. Bienn September 8, 2016

ACKNOWLEDGEMENTS

- DNR Office of Conservation
 - Gary Snellgrove
 - Matt Reonas
- CPRA
 - Wes Leblanc

- Technical Coordination
 Team
 - David Borrok
 - Charles Demas
 - Gary Hanson
 - John Lovelace
- Pierre Sargent

PROJECT GOALS

- Establishing a standardized set of measures: evaluating regional water supply
- Setting baseline water budgets groundwater and surface water
- Set up a process
 - Convert available types of water data into a more universal format
 - Create modular framework
 - Tested in areas with sufficient data and existing tools
 - Capable of use in sparser data areas
 - More refined tools and data can be substituted

PROJECT PROCESS

- Develop a Framework using available data that it useful to decision makers
- Gage the sustainability of water resources in light of present and projected uses

<u>Sustainability</u>: A balance between use and supply that causes no further impairment to water resources, and maintains or improves the current health of these systems

 Develop a system for analyzing and communicating these facts and figures to the public and key water managers around the state

PROJECT ACTIVITIES

Activity 1

Develop a Framework for appraising the health and sustainability of Louisiana's water resources.

Activity 2

Review of Data Sources/Availability and select certain hydrologic units for detailed assessment.

Activity 3

Conduct the appraisal of the hydrologic units selected though application of the Framework.

Activity 4

Prepare a report that describes the Framework, its application to specific selected hydro units, and the resulting assessment of water resources sustainability.

FRAMEWORK APPLICATION

Apply framework to pilot study area (SWLA)

Estimates of surface and groundwater supply and usage

Projections of future supply and usage

Apply framework to NWLA and SELA study areas

SELECTING STUDY AREAS

- Extent of water bearing units
 - Surface water
 Cataloguing Units
 (HUC8)
 - Groundwater aquifers
- Water demand
- Data availability

Southwest Louisiana Study Area Delineation Process: Aquifers

Legend Sai Chiar Shark Ana Cheat Apthe Monologi Tane Aband Apathe The Apathe Monologi Tane Aband Apathe

Southwest Louisiana Study Area Delineation Process: Intersection

11

ten et al Matural Resources, U.S. Goulogies

East Chicor Study Area

Southwest Louisiana Study Area Delineation Process: Surface Water Units

agend base Chier Sholy Anso Sau Chier Solar Ware Units Sau Chier Solar Ware Units

Southwest Louisiana Study Area Delineation Process: Proposed Boundary

SELECTED STUDY AREAS

- SWLA East Chicot Aquifer Area
- NWLA Carrizo-Wilcox Aquifer Area
- SELA West Southern Hills Aquifer Area
- Chosen for:
 - Data availability
 - Mix of uses
 - Existing supply/ demand imbalances
 - Cover different parts of state/ unique issues

PILOT STUDY AREA: SWLA

- East Chicot Aquifer Area
- Surface water basins:
 - Bayou Teche
 - Vermilion River
 - Mermentau River
- mix of demand uses
 - Agriculture (including rice)
 - Livestock
 - Industry
 - Urban/rural domestic
 - Coastal

Data Source: Lousiana Department of Natural Resources; U.S. Geological Survey

PILOT STUDY AREA: SWLA

Hydrologic Unit	Number of Households	Estimated Freshwater Demand (acre- feet/year)	Number of Public Supply Systems	Population Served	Number of Domestic Water Wells
Bayou Teche	81,241	36,401	56	199,533	2,107
Vermilion	135,446	60,688	112	446,824	9,428
Mermentau Headwaters	46,004	20,612	30	124,201	2,209
Mermentau	21,704	9,725	16	44,294	4,271

Estimated Annual Household Demand for Fresh Water by HUC8 (2010)

Data Source: U.S. Census Bureau 2010

WATER BALANCE EQUATION

 $P + Q_{in}^{tot} = ET + Q_{ua} + Q_{out}^{tot}$

 $P + Q_{in}^{sw} + Q_{in}^{gw} = ET^{sw} + ET^{gw} + ET^{uz} + Q_{ua}^{sw} + Q_{ua}^{gw} + Q_{out}^{gw} + Q_{out}^{sw}$

