

2005 Louisiana Performance Contracting Conference New Orleans, LA

Efficiency War is Brewing

- Power is constrained, or congested, in many areas of the United States But demand continues to rise!
- Many of these areas are located in non-attainment areas as designated by the Environmental Protection Agency (EPA) Over 40% of the country's population lived in counties with air quality concentrations above the NAAQS in 2000!*
- Some states, regions and localities will not allow additional power plant construction Uncertainty, overbuild, NIMBY will force further plant construction delays.
- Demand Response/Load Curtailment programs continue to gain popularity But, thousands of engines cannot fully participate because of emissions!
- Tightening emissions rules and regulations Existing base of engines not likely to meet many regulations, but remain a valuable asset.

Smart Energy Management Drivers

Old drivers

Conservation

Cost Savings

Reliability

- <u>New drivers</u>
- Volatile Prices
- Renewable Portfolio Standards
- Emissions

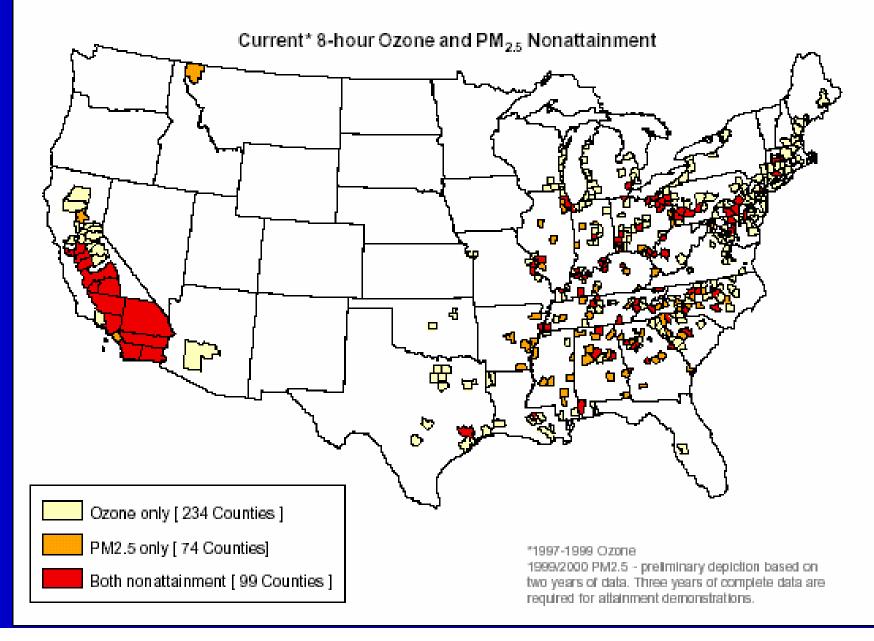
+

- Efficiency
- Security
- Shrinking supplies
- Congestion management
- Innovative rates LMP!?
- T&D deferment
- Demand response
- National policy
- Technology
- Smart controls
- Liability (I.e. insurance)

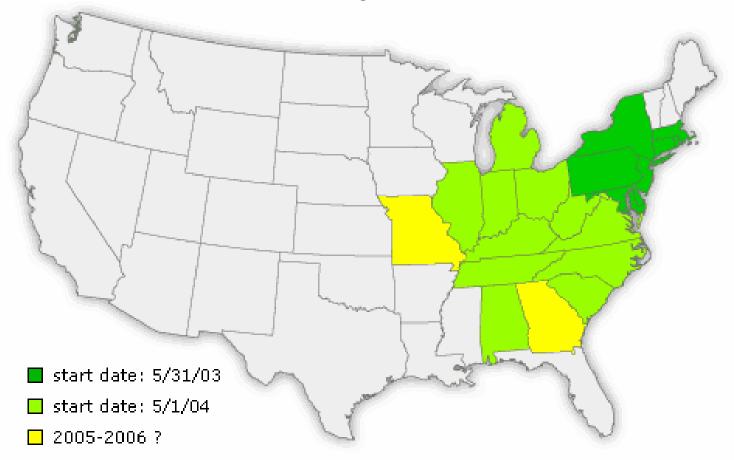
Pollution Reduction = Energy Efficiency =

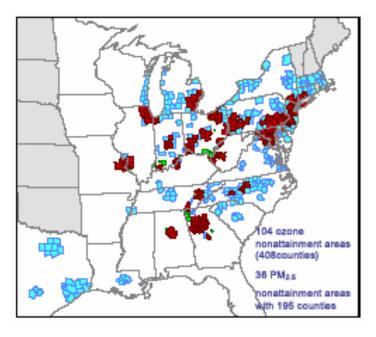
Future

 Smart Grid
(automation; controls, demand response)


Efficiency Gains

(increased load factors)


Clear Skies (emissions trading)


Many areas are likely to violate these Standards.

NO_x Program Implementation Dates by State

Clean Air Interstate Rule (CAIR)

- Finalized in March, 2005.
- Covers 28 states and DC, including Louisiana.
 - Particular concern for New Orleans, Baton Rouge & Shreveport* areas.
 - Interstate trading may be allowed.
 - Phase 1 Cap in place 2009?
- Uses cap and trade mechanism to achieve deep cuts in SO2 and Nox.
 - CHP and EGU

Efficiency Improvement + Demand Reduction + Emissions Reduction = Profitable Compliance?

Emissions Reduction Credits (ERC's)

DEFINITION: 6 NYCRR 231-2.1(b)(14)

Emission reduction credit, ERC. Any <u>decrease in emissions</u> of a nonattainment contaminant in tons per year, occurring on or after November 15, 1990:

 (i) which is <u>surplus, quantifiable, permanent, and enforceable</u>; and

 (ii) which results from a physical change in, or a change in the method of operation of an emission unit subject to <u>Part 201</u> of this Title; and

-a) is quantified as the difference between prior actual annual emissions or prior allowable annual emissions, whichever is less, and the subsequent maximum annual potential; and

- (*b*) is certified in accordance with the provisions of <u>section 231-2.6</u> of this Subpart; or

 (iii) which results from a physical change in, or a change in the method of operation of an air contamination source not subject to <u>Part 201</u> of this Title, and is certified in accordance with the provisions of <u>section 231-2.6</u> of this Subpart.

Active ERC Markets (as of 2002)

State/Region	Price	Market Outlook
NY/PA Severe	\$15,000	Tight supply +
NY/PA Moderate	\$1,800	Oversupply -
New England Serious	\$6,000	Oversupply -
MD Severe	\$10,000	Tight supply +
VA Serious	\$10,000	Tight supply +
GA Serious	\$20,000	No supply
TX DFW	\$10,000	Tight +
TX HGA	\$10,000	RACT Change
CA San Diego	\$120,000	No supply
CALA	\$45,000	Tight +
CA Others	\$8K - \$35K	Varies

HGA Emissions Reduction Credit Example

11 13

\$9,000

\$135,000

\$100,170

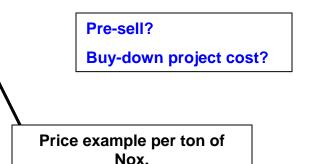
\$34,830

\$1,426.88

Potential to Emit Calculation							
Annual run time 8760							
Capacity	/		820				
Conversion of kw to bhp		1.407					
Conversi	on of gra	am to pou	454				
Conversion of pound to tor 200		2000					
Units	KW	HP	g/bhp-hr	grams/year	Lbs/year	Tons/year	
1	820	1153.74	9	90,960,862	200,354	100.18	currently permitted
1	820	1153.74	1.5	15,160,144	33,392	16.70	new rule
1	820	1153.74	0.5	5,053,381	11,131	5.57	11.13
1	820	1153.74	0.3	2,958,077	6,516	3.26	13.44

Potential ERCs in tons for Nox at 0.5 grams. Market Value of ERCs for Nox/ton (2003 avg. NYC Severe Non-attainment area Cost of Conversion and Emissions technology per engine*

Aggregate Value of ERCs for Nox at 0.5 grams.


Difference between conversion cost and ERC value

Cost in \$/ton of Nox reduced

Several Texas Non-attainment areas

•HGA worst

- Deadlines (MECT)
- Liquid market(Prices vary per market conditions)
- DFW non-attainment, but no market- yet!
- Lower emissions requirements throughout East Texas
- Potential to sell credits in Louisiana to Texas companies/districts?

NOx ERC Values – NYC Example

- \$29,000 per ton was the highest trading price;
- \$3,800 per ton was the lowest trading price;
- At the height of demand for new power plant construction, prices were typically \$13,000, \$14,000, \$15000 per ton;
- Average price since trading began is in the \$8000 per ton range;

If CHP Were Adopted:

◆ 2200 MW's of CHP installed over the 10 Year period 2002-2012 has the following benefits:

- \$1.825 Billion in User Savings
- \$808 Million in net present value savings
- Annual Emission Reductions in 2012
 - 10,282 tons of Nox
 - 27,766 tons of SO2
 - ◆ 3,854,000 tons of CO2

Louisiana Emissions Statistics (2002) – in tons

- VOC: 77,781 tons
- NOX: 310,578 tons
- CO: 145,152 tons

Example: \$1,000 per ton NOx

Year One: 10,000 ton reduction x \$1,000/ton = \$10,000,000 Year Two: 20,000 ton reduction x \$1,000/ton = \$20,000,000 Cumulative Value = 30,000 ton Nox reduction = \$30,000,000 value