Developing a Regional Model of the Coastal Lowlands Aquifer System (CLAS)

Louisiana Water Resources Commission Meeting Baton Rouge, LA

July 25, 2018

Linzy K. Foster – TX WSC Brian R. Clark – LMG WSC Leslie Duncan – LMG WSC Natalie Houston – TX WSC Andrew Teeple – TX WSC

- Document anthropogenic effects on water levels, storage, and streams
- Explore climate variability impacts
- Evaluate adequacy of data networks

USGS National Study Goals

Coastal Lowlands Aquifer System (CLAS)

- 5 states
- 140,000 mi²
- 4th in groundwater for public supply
- 5th as private domestic supply
- Houston (#4), Baton Rouge, New Orleans, Mobile

CLAS Groundwater Availability Story

- Subsidence
- Uncertainty analysis
- Quantify worth of improved datasets

pyEMU

python modules for model-independent FOSM (first-order, second-moment) (a.k.a linear-based, a.k.a. Bayes linear) uncertainty analyses and data-worth analyses, non-linear uncertainty analyses and interfacing with PEST and PEST++. pyEMU now also has a pure python (pandas and numpy) implementation of ordinary kriging for geostatistical interpolation.

PILOT POINT MULTIPLIER PARAMETER

System geometry - historical

А

- unconsolidated
- 7 layers
- Overlies Mississippi embayment

System geometry - current

- Conceptualized as continuous units across the study area
- Aquifer delineations
- Chicot, Evangeline, Burkeville Confining Unit, Jasper, Catahoula
- Data Release FY18

Hydrogeologic Data Compilation

State	Alabama	Florida	Louisiana	Mississippi	Texas	Totals	
Total Wells	114	602	1741	247	66035	68739	
Total Wells with Framework Data	113	142	1455	222	1062	2994	
Total Individual Picks	721	848	. `504	1913	10501	31587	
Sources	۶GS	-	INTERA	MDEQ	INTERA		
	G	USGS	LGS	USGS	USGS		
	JSGS		USGS				

LA Stratigraphic Data and Aquifer Equivalents

science for a changing world

Traditional development

Conceptual model

Calibration (History-Matching)

Traditional development

Prepared in cooperation with the Arkansas Natural Resources Commission

Enhancements to the Mississippi Embayment Regional Aquifer Study (MERAS) Groundwater-Flow Model and Simulations of Sustainable Water-Level Scenarios

U.S. Department of the Interior U.S. Geological Survey

Report

Forecast development

science for a changing world

model...

Forecast-first Modeling

Forecast First: An Argument for Groundwater Modeling in Reverse by Jeremy White, USGS

Groundwater Volume 55, Issue 5,

"... by <u>focusing on the forecasts</u>, a more robust analysis of the <u>appropriate level of</u> <u>complexity</u> can be undertaken (e.g., Guthke <u>2017</u>), where <u>complexity is driven</u> not only by the ability to reproduce the past, but also simultaneously <u>by the need</u> to provide **robust** estimates of forecast <u>uncertainty</u>.

Figure 1. A comparison of a traditional modeling analysis workflow for groundwater modeling analyses (A) and the proposed, forecast-first workflow (B). Dashed, gray edges represent optional steps that may be required. The suitability evaluation (Jakeman et al. 2006) is an explicit, but optional step in the traditional workflow. However, in the forecast-first workflow, the suitability evaluation is happening implicitly during each step of the analysis.

85% Model

- 1. Use existing models
- 2. Pull together historical data (water levels, baseflows, etc) and information on the system (*prior*)
- 3. Quantities of Interest (Qols)
- 4. Build forecast "model"
- 5. Uncertainty Quantification
- 6. Add in new dataset, repeat & compare
- 7. Condition/history-match/calibration, final predictive scenarios, assess

Previous Models

Several models in study area

Regional Aquifer System Analysis (RASA) model

Converted to transient for 1985 - 2010 with

- simplistic water-use estimates
- retaining original framework (7 layers or permeable zones)

Texas Groundwater Availability Models (GAMs)

- 1 mile by 1 mile grids
- Pre-development to 2000 2012
- Layers consistent with aquifers
- Various boundary conditions (WEL) and levels of calibration