 $Q_{in}^{sw} = RO + Q_{in}^{bf} + Q_{in}^{streams} + Q_{in}^{transfers} + Q_{in}^{return\,flow\,ag} + Q_{in}^{return\,flow\,ww}$

$$Q_{in}^{gw} = Q_{in}^{gw \, surface \, al} + Q_{in}^{gw \, unconf} + Q_{in}^{gw \, conf}$$

 $Q_{out}^{sw} = Q_{out}^{streams} + WD_{out}^{sw}$

 $Q_{out}^{gw} = (Q_{out}^{gw\,al} + Q_{out}^{gw\,unconf} + Q_{out}^{gw\,conf}) + (WD_{out}^{gw\,al} + WD_{out}^{gw\,unconf} + WD_{out}^{gw\,conf})$

WATER BALANCE EQUATION

 $P + Q_{in}^{tot} = ET + \Delta S + Q_{out}^{tot}$

$$P + Q_{in}^{sw} + Q_{in}^{gw} = ET^{sw} + ET^{gw} + ET^{uz} + Q_{ua}^{sw} + Q_{ua}^{gw} + Q_{out}^{gw} + Q_{out}^{sw}$$

$$Q_{in}^{sw} = RO + Q_{in}^{bf} + Q_{in}^{streams} + Q_{in}^{transfers} + Q_{in}^{return\,flow\,ag} + Q_{in}^{return\,flow\,ww}$$

$$Q_{in}^{gw} = Q_{in}^{gw \, surface \, al} + Q_{in}^{gw \, unconf} + Q_{in}^{gw \, conf}$$

 $Q_{out}^{sw} = Q_{out}^{streams} + WD_{out}^{sw}$

 $Q_{out}^{gw} = (Q_{out}^{gw\,al} + Q_{out}^{gw\,unconf} + Q_{out}^{gw\,conf}) + (WD_{out}^{gw\,al} + WD_{out}^{gw\,unconf} + WD_{out}^{gw\,conf})$

USGS GROUNDWATER TOOLBOX

USGS GROUNDWATER TOOLBOX

- Estimate components of streamflow:
 - base flow
 - runoff
- Also used to estimate:
 - Precipitation
 - Groundwater recharge (near surface)
 - Evapotranspiration
- Adapted to include:
 - Deep aquifer recharge from precipitation infiltration in recharge zone, and from vertical leakage

Water Budget Component	Method of Analysis	Framework Variable
Precipitation	NOAA NCDC observed daily precipitation data, in inches, retrieved with the USGS Groundwater Toolbox (PRCP dataset)	Р
Streamflow	USGS NWIS daily mean streamflow data retrieved with the USGS Groundwater Toolbox	Q_{out}^{sw}
Base flow	Average of the six hydrograph-separation methods calculated with the USGS Groundwater Toolbox	Q_{out}^{bf}
Runoff	Streamflow minus base flow	RO
Recharge	Calculated using the RORA method provided with the USGS Groundwater Toolbox	$Q_{out}^{gw al}$
Evapotranspiration, total	Calculation method 1: Precipitation minus streamflow	ET
Evapotranspiration, total (alternate method, not used in budget)	Calculation method 2: From regression model developed by Sanford & Selnick (2012) and NOAA NCDC data retrieved with the USGS Groundwater Toolbox	ET 2
Evapotranspiration, groundwater	Calculated as recharge minus base flow	ET^{gw}
Evapotranspiration, near surface	Calculated as total evapotranspiration (method 1) minus evapotranspiration from the groundwater system	ET ^{uz} + ET ^{sw}
Percent of HUC in high recharge Area	Calculated with ArcGIS (ESRI 2011)	% SWgwrcg
Infiltration coefficient	Average of values from Delin & Risser (2007)	INF
Deep Aquifer Recharge from rainfall in recharge zone	Recharge above (Etgw+Qbf) x (%SWgwrcg) x infiltration coefficient (INF)	Q ^{gw unconf} in
Deep Aquifer Recharge from vertical leakage coefficient	L'vovich (1979), and Doll & Fiedler (2008)	RCvICoeff
Percent of HUC not in Chicot high recharge area	Calculated with ArcGIS (ESRI 2011)	%swgwvl
Deep Aquifer Recharge from vertical leakage	Recharge above (Etgw+Qbf) x (%SWgwrvl) x vertical leakage coefficient (RCvICoeff)	gw surface a in
Surface Water and Groundwater Withdrawals	Values obtained from USGS Water Use in Louisiana (Sargent et al., 2011)	$WD_{out}^{sw}, WD_{out}^{gw}$
Return Flow (leakage and runoff)	WD*Consumptive Use Coefficients obtained from USGS National Water Summary (Carr et al., 1987) and Lawrence Livermore National Laboratory (Smith et al., 2011)	Q ^{return flow}
Consumptive Use	WD - Qsw in (return flow)	WD - Q ^{return flow}
Return Flow	Discharge values obtained from USEPA Permit Compliance System (PCS) and Integrated Compliance Information System (ICIS)	return flow w n
DRAFT - NOT FOR DISTRIBUTION		19

WATER BALANCE RESULTS

Total Water Balance in Southwest Louisiana Study Area by HUC8

WATER BALANCE RESULTS

Surface Water Balance in Southwest Louisiana Study Area by HUC8

WATER BALANCE RESULTS

Groundwater Balance in Southwest Louisiana Study Area by HUC8

CONSTRAINTS & QUALITY IMPACTS

Portion of Each HUC8 with Mean Annual Salinity Levels Greater than 0.5 ppt

SWLA study area surface water balance, including impacts of coastal salinity on water usability

Hydrologic Unit	Total Water Inflow (acre- feet/year)	Reduced Water Inflow (acre- feet/year)	Unallocated Water (acre- feet/year)	Percent Change
Bayou Teche	5,473,672	5,364,198	109,474	-2.0%
Vermilion	4,304,848	1,954,401	2,350,447	-54.6%
Mermentau Headwaters	3,350,916	3,350,915	1	0.0%
Mermentau	5,913,295	2,980,300	2,932,995	-49.6%
Total	19,042,731	13,649,81 4	5,392,917	-28.3%

Mean Annual Salinity

Data Source: The Water Institute of the Gulf

CONSTRAINTS & QUALITY IMPACTS

Waters listed as Impaired under Clean Water Act Section 303(d)

SWLA study area summary of overall water balance, including impacts of 10% impaired quality on surface water usability

Hydrologic Unit	Total Water Inflow (acre- feet/year)	Reduced Water Inflow (acre- feet/year)	Unallocated Water (acre- feet/year)	Percent Change
Bayou Teche	5,639,321	5,091,954	547,367	-10.7%
Vermilion	4,385,187	3,954,702	430,485	-10.9%
Mermentau Headwaters	3,409,647	3,074,555	335,092	-10.9%
Mermentau	6,031,190	5,439,860	591,330	-10.9%
Total	19,465,34 5	17,561,071	1,904,273	-10.8%

----- 303{d) Impaired Streams and Bayous 303{d) Impaired Lakes

Data Source: U.S. Environmental Protection Agency

FUTURE PROJECTIONS

FUTURE PROJECTIONS

Projected 10-year Population Change by ZIP Code

Data Source: Economic Modeling Specialists, International; Lousiana Economic Development

DRAFT - NOT FOR DISTRIBUTION

Projected Urban Growth in Southwest Louisiana Study Area (2009-2060)

Data Source: North Carolina State University Biodiversity and Spatial Analysis Center

2009

2060

FUTURE PROJECTIONS

SWLA total water balance change under future urbanization scenario

Hydrologic Unit	Change in Groundwater Input	% Change in Groundwater	Change in Surface Water Input (acre-	% Change in Surface Water
	(acre-feet/year)	Input	feet/year)	Input
Bayou Teche	-1,798	-1.1%	32,743	+0.6%
Vermilion	-70	-0.1%	63,892	+1.5%
Mermentau Headwaters	-105	-0.2%	36,439	+1.1%
Mermentau	-63	-0.1%	9,104	+0.2%

SWLA total water balance change under population growth scenario

Hydrologic Unit	Change in Groundwater Output (acre- feet/year)	% Change in Groundwater Output	Change in Surface Water Output (acre- feet/year)	% Change in Surface Water Output
Bayou Teche	945	+0.6%	34	<0.1%
Vermilion	4,420	+5.5%	40	<0.1%
Mermentau Headwaters	-49	-0.1%	0	0.0%
Mermentau	119	+0.1%	0	0.0%

ENERGY

<u>Embedded Energy</u>: The amount of energy used to collect, convey, treat, and distribute a unit of water to end users, and the amount of energy that is used to collect and transport used water for treatment prior to safe discharge of the effluent

Unit Electricity Consumption for Wastewater Treatment by Size of Plant				
Treatment Plant Size	Unit Electricity Consumption (kWh/MM gal)			
	Trickling Filter	Activated Sludge	Advanced Wastewater Treatment	Advanced Wastewater Treatment Nitrification
1 MM gal/day	1,811	2,236	2,596	2,951
5 MM gal/day	978	1,369	1,573	1,926
10 MM gal/day	852	1,203	1,408	1,791
20 MM gal/day	750	1,114	1,303	1,676
50 MM gal/day	687	1,051	1,216	1,588
100 MM gal/day	673	1,028	1,188	1,558
Source: Electric Power Research Institute, 2002				

Unit Electricity Consumption for Surface Water Treatment Plants		
Treatment Plant Size	Unit Electricity Consumption	
1 MM gal/day (3,785 m³/d)	1,483 kWh/MM gal (0.392 kWh/m ³)	
5 MM gal/day (18,925 m³/d)	1,418 kWh/MM gal (0.375 kWh/ m ³)	
10 MM gal/day (37,850 m³/d)	1,406 kWh/MM gal (0.371 kWh/ m ³)	
20 MM gal/day (75,700 m³/d)	1,409 kWh/MM gal (0.372 kWh/ m ³)	
50 MM gal/day (189,250 m³/d)	1,408 kWh/MM gal (0.372 kWh/ m ³)	
100 MM gal/day (378,500	1,407 kWh/MM gal (0.372 kWh/ m ³)	
m³/d)		
Source: Electric Power Research Institute, 2002		

ENERGY

Annual Drinking Water Treatment Energy Used by Public Water Supply Systems

Data Source: Lousiana Department of Natural Resources; Lousiana Department of Health and Hospitals; U.S. Environmental Protection Agency

Estimated Annual Energy Costs to Withdraw Water from Domestic Wells

* Values estimated based upon overage domestic water use of 400 gallons per day for a family of four using an electric domestic water well pump using 1.16 kwh per day for each 10 feet of water lift

Data Source: Lousiana Department of Natural Resources; Lousiana Department of Health and Hospitals; U.S. Environmental Protection Agency

SUMMARY

- Created framework for assessment of water supply
 & demand usable statewide
- Tested on areas with data available, and existing studies for comparison
- Can be applied to other areas of the state with sparser data and fewer existing studies
- Modular, improvable/customizable with new data and tools

PATH FORWARD

- Refine tools
- Refine water use data for each water-use sector
- Annual means → seasonal scale, including seasonality of demand
- Minimum ecological flow estimation (estuarine)

THANK YOU

Please contact us at innovation@thewaterinstitute.org

301 NORTH MAIN STREET, SUITE 2000 BATON ROUGE, LA 70825

(225) 448-2813 WWW.THEWATERINSTITUTE.ORG