Texas Water Development Board

Current Model

MODFLOW 6 consistent with National Water Model Grid

Converted to transient for 1900 - 2015

Pilot Points every 60 km

Parameters (HK, VK, Ss, Sy, Recharge and Pumping)

pyEMU and PEST++

Water levels as obs for predictions currently

Pilot point spacing for aquifer properties - horizontal and vertical hydraulic conductivities, specific storage, and specific yield

Forecast Uncertainty

Hydraulic conductivity most important parameter

Water use

Next Steps

- Qols
- Prior
- Next round of data integration - UQ
- SFR
- CSUB

Land-surface subsidence

https://txpub.usgs.gov/hou ston_subsidence/home/

CSUB Package for MODFLOW 6 (J. Hughes)

science for a changing world

Timeline

CLAS Regional Groundwater Availability Study

Timeline

Home Study Area Map Water-Use Map Methods Timeline Deliverables Staff

The project is designed to span five years. The first year is focused on data compilation for framework development, water use, and history-matching criteria as well as the beginning construction of initial model datasets, including both the history-matching (calibration) model datasets and the foreased/scenario model datasets. The second year will be focused on updating the conceptual model, completion of initial model datasets, development of the prior uncertainty distributions for the model parameters, preliminary uncertainty analysis, and refinement/construction of more complex model datasets. The third and fourth years will be focused on conditioning of the model to historical data, application of non-linear uncertainty analysis, initial evaluation of both groundwater availability and the monitoring network, and publication of these results. The fifth year will be used to focus the modeling analysis on the topic of groundwater availability in regards to status and trends and future projections, as well as completing publication of the remaining products (professional paper and fact sheet).

Study Component		FY17			FY18			FY19				FY20				FY21				
		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1: Framework																				
Task 2: Conceptual and Numerical Models and Input Datasets																				
Task 3: Conditioning of Numerical Model, Predictions Under Uncertainty																				
Task 4: Groundwater Availability Assessment																				
Communication																				
Web Presence																				
Stakeholder Engagement Presentations																				
Project Updates																				
Products																				
SIR Framework/Conceptual Model/Model Datasets and Construction																				
Journal Article (new SUB package for MODFLOW6)																				
Journal article (conditioning, uncertainty and scenarios)																				
Data Releases (part of data management)										2										
Professional Paper groundwater availability, water budget, predictions																				
Fact Sheet																				
GWWebFlow Stochastic Model Viewer																				

Accessibility FOIA Privacy Policies and Notices U.S. Department of the Interior || U.S. Geological Survey Page Contact Information: gs-w-tx_webmaster@usgs.gov Page modified: December 6, 2016

Contacts:

Brian – <u>brclark@usgs.gov</u>

Linzy –

lfoster@usgs.gov

Leslie –

lduncan@usgs.gov

https://www2.usgs.gov/water/lowermississip pigulf/lmgweb/clas/index.html

CLAS Regional Groundwater Availability Study

Home

Home Study Area Map Water-Use Map Methods Timeline Deliverables Staff

USGS is undertaking a 5-year study to assess groundwater availability for the aquifers proximal to the Gulf of Mexico from the Texas-Mexico border through the panhandle of Florida, known as the Coastal Lowlands Aquifer System (CLAS). This study is one of several within the Regional Groundwater Availability Studies of the

USGS Water Availability and Use Science Program. Groundwater from this aquifer system is used mainly for municipal, agricultural, and industrial supply. Land subsidence related to groundwater pumping is of concern within this study area; therefore, subsidence will be a main focus of this investigation. The study will focus

on quantifying the status of groundwater availability and the trends of availability

within the CLAS. Impacts from both climatic and anthropogenic changes to the hydrology will be assessed through use of a numerical model designed within an uncertainty analysis framework. This project will culminate with useful tools, publications, and data summarizing estimates, captured within an uncertainty framework, of past, current and future groundwater availability within the CLAS. CARDINA CAR

Click on map for larger image

Abstract view of Houston, TX.

Accessibility FOIA Privacy Policies and Notices U.S. Department of the Interior || U.S. Geological Survey Page Contact Information: Page modified: